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Fate of high winding number topological phases in the disordered
extended Su-Schrieffer-Heeger model
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We use the Lindblad equation approach to investigate topological phases hosting more than one localized
state at each side of a disordered Su-Schrieffer-Heeger chain with properly tuned long-range hoppings. Inducing
a nonequilibrium steady state across the chain, we probe the robustness of each phase and the fate of the edge
modes looking at the distribution of electrons along the chain and the corresponding standard deviation in the
presence of different kinds of disorder either preserving the symmetries of the Hamiltonian or not.

DOI: 10.1103/PhysRevB.109.035114

I. INTRODUCTION

Edge states in one-dimensional (1D) systems promise to
play a crucial role in quantum computation. Due to their
unique properties that can be exploited for qubit manipula-
tion, error correction, and braiding operations, the edge states
hold the promise of increased stability and fault tolerance,
which are critical challenges in the development of quan-
tum algorithms. Proper materials and setups which can host
and manipulate the edge states are thus required in topolog-
ical quantum computations. Such states can be realized in a
wide class of systems, from anyons with non-Abelian statis-
tics realized, for example, in quantum Hall states at filling
fraction % [1], helical electron liquids [2], or semiconductor-
superconductor heterostructures [3—5], to helical optical states
in photonic metamaterials [6,7] or even in topological me-
chanical systems [8,9].

Among all, the simplest nontrivial 1D system that man-
ifests topological edge states and disorder tolerance is the
Su-Schrieffer-Heeger (SSH) model. It consists of a nonin-
teracting tight-binding model of connected dimers. Such a
model, introduced to describe the transport properties of
polyacetylene [10], is the nonsuperconducting analog of the
Kitev chain [11], thus experimentally and theoretically more
accessible, hosting Dirac rather than Majorana modes at the
boundary. In the SSH model, the topological transition is
controlled by tuning the ratio of the hoppings between two
consecutive odd-even (intradimer) sites and even-odd (inter-
dimer) ones (single and double lines in Fig. 1, respectively).
When the intradimer hopping strength is weaker (stronger)
than the interdimer one, the system exhibits two (zero) edge
modes exponentially localized at the boundary of the system
with open boundary conditions. This property is shared by
all the SSH Hamiltonians adiabatically connected to each
other. On the other side, in the presence of periodic boundary
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conditions, a topological invariant, like the Chern number, de-
fined as the integral of the Berry curvature over the Brillouin
zone of the system [12], can be introduced to discriminate
between different topological phases. This quantity, which
is quantized and assumes the same value for adiabatically
connected Hamiltonians, in the SSH model can only take the
value O or 1. If the chiral, time-reversal, and particle-hole
symmetries are preserved, the SSH model belongs to the BDI
class of the Altland-Zirnbauer classification of topological
insulators [13], and this ensures that the bulk-boundary cor-
respondence is valid [14-16], i.e., the topological invariant
defined in the translational invariant system corresponds to the
number of edge states at each boundary of the corresponding
system with open boundary conditions. The SSH model can
be experimentally realized in cold atoms systems like bosonic
lattice gas [17], Rydberg synthetic lattice of 34Sr [18] and 8’Rb
[19], or also in optical waveguide [20,21] and photonic quan-
tum walk setups [22-24] in a way that can be manipulated to
perform quantum information encoding in dot arrays [25] and
quantum braiding in Y-junction gates [26].

Recently, great interest has been attracted by generalized
versions of the SSH model, called extended SSH (eSSH)
models [27-29]. In this class of systems, the hopping be-
tween even or odd sites as well as the presence of nonzero
on-site energy breaks particle-hole and chiral symmetry. The
bulk-boundary correspondence is no longer valid, i.e., the one-
to-one correspondence between the topological invariant and
the number of edge states in the open system is lost [27]. On
the contrary, the chiral symmetry and the bulk-boundary cor-
respondence are preserved for long-range hopping connecting
odd sites with even ones. In this case, the winding number
is no longer forced to assume only two values, as in the
standard SSH model, but new topological phases with more
than one edge state at each boundary (that increase with the
range of the hopping) are supported. On the experimental side,
such systems could be experimentally realized by applying
pertinently finetuned high-frequency ac-driving fields on an
SSH chain [28], in optically resonant nanoparticles [27] or in
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FIG. 1. Pictorial representation of the SSH chain. Single and
double solid lines represent the intradimer and interdimer hopping,
respectively.

photonic crystal systems [30]. The possibility to tune more
than one edge state could be a crucial ingredient in quantum
computation.

Clearly, real systems are less than perfect, and it is ex-
tremely important to be able to predict how much these new
topological phases, characterized by more than one edge state,
are robust against different types of noise and defects. The
simultaneous presence of topology and disorder has always
attracted a lot of interest due to nontrivial effects that can
emerge when both these ingredients are present [19]. While
topological phases are generally robust to certain types of
disorder up to some characteristic strengths, topological fea-
tures can be totally faded away or even enhanced, inducing
a reentrant topological phase transition at larger values of
the disorder strength [31-33]. Furthermore, while uncorre-
lated disorder is expected to induce Anderson localization
[34-36], correlated disorder can allow for the existence of
delocalized states which in turn influences the behavior of
the boundary states [37—41]. It is worth noting that nontrivial
types of correlated disorder are experimentally accessible by
means, for example, of photoluminescence and vertical dc
resistance [42] or in ultracold atoms [43-45] and photonic
systems [46].

In this paper, we investigate the robustness of eSSH mod-
els, hosting more than one edge state, in the presence of
different types of disorder than can break or preserve the
symmetries of the clean system. We make use of the Lindblad
master equation (LE) formalism [47] describing the Marko-
vian dynamics of the density matrix of the system when it is
coupled to the environment (i.e., the bath). In recent years,
the LE has been successfully applied to different contexts,
from ultracold atoms [48,49] to condensed matter systems
[50-54], quantum biology and quantum chemistry [55-58], or
to implement algorithms for quantum and classical problems
[59-66]. Furthermore, the Lindblad approach has recently
been used to study (dynamical) topological phase transitions
in 1D and two-dimensional systems [67-70] and planar su-
perconductors [71-73] as well as the many-body localization
in interacting systems [74—76]. It has also been implemented
to investigate both relaxation dynamics toward a thermal state
[77-82] as well as the nonequilibrium steady states (NESSs)
that emerge when a system is placed in contact with two
reservoirs at different temperatures or voltage bias/chemical
potentials [83-90].

In the LE formalism, after tracing out the bath degrees
of freedom, the interaction between the system and the bath
is modeled in terms of jump operators. Here, we consider
an eSSH model connected to two reservoirs at its endpoints
to drive the system toward an out-of-equilibrium configura-
tion injecting or removing particles through its boundaries.

When working in the large-bias limit, one of the reservoirs
acts as an electron source, while the other plays the role of
an electron drain [58,87-89]. After a transient regime, the
system reaches the NESS characterized by time-independent
current along the chain and site-dependent real-space density
through which the topological properties of the system can
be investigate. Indeed, we implement the even-odd differen-
tial occupancy (EOD), i.e., the difference between the mean
occupation on the even and odd sites [91], as a topologi-
cal invariant. The EOD allows us to monitor the nontrivial
topological properties of the disordered eSSH and to map
out the full disorder-dependent phase diagram. This proce-
dure circumvents the limitations of alternative numerical and
analytical approaches, like the disordered-averaged winding
number (DAWN) [92,93] or the strong disorder renormal-
ization group (SDRG) [94-98], and can be experimentally
measured in out-of-equilibrium experiments [91].

