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Correlated phases in spin-orbit-coupled rhombohedral trilayer graphene
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Recent experiments indicate that crystalline graphene multilayers exhibit much of the richness of their twisted
counterparts, including cascades of symmetry-broken states and unconventional superconductivity. Interfacing
Bernal bilayer graphene with a WSe2 monolayer was shown to dramatically enhance superconductivity—
suggesting that proximity-induced spin-orbit coupling plays a key role in promoting Cooper pairing. Motivated
by this observation, we study the phase diagram of spin-orbit-coupled rhombohedral trilayer graphene via
self-consistent Hartree-Fock simulations, elucidating the interplay between displacement field effects, long-
range Coulomb repulsion, short-range (Hund’s) interactions, and substrate-induced Ising spin-orbit coupling.
In addition to generalized Stoner ferromagnets, we find various flavors of intervalley coherent ground states
distinguished by their transformation properties under electronic time reversal, C3 rotations, and an effec-
tive antiunitary symmetry. We pay particular attention to broken-symmetry phases that yield Fermi surfaces
compatible with zero-momentum Cooper pairing, identifying promising candidate orders that may support
spin-orbit-enhanced superconductivity.

DOI: 10.1103/PhysRevB.109.035113

I. INTRODUCTION

Rhombohedral graphene multilayers—for which graphene
sheets are stacked in an “ABC” pattern—provide an attractive
playground to study electronic correlations in ultraclean crys-
talline environments largely free of inhomogeneities present
in bulk materials and twisted superlattices. The low-energy
physics of rhombohedral graphene multilayers can be tuned
by applying a perpendicular displacement field D, which
opens a spectral gap at charge neutrality and locally flattens
the bands near the Brillouin zone corners (see Fig. 1). The cor-
respondingly enhanced density of states near the conduction
and valence band edges suggests a nontrivial interplay be-
tween band structure and interaction effects for lightly doped
systems. Indeed, experiments on rhombohedral graphene mul-
tilayers have uncovered rich phase diagrams, comprising a
wealth of symmetry-broken correlated insulating and metallic
phases as well as unconventional superconductivity [1–14].

Striking behavior arises already in AB-stacked Bernal
bilayer graphene (BLG): weak in-plane magnetic fields stabi-
lize superconductivity (albeit with a low critical temperature
Tc ∼ 30 mK) near the phase boundary to a symmetry-broken
metal [6]. Remarkably, the observed superconducting state is
likely spin-triplet in character and resides deep in the clean
limit, with mean-free paths far exceeding the superconduct-
ing coherence length—a clear testament to the exceptional
sample purity. Moreover, pairing is dramatically enhanced
[9,10] when BLG sits proximate to monolayer tungsten dis-
elenide (WSe2), which imparts spin-orbit coupling (SOC)
into the graphene sheets. Specifically, superconductivity in
BLG/WSe2 sets in even at zero magnetic field, exhibits an
order-of-magnitude larger Tc, and descends from a parent
symmetry-broken normal state over a broad density range
(as opposed to being confined to the vicinity of a phase

transition). These discoveries have spurred intense theoretical
efforts aimed at understanding the origin of unconventional
superconductivity in “pure” BLG [15–23] as well as the influ-
ence of WSe2 on its phase diagram, e.g., due to induced SOC
[9,18–21,24,25] or virtual tunneling events [26].

Moving up one layer, rhombohedral trilayer graphene
(RTG) also hosts a family of symmetry-broken correlated
metallic phases as well as superconductivity [3,4]—though
the latter requires neither magnetic fields nor SOC, in contrast
to BLG. Two distinct superconducting regions are observed:
the first (SC1) has Tc ∼ 105 mK and is consistent with
spin-singlet pairing, while the second (SC2) has weaker
Tc ∼ 30 mK and is likely of spin-triplet character. A flurry
of theoretical activity has proposed pairing mechanisms for
RTG [20–22,27–36] including acoustic phonons [27], over-
screened Coulomb interactions (i.e., Kohn-Luttinger physics)
[20,21,28–30], and order parameter fluctuations [22,31,32].
Experiments on RTG/WSe2 have not yet been reported but
are extremely interesting to consider in light of the dramatic
influence of WSe2 on BLG phenomenology. For instance, can
WSe2 qualitatively alter the symmetry-broken metallic phases
observed in RTG? And can WSe2 similarly enhance RTG su-
perconductivity? These questions are intimately related, since
the band structure and symmetries of correlated normal states
influence not only the nesting condition for forming Cooper
pairs, but also their resilience against order parameter fluctua-
tions and disorder.