Using the EOD, we investigate the phase diagram of the
eSSH model as a function of disorder, also performing a
comparison with analytical results obtained within the SDRG
approach within appropriate limits. We show that a sort of
hierarchy is observed in the way disorder destroys topolog-
ical phases characterized by a high value of the topological
invariant. Increasing the disorder strength, the topological
invariant is reduced through unitary steps, via the appear-
ance of disorder-induced buffer phases, rather than an abrupt
transition toward the topologically trivial phase hosting no
zero-energy modes. At the same time, disorder can lead to
reentrant topological phases in favor of phases hosting a single
zero-energy mode at each boundary, like that observed in the
standard SSH model or in the Kitaev chain [31,32,91]. Mon-
itoring the standard deviation of the EOD, after computing
its average over many disorder configurations, as a function
of disorder strength and length of the chain, we can identify
the Griffiths effect that takes place in a narrow area around
each phase transition [99,100] and distinguish it from other
mimicking effects that take place in the presence of disorder
that breaks the chiral symmetry of the system. In summary,
we argue that a simultaneous comparison of the EOD and
its standard deviation allows us to characterize the properties
of the eSSH model in the presence of disorder to predict the
robustness of the zero-energy modes.

The paper is organized as follows:

(1) In Sec. II, we introduce the model Hamiltonian for
different families of eSSH chains and review the LE approach
as well as the definition of the EOD.

(2) In Sec. III, we introduce the different types of disorder
analyzed in the paper and the adopted numerical procedure.

(3) In Sec. IV, we implement the SDRG approach to gain
some insight into the boundaries of each topological phase in
the presence of disorder.

(4) In Sec. V, we discuss the main numerical results for
different types of disorder and eSSH models. We also investi-
gate the EOD, its standard deviation, and the area associated
with each topological phase as a function of disorder strength.

(5) In Sec. VI, we summarize and comment on our results
and provide possible further developments of our work.

(6) In the Appendix, we review the SDRG approach and
derive the recursive equations for a generic long-range eSSH
model.
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II. MODEL AND METHODS

The standard SSH chain is a 1D lattice model constituted
by a periodic repetition of N two-site unit cells, the dimer.
The L = 2N spinless sites can be bipartited into two sublattice
consisting of the first (A) and second (B) sites of each dimer,
respectively, as shown in Fig. 1.

The SSH model is defined through the Hamiltonian:

N
H,, = Z(UCL]CB!J' + wc;.jCA,jJrl) + H.c. (N
j=1

In Eq. (1), we denote by c; ; and cx ; the creation and annihila-
tion operators for a spinless electron on dimer i and sublattice
X = A, B, satisfying the standard anticommutation relations:

fek i ov ) = dxr i,
{exm C;,j} = {cx.i, ey j} = 0. 2)

With v and w, we denote the intradimer and interdimer hop-
ping strengths, respectively. The SSH chain is the simplest
1D model presenting topological behavior as a function of the
ratio v/w.

The system exhibits a gapped spectrum except at v =
w, where the topological transition takes place. The two
phases can be distinguished in the presence of open bound-
ary conditions, where for v < w, the energy spectrum of
the Hamiltonian displays two zero-energy modes associated
with two eigenstates that are exponentially localized at the
first and last sites of the chain, while for v > w, the gap is
totally empty. The SSH model belongs to the BDI class of
the Altland-Zirnbauer classification of topological insulators,
characterized by having particle-hole, time-reversal, and chi-
ral (or sublattice) symmetry. Defining the chiral operator as

I'= (c} jcaj— Cp ics.)): 3)
J

the Hamiltonian satisfies the relation {I", H} = 0 that implies
a symmetric spectrum ~0, i.e., each eigenstate has a chiral
partner at opposite energy. Due to this symmetry, a bulk-edge
correspondence can be established for the SSH model, i.e.,
integer values topologically invariant that can be defined in the
presence of periodic boundary conditions, which corresponds
to the number of edge states located at the boundaries of the
open chain. Indeed, by imposing periodic boundary condi-
tions on Eq. (1), we can relate the number of edge states to
the Chern number defined by means of the bulk eigenstates.
In 1D, the Chern number corresponds to the Zak phase, i.e.,
to the integral of the Berry connection over a closed path
throughout the whole Brillouin zone.
Writing the Hamiltonian in momentum space using

1 i
cx.i=— ey, 4)
X,Jj \/N; X,k

for X = A, B, we can set

Hyo =Y (chy C;,{)H@(Zi), (5)
- :

@~ @8

FIG. 2. Pictorial representation of the eSSH chain for (a) Hj*B
and (b) HPA. The long-range hopping (dashed line) connects next-
nearest-neighbor dimers. Red (blue) dots belong to the A (B)
sublattice.

where
Hk) =yk) 7, ©6)

with o;, i=x,y,z, being the Pauli matrices and
y (k) = (v + wcosk, wsink, 0). The Zak phase corresponds
to the winding number w of the closed curve y (k), i.e., the
number of times the closed curve revolves around the origin in
the y,-y, plane. The bulk-edge correspondence remains valid
also in the presence of long-range hoppings and disorder that
preserve the chiral symmetry. This is realized, for example, in
the presence of hoppings that connect sites of the sublattices
A and B at any distance but not in the presence of hopping
between sites belonging to the same sublattice, with the
Hamiltonian changing from the BDI class to the trivial Al
class.

A. eSSH models

Introducing a long-range hopping between the two sub-
lattices of the SSH chain, it is possible to define a family
of Hamiltonians, called eSSH models [27-29]. These Hamil-
tonians exhibit high values of the winding number, and as
a consequence, they can host more than one edge state at
each boundary. Two families of chiral symmetric long-range
hopping Hamiltonians can be defined as

H;;A_B =Hy .y + Z ch’jCB,jJrn + H.c., 7
J

Hr]?—A =H,,+ Z ZC;;’jCA,j-Fn +H.c,, (®
Jj

with n the range of the hopping and z the long-range hopping
strength (see Fig. 2 for a pictorial representation of the chain
forn = 2).

Hamiltonian H*B (HB-*) gives rise to topological nontriv-
ial phases having winding numbers up to n (—n), meaning
that exactly 2|n| localized edge states are present in the set
of one-particle eigenstates having zero energy because of the
bulk-edge correspondence.

The sign and the magnitude of n dictate the number of edge
states and on which sites they are localized. More explicitly,
the value of |n| determines the number of edge states local-
ized at both boundaries of the eSSH chain. If n is positive
(negative), these edge states will be localized on the first |n|
sites of sublattice A (B) and on the last |n| sites of sublattice
B (A). Writing Egs. (7) and (8) in momentum space, we can
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FIG. 3. Pictorial representation of eSSH chain with one hopping
sent to zero: (a) HY™ for w — 0, (b) H¥™* for v — 0, (c) Hy® for
w — 0, and (d) H® for v — 0. In each panel, we have highlighted
with different colors (yellow, green, and purple) each of the chains in
which the eSSH model decouples.

introduce the closed loop y (k) as done in Eq. (6) for the SSH
model. By looking at the behavior of the closed curve y (k)
as a function of v, w, and z, it is easy lo locate the parameter
boundaries corresponding to each topological phase, i.e., to
each value of the winding number. As it happens for the
simple SSH model, the parameter space of the eSSH chain
splits into distinct regions, characterized by the same value of
o such that two Hamiltonians in the same phase are adiabati-
cally connected to each other. All the Hamiltonians belonging
to a given phase share the same topological properties as an
appropriate limiting case in which all the hoppings except one
are sent to zero. Looking at these extreme cases, it is clear why
and where multiple edge states are expected in eSSH models.
Let us consider the cases H*® and H?* and let us tune each
hopping to zero one by one.

Trivially, by sending z — 0, we retrieve the standard SSH
model, i.e., H, ,,, for both H;*B and H2-*. Sending also v —
0 gives rise to two zero-energy Dirac fermions decoupled from
the bulk and localized at the first A site and at the last B
site. Vice versa, by sending w — 0, the chain reduces to a
collection of decoupled dimers with energies w. It follows
that

1 ifv<w
0 ifv>w.

For the cases in which v or w is the first hopping sent to
zero, we have to analyze H;*® and HE separately.

Let us start by sending first w — 0 in HZB'A. After doing
so, as shown in Fig. 3(a), even and odd dimers decouple in
two disconnected SSH chains with intradimer hopping v and
interdimer hopping z. Clearly, when v < z, both chains are in
the topological phase characterized by w = 1 (with the edge
states lying on the first, third, last, and third-to-last sites of the

chain), while for v > z, we have w = 0. It follows that

0 ifv>z

2 ifv<cz 10)

w=0=>w= {
On the other hand, sending v — 0 first decouples the first
and last Dirac fermions from the full chain, with the remaining
sites rearranged in a SSH model with intradimer hopping w
and interdimer hopping z, as we show in Fig. 3(b). As a
consequence, the total winding number is at least wy, = 1
and increases further if w < z. Again, the zero-energy states
occupy the first, third, last, and third-to-last sites. We have

1 ifw>z
2 ifw<z

v:():>a)={ (11)

Let us move to HZA'B and send w — O first. As shown in
Fig. 3(c), the system decouples in two SSH chains but with
reversed A and B sublattices. Again, the system can host two
edge states on each boundary, this time located on the second,
fourth, penultimate, and fourth-to-last sites of the full chain,
when v is lower than z. We can write

ifv>z

ifv <z (12)

0

w=0=>0= {_2

Finally, by sending v — 0, we decouple the eSSH model in

a collection of three SSH chains. Looking at Fig. 3(d), the first

chain has intrahopping z and interhopping w, while the other

two chains have switched both the hopping and the sublattice

index. It follows that, if z < w (z > w), the first chain is in the

nontrivial (trivial) topological phase with the other two chains
in the trivial (nontrivial) one, so that

ifw>z

ifw <z (13)

1

v=0=>w= {_ >
Topology ensures that these properties are preserved even
away from the extreme limits discussed above if the initial
and final Hamiltonians are adiabatically connected, i.e., the
spectrum remains gapped. In Fig. 4, we show the energy spec-
trum of both models discussed in this section, moving across
a line in the full parameter space. In Fig. 4(a), we show the
eigenvalues of HP* as a function of the interhopping strength
forv=14w/3 and z =1 — w/3. The spectrum is always
gapped except for v = {—2, 0, 2}, where by increasing w, the
topological phase transitions take place, moving from a phase
with |w| = 1 to a phase with |w| = 2, then w = 0 and again
to |o| = 1. In Fig. 4(b), similar behavior is shown for H;*®
for v =0.5 and z = 1.5. The sign of the winding number
cannot be inferred from the eigenvalues alone; therefore, for
this reason, on the right-hand side of both panels, we show the
closed curve y (k) in the y,-y, plane.

B. Out-of-equilibrium even-odd differential occupation

When the system is at equilibrium, the winding number is
one of the standard topological invariants used to characterize
the full phase diagram of the eSSH model. It can also be
generalized in the presence of chiral symmetry-preserving
disorder through the introduction of the DAWN [92,93]. How-
ever, it totally fails in the presence of disorder that breaks
the chiral symmetry. To overcome these limitations, in the
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FIG. 4. An example of the energy spectrum of (a) HE™ as a
function of w for v=1+w/3 and z=1—w/3, (b) HA® as a
function of w for v = 0.5 and z = 1.5. Blue and dashed red lines
represent the four states closest to the center of the gap. The side
panels show the behavior of y (k) for fixed values of the hoppings in
each topological phase.

following, we will make use of the EOD topological invari-
ant, recently introduced in Ref. [91]. In addition to being an
experimentally measurable quantity in the out-of-equilibrium
regime, it can be effectively employed both in the clean and
dirty limits.

Following the recipe of Ref. [91], we employ the LE
formalism to investigate the topological phase in the eSSH
model. We induce the system into a NESS, assuming the
system coupled to two external thermal baths in the strong
bias limit, and we study the time evolution of the system by
means of the LE:

|
pt) = —ilH, p()] + Y [Lkp(r)L,; — 5L, p(t)}],
k

(14)

with p(¢) the density operator of the system at the time ¢ and
{Lg, Li}x a set of operators describing the type of coupling
with the bath, called jump operators. In the strong bias limit,
we assume that the bath acts as a particle source on the first
n dimers of the chain and as a sink on the last n ones (see
Fig. 5 for a pictorial representation of the system coupled to
the bath). More explicitly, this means that we can parametrize
the jump operators as

L = {{v Fx,iC)T(,,-}» {V VX,L7i+ICX,L7i+1}}'XTA,B , (15

FIG. 5. Pictorial representation of the eSSH chain coupled to the
bath. The first and last n dimers are coupled with a bath that injects
and removes electrons with rates I'y ; (X = {A, B}, 1 < j < n) and
vx.j X ={A,B}, N —n < j < N), respectively.

with the coupling strength I'y ; and yx ; given by

s ifi=1,2,...,nand X = A,B

Txi= {0 otherwise, (16)
¢ ifi=L-n+1,...,LandX =AB

VX.i {O otherwise. an

The EOD is then defined as the average value of the chiral
operator:

N
B(t) = Tr[Cp(t)] = Y _ Trlch caip(t) — cj cpip®)]. (18)

i=1

For a quadratic Hamiltonian, it is possible to write a closed set
of equations for the bilinear operators only. Defining the vec-
tor ¢ = (ca1,CB1s---5CAN, cB,N)T, we can write the matrix
form system:

Co)=iH'®).COH+G - HG+R).CO)}. (19

with the bilinear expectation matrix elements [C(?)],» =
Tr[chb,o(t)], the Hamiltonian matrix defined through H =
TYHE, and the system-bath coupling matrix elements
[Glap = Sap >orry &k and [Rlop = 8ap > r) &8b141-k-
The indices a = (X, i) and b = (Y, j) encode both the lattice
and dimer labels. Under the driving induced by the biased
baths, the system evolves in time, asymptotically flowing to
its unique g-independent NESS, which is determined from the
condition p =0 — C(t) = 0.

By coupling the system to an external bath-pumping elec-
tron from the left end and then letting the system evolve to the
respective NESS, we are basically populating the zero-energy
modes (if there are any) located at the left end of the chain.
Since these modes are exponentially localized on the A or
B sublattice, each of them gives an integer +1 contribution
to the total EOD. Clearly, to probe topological phases with a
winding number > 1, we need to couple the baths to a number
of dimers at least equal to the number of edge states we are
interested in detecting.