Motivated by the preceding questions, we investigate the
phase diagram of RTG both with and without an adjacent
WSe2 layer using self-consistent Hartree-Fock techniques.
Our calculations incorporate realistic RTG band structure,
a displacement field, screened long-range Coulomb interac-
tions, short-range “Hund’s coupling” (named in analogy to
Hund’s rules in atomic physics due to its tendency to align
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FIG. 1. Schematic of RTG/WSe2 system. (a) A WSe2 monolayer
placed in proximity to RTG induces spin-orbit coupling (SOC) on
the meV scale. A perpendicular displacement field D generates a
potential difference �1 between adjacent layers through Eq. (2).
(b) Top-down view of RTG showing its stacking configuration, with
sublattices labeled Al , Bl for layer l . (c–d) Low-energy band structure
for ky = 0 (left panels) and corresponding DOS (right panels) for
different �1, in the absence (c) and presence (d) of Ising SOC
of strength λI. The D field gaps out the valence/conduction band
touchings and enhances divergences in the DOS (i.e., van Hove
singularities) that facilitate strong interaction effects. We used an
exaggerated λI = 10 meV in (d) for visual clarity. The SOC-induced
spin splitting appears mostly in the valence bands because the cor-
responding wave functions are pushed towards WSe2 at D > 0; the
spin splitting moves to the conduction bands for the opposite direc-
tion of the field, D < 0.

spins in the two valleys), and Ising-type SOC induced by
WSe2 (or some other transition metal dichalcogenide). We
consider a large family of candidate symmetry-broken or-
ders and pay special attention to the role played by SOC
in stabilizing correlated states conducive to Cooper pairing.
Aside from generalized Stoner ferromagnets, wherein a sub-
set of the four spin and valley flavors are spontaneously
polarized, our analysis also captures “intervalley coherent”
(IVC) metallic states that spontaneously hybridize the two
valleys of graphene—thus breaking translation symmetry
on the atomic scale. Indeed, recent STM experiments have
directly imaged the atomic-scale reconstruction characteris-
tic of IVC states in monolayer graphene in the quantum
Hall regime [37,38] and in twisted graphene superlattices
[39,40]. From the viewpoint of superconducting instabilities,
IVC states are interesting because they can be compatible

with zero-momentum Cooper pairing depending on the sym-
metries they preserve—in contrast to, e.g., valley-polarized
states. We find several IVC states distinguished by their spin
structure as well as symmetry properties. In particular, ex-
perimentally relevant ferromagnetic Hund’s coupling favors
spin-polarized and spin-triplet IVC states, whereas Ising SOC
tilts the balance towards IVC orders that preserve an antiu-
nitary operation T ′ corresponding to electronic time-reversal
composed with a valley rotation. See Table I for details and
symmetry properties of the ground states captured by our
treatment.

We further investigate the tendency of the various (Stoner-
like and IVC) symmetry-breaking phases toward secondary
nematic instabilities [41–43] whereby small Fermi pockets,
either centered around C3-related locations in the Brillouin
zone or along a thin annulus, spontaneously reorganize in
a rotation symmetry-breaking manner. This phenomenon is
also referred to as “momentum flocking” or “momentum
polarization”. Our analysis here is motivated by quantum
oscillations [9,10] and transport measurements [44] reporting
that the number of Fermi pockets in certain polarized phases
(including the parent state of superconductivity in BLG/WSe2

[9,10]) is not consistent with preserved C3 symmetry. Inter-
estingly, we find that induced Ising SOC enhances tendencies
toward nematic ordering in RTG.