In Fig. 6, we report the phase diagrams for Hamiltonians
HB [panel (a)], HY* [panel (b)], H{*® [panel (c)], and
H3B'A [panel (d)] in the v-w plane with fixed |v + z| = 2 for
a chain of N =200 dimers. The EOD perfectly reproduces
the result obtained when computing the winding number w
(see Ref. [29] for a comparison). The EOD assumes integer
quantized values everywhere in the parameter space, except in
proximity to each phase transition with the crossover between
phases with different values of the EOD that become sharper
with increasing N. In Fig. 6, we plot the isolines along with the
EOD assumes semi-integer values to highlight that, already at
N = 200, the crossover region has shrunk significantly.
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FIG. 6. Phase diagrams of the eSSH chain for N = 200 dimers and Hamiltonians (a) H;*B, (b) H2A, (c) H{*®, and (d) H?**. Dashed ones

are those at which o = n + 1, withn € Z.

All the results in this section apply to the clean limit. In
the next sections, we discuss how phases with different values
of the EOD are affected by the presence of different kinds of
disorder.

III. NUMERICAL APPROACH TO DIFFERENT
REALIZATIONS OF THE DISORDER

In real systems, impurities and/or defects may either lead
to an enhancement or to a suppression of the topogical phase,
depending on their specific nature and on their density [32,91].
It is, therefore, of the utmost importance to check the robust-
ness of the topological phases of the eSSH in the presence
of different kinds of disorder. In the following, we consider
several possible realizations of disorder, both uncorrelated
as well as correlated, including the possible breaking of the
chiral symmetry of the Hamiltonian. While the procedure used
in this paper is quite general, in the following, we focus onto
three kinds of disorder:

(1) Chirality-preserving disorder with uniform distribution
(Type 1): In this case, each nonzero hopping is independently
perturbed (site by site) by adding a different random offset:

v—>v=v+¢g,
w— w, =w+ &, (20)
2>z =2+83,

where each ¢; ; is drawn from the following uniform probabil-
ity distribution:

Ly =
P[g]:{mw if-V3WSe<VaW

0 otherwise,

with zero mean values and standard deviation W. As no new
hopping term is generated by the disorder, particularly hop-
ping terms that couple sites belonging to the same sublattice,
the chiral symmetry is preserved.

(2) Correlated chirality-preserving disorder with bi-
nary distribution (Type II): For n =2 (n =3), we add an
offset to the intradimer (interdimer) coupling strength v
(w), randomly selected between 0 or W with a binomial
distribution:

Ple]=0é(e)+ (1 —0)d(e = W), (22)

where o is the probability for the hopping to remain unper-
turbed and W the strength of the perturbation. At the same
time, the long-range hopping is perturbed in such a way that
v+ z] (Jw + z]) is kept constant and equal to 2. The inter-
dimer (intradimer) hopping is kept constant. More explicitly,
the disorder acts on the local hopping as:

HB or HEA HB or HEA

vi=v+¢;
w; =w
z=2-v-—g

Vi ="V
W =W+ &
Z=2-w-—g

While preserving the chiral symmetry of the Hamiltonian,
the Type-II disorder can give rise to a finite number of delo-
calized states in the thermodynamic limit, thus allowing for
an insulator-to-metal transition [101,102].

(3) Correlated chirality-breaking disorder with binary
distribution (Type III): In this case, the Hamiltonian is
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perturbed by adding a chemical potential term to a random
subset of dimers. More explicitly, the perturbation is of the
following form:

Z ,uj(c;ch,j + C;jCB,j)a (23)
J

with u; coming from the binomial probability distribution:
Plul=0é(pn) + (1 —0)d(n —W), (24

with o and W being the perturbation probability and the
strength of disorder.

In the following, we numerically compute the EOD to
spell out the effects of increasing disorder strength on the
phase diagram of the eSSH model. We adopt the following
recipe:

(1) For each disorder type and fixed unperturbed val-
ues of the hopping strengths v, w, and z, we generate
a random disorder configuration, choosing the Hamil-
tonian parameters through the corresponding probability
distribution. .

(2) We solve the equation C(¢) = 0 to compute the NESS
of the perturbed system and the respective EOD .

(3) To account for statistical fluctuations, we repeat the
procedure over a large amount of disorder realizations N to
compute the disorder-averaged EOD:

1 N
) =+ ; P (25)

(in this paper, we set N = 400).

(4) To check how much the 5")’s are peaked around their
mean value, we compute the standard deviation o; of the
average EOD, defined as

1 N
o= |37 2 (0 =) (26)
r=1

(5) Repeating the procedure for all the points in the plane
of Fig. 6, we compute the area associated with each topolog-
ical phase, i.e., with each value of the EOD, at fixed disorder
strength. That is

[0+ 35— 3)O((D) — v+ 3)dvdw

A [ dvdw ’

27)

with ®(x) the Heaviside step function.

Generally speaking, we find that the chirality-preserving
disorder (Types I and II) destroys topological phases in a
regular way, in the sense that, starting from a nonperturbed
Hamiltonian with || > 0, increasing the disorder strength
W makes the disorder-averaged EOD (v) approach zero by
sequentially assuming all the integer intermediate values. Fur-
thermore, due to the Griffiths effect, a broadening of the
transition lines, rather than sharp phase boundaries, is ob-
served between phases with different disorder-averaged EOD
[99,100]. Indeed, near each phase transition, when averaging
over N different realization of the disorder, the EOD is always
quantized for each single realization, but some configurations
exhibit EOD ¥ and others b £ 1.

Conversely, chirality-breaking disorder (Type III) gives
rise to more interesting outcomes. When the chiral symmetry
is weakly perturbed, the eSSH chain still supports edge states
in the band gap, and the EOD allows us to detect their pres-
ence. When disorder strength increases, the bulk-boundary
correspondence is lost, and the EOD is not quantized even for
a single disorder configuration. However, it is possible to con-
nect the EOD with the spatial distribution of the eigenstates of
the system with respect to the sublattices A and B.

IV. SDRG ANALYSIS

Before moving to a full numerical treatment of the LE,
in this section, we review the SDRG approach to the eSSH
model to obtain some hints on the fate of the topological
phases in the presence of disorder. The SDRG method, devel-
oped for the Heisenberg model in the presence of impurities
by Ma et al. [97] and Dasgupta and Ma [98] and then fur-
ther developed by Fisher [94-96] for the Ising model, is a
standard approach to phase transitions in random systems,
also in the presence of long-range hopping and many-body
interactions [103,104].

The SDRG consists of a real-space coarse-graining of the
Hamiltonian: At each step, a finite amount of degrees of free-
dom (spin, boson, fermion, etc.) is integrated over, and all the
other couplings are renormalized accordingly. More explic-
itly, the term in the Hamiltonian having the highest coupling
magnitude is diagonalized, and a projection onto the corre-
sponding ground state, of the other terms, is performed. It is
worth stressing that, as will be evident through this section, the
SDRG approach is suited for finding, at least approximately,
the transition line between two different topological phases
but gives no hints on the value of the winding number of each
topological phase.

Let us consider the most generic chiral symmetric Hamil-
tonian:

H = Kij(c}cnj+chica,). (28)
ij

The SDRG procedure consists of the following steps:

(1) The strongest hopping Kj,, = max({|K;;|}), with [ <
m, is selected.

(2) The local Hamiltonian depending on Kj,,, i.e.,

Hlm = Klm(c:gJCB,m + C;mCA,l)s (29)

is written as a 4 x 4 matrix in the occupation number ba-
sis {|ia;, ip.m)} (if we have more than one strong hopping,
Eq. (29) can be generalized to include all the terms pro-
portional to them). The eigenvalues and the corresponding
eigenstates are given by

Eigenvalue Eigenstate
Ex = %K, [V1.4) = (] £¢;)10,0)
Eyx=0 [¥0,-) = 10, 0); [¥0,4) = ¢]c}0,0)

(3) The global ground state is assumed to be the state
[1,—). Since K;; < K, we can treat the terms of H — H,,,
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depending on cj" I» CAls c;m, and cp,, perturbatively, using
second-order perturbation theory.

(4) In this case, the first nonzero contribution is only the
second order and is given by

Z W1-IH — Him|VYi ) (Vi H — Himl 1 )
E_—E; '

(30)

i,v
By neglecting the higher-order correction, the net result
is that a new effective Hamiltonian will be defined, with-
out the (A,!) and (B,m) degrees of freedom and with
the remaining couplings renormalized through the following
relation:

KiK.,
Klm ’

In principle, Eq. (31) should be iterated until the renormal-
ized Hamiltonian can be solved by direct diagonalization, or
it reduces to a system of which all of its properties are known.
In general, it is not easy to find a closed-form solution for
the recursive relation in Eq. (31). However, for some special
cases, it is possible to obtain an explicit formula that allows
us to analytically detect the phase boundaries.

Before moving to the eSSH case, let us consider the sim-
pler SSH model in Eq. (1) perturbed by a local disorder that
modifies the intradimer and interdimer hoppings, i.e.,

Rj=K;j—

€1y}

Vi =" + ev.iv
Wi =W+ €y, (32)

where €, ; and €, ; are random numbers coming from some
probability distribution P[€] that can, in principle, be different
for the two hopping strengths. Upon these assumptions, after
! > 1 renormalization steps (see Appendix for technical de-
tails regarding the steps), intradimer and interdimer hoppings
renormalize to

Ui ~ exp[/((Inv) — (Inw))],
w; ~ exp[/({Inw) — (Inv))], (33)
with (Inv) = 7 >, Inv; and (Inw) = 1 Y, Inw;.

It follows that the SSH chain is in the topological or triv-
ial phase depending on the sign of the exponent: If (Inv >
(In w), then all the interdimer couplings renormalize to zero,
i.e., W; — 0, and thus, the chain is in the trivial phase. On
the contrary, for (Inv) < (Inw), all the intradimer couplings
renormalize to zero, i.e., U; — 0, and thus, the chain is in the
topological phase. The transition curve obtained with this RG
scheme is thus given by the condition:

(Inv) = (Inw). (34)

Thus, the specific shape depends on the selected proba-
bility distribution P[e]. If the coupling constants can also
take negative values, for example, when €, ; < —v, we must
search for max({|v;|}, {|w;|}), and the transition condition is

replaced by
(Infv]) = (Infw]). (35)

A simple check of the validity of Eq. (35) is obtained by
looking at the phase diagram of the SSH model in the presence

0.0 0.5 1.0 1.5 2.0
W

FIG. 7. Critical line in Eq. (36) for different values of o for a
SSH chain with random bond disorder.

of random bond disorder, studied in Refs. [91,105] by means
of the DAWN and the EOD, respectively. Assuming all the w;
constant and equal to w, while v is a random variable that can
assume only two values, with the following binary probability
distribution:

Ply]=0é(w; — D+ (1 —0)d(vi — 1+ W), (36)
the critical condition in Eq. (35) reduces to
w=|1-W|'", (37)

In Fig. 7, we show the transition line as a function of
the disorder strength W and of the interdimer hopping w for
different values of the disorder probability o. The results are
in perfect agreement with Fig. 1(a) and figs. 3(a) and 3(b) of
Ref. [105], as well as fig. 11 of Ref. [91].

We can now employ the SDRG approach to the eSSH
in the presence of disorder. Even though it is not possible
to analytically solve Eq. (31) in the presence of all three
hoppings v, w, and z, we can find a closed-form solution
along the special cases shown in Fig. 3, i.e., when one of
the hoppings is tuned to zero. To do so, we first promote the
two nonzero hoppings to local variables, and then since the
system decouples into distinct SSH chains, we can find the
transition line using Eq. (34). It is worth stressing out that
the disorder can generally perturb all the hoppings, including
the one we have assumed to be zero in the unperturbed case.
As a consequence, the eSSH chain is not truly decoupled
into distinct SSH chains, and the SDRG transition line dis-
cussed in the following is only valid in the limit of very weak
disorder.

Solving Eq. (31) assuming a zero interdimer hopping, we
obtain

Disorder (Inv) =(Inz) (w=0)
Type I v = z =1
Type 11 Wer= = )a/(] 5~V
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(a)2.0

1.5

U 1.0%5

0.5

0.0
0 1

"0 152 3 4

FIG. 8. Critical line for Type-II disorder along the extreme cases
obtained by setting: (a) w = 0, as a function of v and W for different
values of o; (b) v =10 as a function of & = 5=~ and § = % for
different values of o. The inset of (a) shows the putative phase
diagram, in the v-w plane, obtained combining the results in (a) and

(b) as a function of disorder strength W and at fixed o = 0.5.

while for zero intradimer hopping, we have

Disorder (nw) =(nz) (v=0)
Type I w=2-v
Type IT Wer = wwv §=135

The nontrivial transition line for Type-II disorder is shown
in Fig. 8 for w = 0 [panel (a)] and v = 0 [panel (b)]. All
the results above are true at very weak disorder strength.
However, the critical values for Type-II disorder with (In v) =
(Inz) is exact, as the interdimer term is not affected by this
kind of disorder. Regarding the other ones, the agreement is
less precise since the relation relies on the assumption that
the zero hopping remains unperturbed even in the presence of
disorder, which does not hold in general. Looking at the sketch
of the putative transition lines shown in the inset of Fig. 8
and obtained combining the results of panels (a) and (b), even
at weak disorder strength, the area below each curve, corre-
sponding to the topological phase with w = +2 (depending
on whether we are considering HZB_A or H?_B ) shrinks along
the vertical axis. Conversely, for Type-I disorder (looking at
the table above), one can expect that the transition point is
untouched by a weak amount of disorder.

Summarizing, while the SDRG represents a good tool to
probe the topological phase transition in the parameter space,

(a) (D)
[v+z=2
2m 20 . 0.6
1 15
0.4
0ilv 10 d |
-1 05 // \\‘\\“ 0.2
24 40 i \‘\\‘ / _
15 1.0 05 00 05 10 15 15 1.0 05 00 05 10 LS5 0.0
w/lv+ z| w/|v+ 2|
(c) 1.0
p=-2
v=-1
08 v=0
v=1
0.6
A,
0.4;
0.2
0.0

00 05 1.0 15 20 25

W

FIG. 9. Phase diagrams of a Hy® eSSH model of length L =
500 and Type-I disorder with o = 0.5 averaged over N = 400 dis-
ordered realizations. (a) (V) for disorder strength W = 0.3 (left) and
W = 0.6 (right). (b) o; computed with the same parameter as (a).
(c) A, for each topological phase as a function of W.

it suffers some limitations. In general, closed formulas for
the hopping strengths are not available. As a consequence,
one should rely on numerical results. At the same time, it
cannot give any information about the winding number of
each topological phase nor the width of the Griffiths phase
associated at each transition line. For these reasons, in the
following, we will implement the EOD method, which does
not suffer the limitations highlighted above.

V. EOD NUMERICAL RESULTS

In this section, we compute the disorder-averaged EOD (D)
together with its standard deviation o and the area occupied
by each topological phase A, .