Collectively, our results uncover a rich competition be-
tween interactions and induced SOC and provide guiding
principles for future experiments combining RTG and tran-
sition metal dichalcogenides. The richness and tunability of
the phase diagram of RTG/WSe2 could potentially be lever-
aged to create devices with novel properties, such as purely
electrical control of orbital and spin magnetism as proposed
in a recent related Hartree-Fock study [45], or gate-defined
Josephson junctions that host topological superconductivity
[46]. More broadly, we expect that our systematic study of
trilayers, in conjunction with earlier work on bilayers, will
help shed light on correlated phenomena in the wider family
of crystalline graphene multilayers.

The rest of this paper is organized as follows. In Sec. II,
we introduce the noninteracting model describing RTG in
the presence of induced SOC, discuss screened Coulomb
interactions, and describe our self-consistent Hartree-Fock
procedure. In Sec. III, we consider RTG without SOC and
investigate the competition between long-range Coulomb
interactions, which preserve an enhanced SU(4) symme-
try group, and an intervalley interaction term (or Hund’s
coupling) that partially breaks the resulting degeneracy. In
Sec. IV, we explore the effects of induced Ising SOC on
the phase diagram of RTG, and its subtle interplay with both
Hund’s coupling and nematic ordering tendencies. In Sec. V
we benchmark our phase diagrams against experimental re-
sults, allowing an estimation of the strength of the two types
of interactions considered. Finally, in Sec. VI, we summarize
our results and provide insights for future experiments.

II. MODEL AND METHODS

Rhombohedral trilayer graphene consists of three graphene
layers stacked in the ABC configuration shown in Fig. 1(b).
Beginning with pure RTG (without an adjacent WSe2 layer),
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TABLE I. Symmetry classification of ground states found in self-consistent Hartree-Fock. For each ground state, a minimal set of
symmetry-breaking order operators in the spin-valley subspace is listed along with their transformation properties under electronic time-
reversal T = τ xsyK, valley charge conservation U(1)v, and the effective antiunitary symmetry T ′ = τ ysyK. The transformation properties
under full SU(2)s spin rotations, relevant in the SOC-free problem, and under U(1)s spin rotation around the z axis, relevant in the case with
Ising SOC, are also shown. The corresponding spin-valley degeneracy of the Fermi surfaces is denoted by the integer g, with g = 4 describing
a fully symmetric metal. Last column presents the color and hatching scheme used in phase diagrams throughout this work. Nematicity (i.e.,
momentum polarization) is denoted with an overlaid circle hatching ( ) when present in each phase.

Order Description Symbol Order Operators T U(1)v T ′ SU(2)s U(1)s g Leg.

Fully symmetric FS -
√ √ √ √ √

4

Valley-polarized VP τ zs0 ✗
√

✗
√ √

2

Spin-polarized SP τ 0sz ✗
√

✗ ✗
√

2

Spin-valley-locked SVL τ zsz √ √ √
✗

√
2

Spin-valley-locked + in-plane spin-polarized SVL + SPπ τ zsz, τ 0sx/y ✗
√

✗ ✗ ✗ 2

Intervalley-coherent spin-singlet IVC0 τ xs0 √
✗ ✗

√ √
2

Intervalley-coherent spin-triplet IVCz τ xsz ✗ ✗
√

✗
√

2

Intervalley-coherent spin-triplet + spin-valley-locked SVL-IVCz τ xsz, τ zsz ✗ ✗
√

✗
√

2

Spin-valley-polarized SVP τ zs0, τ 0sz ✗
√

✗ ✗
√

1

Spin-polarized intervalley-coherent SP-IVC τ xs0, τ 0sz ✗ ✗ ✗ ✗
√

1

Spin-valley-locked intervalley-coherent SVL-IVC τ xsx, τ zsz ✗ ✗
√

✗ ✗ 1

the symmetry group in the presence of a displacement
field D contains threefold rotations C3, mirror symmetries,
translations, time reversal T , as well as—to an excellent
approximation—SU(2)s spin rotations. Additionally, in the
low-energy limit the system exhibits approximate U(1)v val-
ley conservation.

The tight-binding Hamiltonian of pure RTG can be ex-
panded near the two valleys τ ∈ {±1} of graphene as

ĤB =
∑

k

∑
τ sσσ ′

h(τK + k)σσ ′c†
τ sσkcτ sσ ′k, (1)

where the fermion operator cτ sσk annihilates an electron at
momentum k for valley index τ , spin index s ∈ {↑,↓} and
sublattice index σ ∈ {A1, B3, B1, A2, B2, A3}. Henceforth, we
also use a combined flavor index α = (τ, s, σ ) for notational
simplicity. The matrix h is detailed in Appendix A 1, and
retains the three leading-order tunneling matrix elements be-
tween adjacent layers [47,48].

Near charge neutrality, the low-energy conduction and
valence bands in each valley touch at three Dirac points po-
sitioned at C3-symmetric locations around the Brillouin zone
corners. Under an applied perpendicular displacement field D,
these Dirac points are gapped out and acquire nontrivial Berry
curvature distributions [49] that integrate to Berry phases of
3πτ sgn(D). The resulting low-energy bands become locally
flat [see Fig. 1(c)], leading to build-ups in the density of states
(DOS) near van Hove singularities that dramatically enhance
interaction effects. We convert the displacement field D to an
interlayer potential difference �1 entering the noninteracting
Hamiltonian ĤB through

�1 = qed⊥D/ε⊥
r , (2)

with qe the electron charge, ε⊥
r = 4.4 the dielectric constant

of h-BN (the usual dielectric spacer layer between gates) and
d⊥ ≈ 3.3Å the interlayer distance in RTG.

Coulomb interactions between electrons are included using
a decomposition into long- and short-range components. The
long-range component

ĤC = 1

2A

∑
q

VC(q) :ρ(q)ρ(−q) : (3)

couples to the slowly varying part of the electronic den-
sity, ρ(q) = ∑

k,α c†
αkcα(k+q). We use the dual-gated screened

Coulomb potential

VC(q) = q2
e

2εrε0q
tanh (qd ), (4)

with the screening length d taken as the distance from RTG
to the gates, εr the relative permittivity, and ε0 the permit-
tivity of free space. In typical h-BN-encapsulated devices,
the dielectric environment contributes εr ≈ 4.4. To also ac-
count for screening originating from electrons in the graphene
sheets, we treat εr > 4.4 as a phenomenological parameter
that controls the strength of the gated Coulomb potential
VC(q). Such a density-density interaction is invariant under
an SU(4) symmetry acting in spin-valley space. The kinetic
energy, however, partially breaks this SU(4) symmetry (due to
the τ dependence in the h matrix from ĤB). Consequently, the
interacting model ĤB + ĤC preserves a nongeneric SU(2) ×
SU(2) symmetry corresponding to a pair of spin rotations that
can be enacted separately in each valley.

The short-range component ĤV, with coupling strength
JH, captures scattering of electrons between different val-
leys and effectively encodes a Hund’s coupling interaction
(see Appendix A 2 for details). Such a term breaks down
the enlarged SU(2) × SU(2) symmetry group to physical
global spin rotations SU(2)s by providing an energetic pref-
erence for aligning/antialigning the electron spins in the
two valleys (for ferromagnetic/antiferromagnetic Hund’s cou-
pling respectively). We estimate the relevant regimes for the
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interaction strength parameters εr and JH from benchmarking
to experimental results [3,4] (see Sec. V and Appendix C).

The addition of an adjacent WSe2 monolayer, in the con-
figuration shown in Fig. 1(a), breaks SU(2)s spin rotation
symmetry by inducing Ising- and Rashba-type SOC in the top
layer of RTG [50–57]:

ĤI = λI

∑
k

c†
k(τ zszP3)ck,

ĤR = λR

∑
k

c†
k(τ zsyσ x − sxσ y)P3ck. (5)

Here cT
k = [c+↑A1k . . . c−↓A3k] is a vector of fermion operators

enumerated over valley, spin, and sublattice indices. The Ising
and Rashba SOC energy scales are respectively denoted λI and
λR, while P3 projects onto the top RTG layer. Throughout we
use τμ, sμ, and σμ to label Pauli matrices acting on the valley,
spin and sublattice degrees of freedom, respectively. Due to
the layer polarization of the low-energy bands of RTG under
an applied displacement field D, Ising SOC primarily leads to
a band splitting in the valence (conduction) band [58,59] for
D > 0 (D < 0), as shown in Fig. 1(d).