A. Chirality-preserving disorder

Let us start with the H?_B eSSH model in the presence
of Type-1 disorder. The main results are shown in Fig. 9
[to be compared with Fig. 6(a)]. Since the phase diagram is
symmetrical with respect to a change of sign of the hopping
strength, only positive values are considered. In Fig. 9(a), the
disorder-averaged EOD is plotted for two different values of
the disorder strength: W = 0.3 (left-hand side) and W = 0.6
(right-hand side). Two main behaviors emerge. The first one is
a buffer region, with (D) = —1, between the two phases with
(D) = 0 and —2. The size of this region, which is absent in the
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clean case, starts to grow with disorder, engulfing part of the
parameter space occupied by the phase with (D) = —2 and,
at the same time, limiting the development of the phase with
(D) = 0. Indeed, looking at the left- and right-hand sides of
Fig. 9(a), we can observe how the top transition line of the
() = —1 phase is stable up to W = 0.6, while the bottom
transition line moves significantly downward. Other important
information is recovered looking at the standard deviation of
the EOD, as reported in panel (b) of the same figure. It is
clear that each transition line is not sharp, as in the clean
case, but exhibits a finite width, which is the signature of
a Griffiths phase transition [99,100]. However, the emerging
topological phase with (V) = —1 has a strong bulk region,
where the standard deviation is strictly zero, between the two
finite width transition regions. This is evidence that this region
is not an effect of a statistical combination of an equal number
of configurations in the (D) = 0 trivial phase and the (D) = —2
topological phase but rather a truly robust disorder-induced
(V) = —1 topological phase.

A hint about the nature of this phase can be recovered
along the line with w = 0. In this case, as shown in Fig. 3(c),
the eSSH chain is decoupled into two simple SSH models.
Deep inside the (V) = —1 phase, where o; = 0, the effect
of the disorder is to induce a topological-to-trivial transition
exactly on one of the two chains, while the other one remains
protected. While the SDRG approach can describe the main
behavior of the lower transition line, i.e., the retreating of the
topological phase with the higher winding number, as shown
in the inset of Fig. 8, it cannot catch the existence of the
buffer region because, in the SDRG approach, the two chains
in which the original models decouple at w = 0 are treated as
uncorrelated, so both of them are always assumed in the same
phase. Finally, Fig. 9(c) gives us a global picture of the fate
of each topological region with increasing disorder strength
W . The topological region characterized by (V) = 1 is robust
to disorder up to W = 1, after which it begins to be absorbed
into the trivial phase. At the same time, the topological region
with (V) = —2 has been replaced by the buffer one that, in
turn, is replaced by the trivial phase at stronger values of W.
In summary, a sort of hierarchy is observed. The topological
phase with the higher value of winding number is the first to
be destroyed until, at strong values of the disorder, the trivial
phase is the sole survivor.

Let us now discuss the effect of Type-I disorder on the
HZB’A eSSH model, which in the clean limit exhibits phases
with positive winding number only [as shown in Fig. 6(b)].
Looking at Figs. 10(a) and 10(b), a buffer region with (V) =
1, separating the trivial and the (V) = 2 nontrivial phases,
emerges. This region merges consistently with the (V) =1
region located at |w| > 2 and already present in the clean
case. The buffer region is again well defined, as highlighted
by strictly zero standard deviation, and grows in site with the
disorder strength W until, at W = 1.2, it dominates the whole
phase diagram, as shown in Fig. 6(c). Again, a hierarchy is
observed with regions characterized by high values of the
winding number suppressed in favor of phases with winding
numbers 0 or 1. Compared with the previous case, in the B —
A model, (V) =1 is more robust than the zero one because
the topological edge state is truly on the last side of the chain,
while in the A — B case, it lies on the B sublattice. However,

(a) v
e 2‘0\7»+z|:2< ) : 0.6
1 L5 /l‘
.\ L 0.4
0f|v 10 ::Z::::: '
A H 0.2
-2 8 0'01.5 10 05 0.0 05 1'.I0 L5 15 10 05 00 05 10 15 00
w/lo + 2| w/lv+ 2|
(c) 1.0
: v=0
v=1
0.81 p=2
0.6
Ay
0.4
0.2
0.0

00 05 10 15 20 25

W

FIG. 10. Phase diagrams of a H?™ eSSH model of length L =
500 and Type-I disorder with o = 0.5 averaged over A" = 400 dis-
ordered realizations. (a) (V) for disorder strength W = 0.3 (left) and
W = 0.6 (right). (b) o; computed with the same parameter as (a).
(c) A, for each topological phase as a function of W.

it is worth noting that, up to disorder strength of W ~ 0.5, the
nontrivial phase with (V) = 2 is mainly preserved.

InFig. 11, (), 03, and A, are shown for the H'~® eSSH in
the presence of Type-II disorder. Since Type-II disorder does
not act on the interdimer hopping, the vertical transition line
between the trivial and the (D) = 1 phase is not affected. On
the other hand, as in the Type-I counterpart, a buffer phase
emerges but it is less robust than the previous case with both
the (V) = —1 and (V) = —2 phases retreating in favor of the
trivial one. However, at strong disorder values, i.e., W & 1.8,
disorder leads to a reentrant topological phase with () = —1,
as highlighted in Fig. 11(c).

A similar behavior is shared by Hf ~A eSSH and Type-II
disorder, as shown in Fig. 12. Increasing W, the (V) = 2 phase
gives up its place to the (V) = 1 one in its turn embedded by
the trivial one. However, at W ~ 1.5, disorder enhances the
topological phase with (V) = 1, reversing the previous trend.
The (¥) = 2 phase is totally suppressed at W ~ 1.5. Indeed,
as shown in the right-hand side of panel (b), only one of the
two Griffiths transition lines survives at strong disorder, with
the other one abruptly pushed down.

Finally, the hierarchical disappearance of the phases with
higher EOD, the appearance of buffer phases with interme-
diate values of the EOD, and the existence of a reentrant
disorder-induced topological phase with EOD = 1 are pre-
served with increasing n, as shown, for example, in Fig. 13
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FIG. 11. Phase diagrams of a H;~® eSSH model of length L =
500 and Type-II disorder with o = 0.5 averaged over A/ = 400
disordered realizations. (a) (V) for disorder strength W = 0.6 (left)
and W = 1.25 (right). (b) o; computed with the same parameter as
(a). (c) A, for each topological phase as a function of W.

for n = 3 and Type-1I disorder. In panel (a), we observe,
in the case of H3A_B, a quick suppression of the (V) = —3
phase, followed by a slower suppression of the (V) = —
phase that resists stronger values of the disorder. At the
same time, the (V) = —2 phase remains squeezed between
the reentrant (V) = —3 phase and the enlarging (V) = —1
one. For weak disorder strength, we observe the trivial phase
slowly replacing the negative topological phase, even though
at strong disorder a reentrant topological phase is observed
for the negative EOD phases, at the expense of the positive
one. Similarly, for H?_B shown in panel (b), the hierarchy
(V) =3 — (P) =1 is observed with a (D) = 2 buffer phase
in between that is enhanced at strong W.