The relative twist angle of WSe2 and RTG provides a
knob to tune the ratio of Ising and Rashba SOC [15,60–
62]. However, sublattice polarization of the low-energy wave
functions of RTG at large D fields [63] effectively suppresses
Rashba SOC; hence we focus on Ising SOC and set λR = 0
throughout for simplicity. In this limit, the interacting Hamil-
tonian preserves global U(1)s spin rotations along the Ising
(z) axis. We briefly discuss effects of re-introducing Rashba
SOC—thereby breaking the U(1)s symmetry—in the Outlook
(Sec. VI).

We implement a self-consistent Hartree-Fock procedure,
whereby a trial Slater-determinant Ansatz |
HF〉 for the many-
electron ground state is first chosen, usually respecting a
certain set of symmetries. This trial ground state is charac-
terized by the covariance matrix

�(k)αα′ = 〈
HF|c†
αkcα′k|
HF〉, (6)

which is then input into the mean-field decomposition of the
Hamiltonian ĤHF[�]—see Appendix B for details. A new
ground state is then obtained by diagonalizing ĤHF[�] until
convergence is attained. In practice, many iterations of this
procedure are performed for Ansatz exhibiting different sets
of broken symmetries, and the best ground state is identified
as the trial state with the lowest energy; see Fig. 2 for an
example of the comparison between various trial states. As
the tight-binding Hamiltonian ĤB is fitted to ab initio (DFT)
data, it already includes to an extent interaction effects at
charge neutrality. Thus, to avoid double-counting interactions,
we subtract the contribution from reference mean-field ĤC

and ĤV constructed with the fully symmetric |
HF〉 at charge
neutrality (see Appendix B 1).

The canonical approach in determining �(k) from ĤHF[�]
involves the filling of electronic states up to a given electron
density; but the naïve way of doing so, which disregards
degeneracies at the Fermi level, can lead to anomalous
symmetry-breaking artifacts. We address this issue through
a fractional filling scheme, which considers an ensemble-
averaged �(k) free from such symmetry-breaking anomalies

FIG. 2. Typical phase diagram slice from self-consistent Hartree-
Fock. (a) Hartree-Fock energy E per carrier [see Eq. (B8)] across
electron density ne. Line colors and styles denote various symmetry-
restricted solutions listed in Table I; energies are measured relative to
the fully symmetric metal. The lowest-energy solution represents the
best mean-field ground state. (b) Corresponding Fermi-level DOS.
Sharp variations in DOS are observed at transitions between different
ground-state orders, and when the Fermi surface topology changes
within the same phase (i.e., through Lifshitz transitions). Here εr =
20, JH = 4 eV × Auc, �1 = 40 meV, and λI = 0. Only a subset of
relevant symmetry-restricted solutions is shown for visual clarity.

(see Appendix B 3). To reduce computational costs, we em-
ploy a semiadaptive momentum grid with resolution and
momentum cutoff chosen based on the noninteracting Fermi
surfaces (see Appendix B 4). The phase diagrams presented
in this work were computed on momentum grids comprising
∼1800 points. We verify the convergence of our Hartree-Fock
solutions by comparison against results at larger momentum
grid resolution and cutoffs; moreover, for each ground state
identified, we repeatedly impose random symmetry-breaking
perturbations and run until convergence, to check that no
lower-energy solutions exist (see Appendix B 5).

Table I lists all the symmetry-broken ground states ob-
tained in this work, along with abbreviations and color
schemes used to label them in the text and in phase diagrams.
The transformation properties of the ground states under vari-
ous symmetries, as well as their Fermi surface degeneracy, are
also tabulated for future reference. Table I notably includes
five families of IVC orders; Fig. 3 contrasts these IVC states
by plotting their valley and spin textures projected to the active
band of interest.