B. Chirality-breaking disorder

In the presence of -chirality-breaking disorder, the
Hamiltonian no longer anticommutes with the chiral operator,
and eigenstates are no longer expected to appear in pairs
symmetric with respect to the zero value. Valence and
conduction bands are expected to merge with each other, and
the bulk-boundary correspondence is lost [28,91]. In general,
gapped configurations hosting localized edge states still exist,
even in the absence of the chiral symmetry, if the disorder is
not too strong. However, they are totally washed out at higher
values of the disorder strength. Looking at the left-hand

(a) v
2 2.0‘ﬂ+2|:2< > i 0.6
1 15 i
0.4
0{fv 10 ;
-1 0.5 "/-\J 02
-2 8 0'01.5 1.0 05 00 05 1.0 15 15 10 05 00 05 10 15 00
w/lv+ 72| w/|v+ 2]
(c)
=0
=1
04y
Ay
0.2;
0.0

00 05 10 15 20 25

W

FIG. 12. Phase diagrams of a H?™ eSSH model of length L =
500 and Type-II disorder with o = 0.5 averaged over A = 400
disordered realizations. (a) (D) for disorder strength W = 0.6 (left)
and W = 1.25 (right). (b) o; computed with the same parameter as
(a). (c) A, for each topological phase as a function of W.
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FIG. 13. A, for each topological phase as a function of W for the
eSSH model described by (a) H?’B and (b) Hf”‘.
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FIG. 14. Phase diagrams of a H?™ eSSH model of length L =
500 and Type-III disorder with o = 0.5 averaged over A/ = 400
disordered realizations. (a) (D) for disorder strength W = 0.5 (left)
and W = 1.8 (right). (b) o; computed with the same parameter as
(a). (¢) A, for each topological phase as a function of W.

side of Figs. 14(a) and 14(b), we see extended regions in
the phase diagram characterized by an integer value of (V)
and zero standard deviations. These regions correspond to
a disorder-resilient topological phase, with localized edge
states even with broken chiral symmetry. However, as disorder
strength increases [see the right-hand side of panels (a) and
(b)], (V) is no longer quantized across the entire parameter
space, and its standard deviation is heavily different from
zero everywhere. Furthermore, while the phases with (V) = 2
tend to be destroyed in favor of the (V) = 1 phase, just as in
the presence of chirality-preserving disorder, an unexpected
region with (V) = —1 appears inside the nontrivial region,
before shrinking at high values of W.

The region of the parameter space characterized by
nonzero standard deviation and unquantized (D) tends to
cover the full phase diagram at strong values of the disorder
strength. However, this phase is significantly different from
the true Griffiths phase observed in the presence of chirality-
preserving disorder of Types I and II. In Figs. 15(a) and 15(b),
we show the EOD of an eSSH described by Hf ~A for a single
disorder configuration of Type I or III [as extracted from
Figs. 10(a) and 14, respectively]. At both weak and strong
disorder, the EOD of each chirality-preserving disordered
configuration is quantized along the full parameter space, and
the different topological phases are separated by a jagged but
sharp transition line. The transition line smoothly changes for

(a) (b)
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1.5 1.0 0.5 0.0 0.5 1.0 1.5 1.5 1.0 05 0.0 0.5 1.0 1.5
(c) w/|v+ z| w/|v+ 2|
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FIG. 15. (a) EOD for a single Type-III disorder configuration of
a H?™ eSSH model of length L = 500 with o = 0.5 and W = 0.5
(left) and W = 1.8 (right). (b) Same as (a) but for Type-1 disorder
with W = 0.3 (left) and W = 0.6 (right). (c) Histogram of the distri-
bution of the eigensystem EOD for v = 1.25, w = 1.7,and W = 1.8
for Type-III disorder. (d) Same as (c) but with v = 0.25, w = 0.5,
and W = 0.6 for Type-I disorder.

each configuration, and the transition region estimated by av-
eraging over a huge number of configurations gives rise to the
Griffiths phase, characterized by nonzero standard deviation
of the EOD over a small region of the parameter space. On
the contrary, in the presence of chirality-breaking disorder, the
EOD of each single disorder configuration is not quantized
over a wide region of the parameter space, with this effect
more and more evident at increasing W. This effective nonchi-
ral camouflaged Griffiths (NCCG) phase is thus the effect of
an average over a huge number of configurations, each of
which has unquantized EOD. Clearly, looking at both o and
at the EOD allows us to distinguish the NCCG phase from
the true Griffiths one. It remains to understand whether, in the
NCCG phase, some topology is still present and eventually
how it is related to the (disorder-averaged) EOD. Introducing
the Hamiltonian eigenvector y,' = Zj Ve, jc'; and neglecting
the correlations between different eigenvectors, the EOD can
be written as

L
DA ZQEUE, (38)
€

where v, is the (equilibrium) EOD of a single Hamiltonian
eigenstate:

L
ve =Yy (=1 y P, (39)
j=l1
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and 6, its occupation probability, given by

O =Y Ve 0,V (40)
BJ
and 9_,',.,'/ = [C(l‘ — OO)]]‘,]‘/.

In Fig. 15(c), we show the distribution of v, for a single
disorder configuration of H¥~* with o = 0.5 and W = 1.8.
We have set the hopping strength values to v = 1.25 and
w = 1.7, corresponding to an EOD of b = —2.351. Although
peaked ~0, v, takes negative and positive values, with zero
mean. In real space, the states associated with v, < 0 are
localized on the left-hand side of the eSSH chain, while the
states with v, > 0 are on its right-hand side. The first has an
occupation probability 6, =~ 1, being connected to the bath
that injects electrons, while the others have 6, ~ 0, being
localized near the sink bath. It follows that the total EOD is the
sum of the contribution given by all the states localized near
the left edge. Each of these states gives a small contribution to
the overall EOD up to the observed value ¥ = —2.351. This
behavior is totally different from that observed in the topo-
logical phase, where the number of eigenstates with v, # 0
is expected to be equal to twice the value of the EOD, half
of them localized on the left edge and the other half on the
right one, as shown in Fig. 15(d). For v = 0.25, w = 0.5,
o = 0.5, and W = 0.6, for Type-I disorder, the system is in
the topological phase with EOD equal to 2. Indeed, only four
states with nonzero v, appear in the histogram, where the
states with positive (negative) EOD are localized on the left
(right) side.

In the topological phase, all the eigenstates except for the
zero-energy edge states occupy the A and B sublattices with
the same probability weight. The edge states show instead a
preference to lay on only one of the sublattices as a function
of the sign of the topological invariant. The number of states
laying on the A (B) sublattice on the left edge is equal to the
EOD if it is positive (negative) and vice versa on the right-
hand side. In the NCCG phase, there is still a trend on the part
of the eigenstates to prefer the A or B sublattice on each side of
the chain as a function of the sign of the EOD. However, rather
than involving a number of states exactly equal to twice the
value of the EOD, the total contribution is split between many
nearly localized nontopological states, each of them carrying
a small fraction of the overall EOD.

VI. CONCLUSIONS

We have studied different eSSH models, i.e., SSH mod-
els with long-range hopping amplitudes, by means of the
LE formalism. We have shown that the effect of correlated
and noncorrelated disorder preserving the chiral symmetry or
not is very different. By inducing the system into a NESS,
coupling the system to two external baths in the large bias
regime, we have discussed how the EOD and its standard
deviation can be used to track the fate of the topological
phases as a function of the disorder strength. In the presence
of disorder that preserves the chiral symmetry, the topological
phases characterized by a higher integer value of the EOD
are hierarchically destroyed in favor of phases with a lower
value of the EOD. In the process, disorder-induced buffer
phases, separated from each other by a Griffits region and

characterized by zero standard deviation, are introduced so
that the EOD decreases at unitary steps. Phases with EOD =
=+1 are more robust to disorder and can be enhanced by strong
disorder. On the contrary, the topological phase is lost if disor-
der breaks the chiral symmetry and a new phase, characterized
by a noninteger EOD and a large standard deviation, emerges.
While to illustrate the application of our method, in this paper,
we limited ourselves to some particular kinds of disorder and
eSSH models, there are no limitations to apply our method
to eSSH models with >1 long-range term or mixture of
different types of disorder. We expect that our findings can
be observed experimentally in ultracold atoms [43—45] and
photonic systems [46], where the EOD can be implemented
as a tool to investigate the robustness of a given topological
phase and the corresponding zero-energy modes as a func-
tion of the system parameters and disorder strength. Other
possible applications should concern, for instance, topolog-
ical phases/phase transitions arising in the phase diagram
of junctions of interacting fermionic systems and/or spin
chains [106—-111].
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APPENDIX: DERIVATION OF THE RECURSIVE
SDRG EQUATION

In this Appendix, we perform the explicit calculations re-
viewed in Sec. IV to derive both the closed formula presented
in Eq. (34) for the SSH model and the more general recursive
formula of Eq. (31) for a generic long-range SSH model
(including the eSSH models discussed in this paper).

1. SDRG applied to the disordered SSH model

Starting from the SSH Hamiltonian defined in Eq. (1),
we regard v and w as site-dependent random numbers. We
therefore rewrite the main Hamiltonian as

N
Hv,w = Z(vjcj;’jCB,j + chll;,jCA,H—l) +Hec,
j=1

(AD)

where v; and w; are real, positive parameters and come
from two probability distributions that can, in principle, be
different. We now set Q = max({v;}, {w;}) = vy and thus
isolate the contribution in Eq. (Al) that depends on this

hopping:

Hy = vi(c) yepa + cf yean)- (A2)
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It is thus possible to project H,, in the subspace generated
by the basis vector associated with the sites (A, k) and (B, k),
ordered as

{lia k. ip.1)} = {10, 0), 10, 1), |1, 0), [1, 1)}, (A3)
where
1, 1) = ¢} ;cf 110, 0). (A4)
In this basis, the Hamiltonian is a 4 x 4 matrix:
0 0 0 O
0 0 1 O
; i | H = A
(ke JpilHelmag s =vel o 1 o (A5)
0 0 0 O
The eigenvalues and eigenstates are
Eigenvalue Eigenstate
Ei =t [Y1,4) = %(C;k + C/:,k)l(), 0)
Epr=0 [¥o,-) =10, 0)

[Wo.+) = c} 410, 0)

Since vy > 0, the local ground state is |y _) with en-
ergy E| _ = —uv;. Projecting the Hamiltonian in Eq. (A1) into
the subspace generated by this state, we obtain an effective
Hamiltonian having two less degrees of freedom (i.e., de-
prived of the kth dimer):

H" =H, ., — Hi =V + A, (A6)

where V is the part of the Hamiltonian coupling the kth dimer
with the rest of the chain, namely,

V = wi1(cp_can+ Cj\’kCB,k—l)
+ wich Cakit + €y B, (A7)

and A is the sum of the local ground-state energy and the
perturbation expansion of V with respect to the local ground-
state subspace. Up to second order, we have

A=E _+ Y-V -)

(V1= VIYn) (Yo VY1)
+ Z El,f _En,v

. (A8)

n,v

with the matrix element of V given by

(Un£lVIno) =0, n=0,1, v==£ (A9

1
(%JW%ﬂ=—?WdHMWW4%FJ(Mm

7
1
(Yo +VIYv) = E[VwkCA,k—H — Wi—1¢cpk—1]. (All)

It follows that

Wi—1 Wi
A=—

i i
” (CB’k_ch,k-&-l + CA,k_,_lCB,k—l)

2 2
Wi +wy

— - (A12)

2vk
Apart from a constant shift, the second-order contribution
renormalizes the original Hamiltonian H, , into a new ef-
fective one without the (A, k) and (B, k) sites, and with sites
(B,k — 1) and (A, k + 1) connected by a new effective cou-
pling Wy = — =5k,

Similarly, if Q = max({v;}, {w;}) = wy, we remove the
(B, j) and (A, k+ 1) sites so that the (A, j) and (B,k +
1) ones are connected by a new effective coupling
U = —”‘;j—‘”‘

After pérforming [ renormalization steps on each different
coupling, their values are given by

Uk V41 - - - Vil

= (A13)
Wi WiA1 -+ - Wil

(i

WrWiA1 -« -« Wl

I
I

(A14)
Uk Vk41 -+ -« Vil

If I > 1, we can perform the change of variable x = ™ and
retrieve Eq. (33):

1] 25 expll((Inv) — (Inw))], (A15)
|| _121) exp[/({Inw) — (Inv))]. (A16)

The transition line given by this scheme is the one by which
neither ¥ nor w flows toward a zero value, i.e., when the
nondiverging part of the exponent is zero:

(Inv) = (Inw), (A17)

retrieving Eq. (34).

2. SDRG for the eSSH in the presence of disorder preserving
the chiral symmetry

Let us apply the SDRG scheme in the presence of
long-range hoppings that preserve the chiral symmetry, i.e.,
Eq. (28):

H= ZKU(CL‘CBJ + C;;,jCA,i)a (A18)
ij

where the couplings K;; are generated from one or more ran-
dom distributions. Let us assume, without loss of generality,
that Q@ = max({|K;;|}) = Kim, with [ < m. We isolate the part
of H depending on this parameter:

Hlm = Klm(cj;ych,m + C;ch,l): (A19)
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and compute its eigenvalues and eigenvectors

Eigenvalue Eigenstate
E\+ = £Kin wfli f(cAl :tCBm)loAla OBm)
Ep+=0 [¥0,—) = 104, Opm)

[Wo.+) = €} ;ChmlOa1: Om)

As was done in the previous section, we define an effective
Hamiltonian by projecting the full Hamiltonian in Eq. (A18)
on the local ground state |y, _) and by treating the terms of
the Hamiltonian that depend on cj" 1> CAls c;’m, and cp, as a
perturbation. More explicitly, this means that

H =H —Hy — V+ A, (A20)
with V given by
V= ZKH(CZJCBJ + CL,iCA,l)
i#m
+ ) Kin(ch jcm + € eai). (A21)
il
and A, up to second order, given by
A=E _+ W -IVIYi-)
(Y, 7IV|% o) (Y VIV )
, A22
+ Z - En,u ( )
with the matrix elements of V equal to
(@”n,in)l‘/fn.v) = 05 n= 07 15 V= i’ (A23)

1
(VoY) = — 2,-:[(1 — Sum)Kiich,
+v(1 = 8:)Kinc) 1. (A24)
1 ;
WoslViYia) = —= Z[(l — 8i)Kinc
—v(l = 8im)Kiic} 1. (A25)

It follows that

Z(l — &)1 — nn) lm( C4,iCB,j + CB €A, i)

m

- X 8y it K + — K (A26)

lm

Apart from an overall shift, the effective Hamiltonian has
two less sites, and the couplings are renormalized through the
following relation:

j#m. (A27)

Unlike the simple SSH chain, in the long-range SSH model, it
is not easy to analytically iterate Eq. (A27) to retrieve a closed
formula. The asymptotic flow of the hopping terms should be
recovered numerically, iterating Eq. (A27), as discussed in the
main text.
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