III. PHASE DIAGRAM OF RTG
WITHOUT SPIN-ORBIT COUPLING

We first explore the correlated physics of RTG in the ab-
sence of induced Ising SOC, λI = 0. We fix the Coulomb
interaction strength by taking εr = 20, and consider the cases
with JH = 0 and JH �= 0 in turn.
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FIG. 3. Momentum-resolved structure of IVC states. Columns (a) through (e) illustrate the order parameters characterizing various IVC
ground states obtained in this study, projected to the occupied (hole) bands. The first row shows the valley polarization, which averages to
zero over the Brillouin zone but takes advantage of the trigonal-warping-induced energy difference between the two valleys. The second row
depicts the in-plane components of the valley pseudospin, parametrized by τ+ = τ x + iτ y, accompanied by the relevant spin operators that
differentiate each state. The third and fourth rows show the spin and spin-valley-locked polarizations, which respectively benefit from Hund’s
coupling and Ising SOC. The IVC0 and IVCz states develop intervalley coherence for both spin projections, albeit with a relative π phase shift
for IVCz. The closely related SVL-IVCz state additionally develops a large spin-valley-locked polarization (τ zsz). The SP-IVC and SVL-IVC
states exhibit a single Fermi surface corresponding to a definite spin projection (SP-IVC) or spin-valley locking (SVL-IVC).

A. Zero Hund’s coupling

We present in Fig. 4(a) the phase diagram of RTG without
Hund’s coupling, JH = 0, determined through self-consistent
Hartree-Fock calculations as a function of electronic density
ne and interlayer potential �1. [All phases in the figure are de-
generate with those related by the unphysical SU(2) × SU(2)
symmetry present at JH = 0.]

A variety of correlated phases emerge in both hole- and
electron-doped regimes. At first glance, the phase diagram
resembles that expected from a generalized Stoner ferro-
magnet model [3]: as either the electron or hole density
is increased from charge neutrality, the system undergoes
successive transitions to a quarter-metal, a half-metal and a
three-quarter-metal phase, wherein 1, 2, or 3 of the underlying
spin and valley flavors are respectively occupied. We also find
cases where the Stoner polarization is incomplete—namely,
where a subset of spin-valley flavors is predominantly oc-
cupied, but where minority Fermi surfaces also exist; see
below for further discussion. Due to the SU(4) symmetry
of the long-range Coulomb interactions, Stoner ferromagnets
with the same number g of majority-occupied flavors are

degenerate—e.g., the spin-polarized (SP), valley-polarized
(VP), and spin-valley-locked (SVL) states.1

Beyond Stoner-type ferromagnets, we find IVC
orders—where again the two graphene valleys hybridize
spontaneously—consistent with recent theoretical studies
[32,43,45,64]. The energetic advantage of IVC states arises
from the fact that the valley pseudospin τ = (τ x, τ y, τ z ) can
rotate as a function of momentum k (see Fig. 3) to exploit
the trigonally warped Fermi surfaces of RTG. When the
energy difference between the two valleys E+(k) − E−(k)
is small, τ points in the plane (thus hybridizing the two
valleys). In contrast, when the energy difference is large it is
favorable to rotate τ out of the plane to benefit from the lower
kinetic energy associated with populating a single valley. The
in-plane components of τ wind six times when encircling the

1This observation relates phases, such as the valley-polarized and
spin-polarized states, that are not connected by the nongeneric
SU(2) × SU(2) symmetry noted earlier.

035113-5



KOH, ALICEA, AND LANTAGNE-HURTUBISE PHYSICAL REVIEW B 109, 035113 (2024)

FIG. 4. RTG phases without SOC and without Hund’s coupling (λI = JH = 0). (a) Phase diagram of RTG in the electron density–interlayer
potential (ne–�1) parameter space for both hole- and electron-doped regimes, at moderate Coulomb strength εr = 20. Different phases are
denoted by their color and hatching (see Table I for legends). (b) Corresponding DOS at the Fermi level using a 500 μeV broadening of energy
levels. Bottom panels show Fermi surfaces at numbered points in (a); colors denote the number of mean-field valence or conduction bands
occupied by carriers.

origin of the Brillouin zone [32]—a consequence of the Berry
phase of 3π per valley in the low-energy bands of RTG.

We obtain two types of IVC orders. The IVC0 state ( )
preserves spin-rotation and time-reversal symmetries, and
comprises a doubly degenerate Fermi surface where each
spin projection develops identical intervalley coherent order
[Fig. 3(a)]. In contrast, the nondegenerate SP-IVC state ( )
is obtained starting from a spin-polarized state and lifting
its valley degeneracy through the development of intervalley
coherence [Fig. 3(d)].

Representative Fermi surfaces in the bottom panels of
Fig. 4 illustrate the large variety of metallic phases that are sta-
bilized. The Stoner-type symmetry-breaking cascade, wherein
spin and valley flavors are successively filled, is clearly visible
(subpanels 1–12 and 21–27), alongside the IVC phases (sub-
panels 13–18 and 28–30). Some states are partially polarized,
featuring minority Fermi surfaces not expected from a pure
half- or quarter-metal picture, e.g., subpanels 5, 8, 16, 17, 20,
and 29. In addition to symmetry-breaking transitions precipi-
tated by Coulomb interactions, Lifshitz-type phase transitions,
where the Fermi surface changes topology, can also occur
within a given phase and are associated with local extrema
in the Fermi-level density of states shown in Fig. 4(b); see
also the fixed interlayer potential (�1) slice in Fig. 2. Ne-
matic ordering, characterized by the spontaneous polarization

of low-density Fermi pockets in momentum space [41–43],
is also observed in subpanels 19 and 20. The spontaneous
reorganization of low-density Fermi pockets into a reduced
number of larger, C3-breaking pockets lowers exchange en-
ergy but increases kinetic energy, and can be advantageous in
certain regions of both Stoner-type and IVC phases.

B. Nonzero Hund’s coupling

We next study the effects of short-range Hund’s coupling
on the phase diagram of RTG. Experimental constraints in-
cluding the observation of a spin-polarized half-metal phase
[3] indicate that Hund’s coupling should be ferromagnetic
(JH > 0), such that the degeneracy between the g = 2 Stoner
states (VP, SVL and SP) is broken in favor of the SP state
( ). In Fig. 5, we consider JH = 4 eV × Auc ≈ 210 meV nm2

[Fig. 5(a)] and JH = 8 eV × Auc ≈ 420 meV nm2 [Fig. 5(b)]
and show representative Fermi surfaces in the bottom panels.

As discussed above, the ferromagnetic Hund’s coupling
breaks the degeneracy between the g = 2 Stoner ferromagnets
in favor of the spin-polarized phase. The energy advantage
conferred can be sufficiently large to favor the spin-polarized
phase deep into regions previously occupied by SVP phases
(g = 1) in the absence of Hund’s coupling, e.g., around
point 6 of Fig. 5(a) and the analogous region in Fig. 5(b).
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FIG. 5. RTG phases without SOC in the presence of Hund’s coupling. (a) Phase diagram of RTG in the electron density–interlayer potential
(ne–�1) parameter space in hole- and electron-doped regimes, at moderate Coulomb strength εr = 20 and JH = 4 eV × Auc. Different phases
are denoted by their color and hatching (see Table I for legends). (b) Phase diagram at increased JH = 8 eV × Auc. Hund’s coupling breaks
the degeneracy between the g = 2 Stoner ferromagnets in favor of the spin-polarized (SP) phase, suppresses the SVP phases, and promotes
SP-IVC and IVCz phases. Bottom panels show Fermi surfaces at numbered points in (a); colors denote the number of mean-field valence bands
occupied by carriers.

Because spin-unpolarized IVC states do not benefit from
Hund’s coupling, they are replaced by either the Stoner-type
spin-polarized phase or its IVC counterpart (SP-IVC), both
of which can take advantage of Hund’s coupling for a re-
duction in energy. For the same reason, the SP-IVC phase
grows at the expanse of the neighboring SVP phases when
introducing Hund’s coupling. Furthermore, at low interlayer
potential we find a spin-triplet IVC state (IVCz) characterized
by the order parameter ∼τ xsz ( regions). Such a state is
depicted in Fig. 3(b) and is characterized by an IVC order
that spontaneously breaks the SU(2)s spin rotation symmetry:
the two spin components each exhibit intervalley coherence,
but with opposite signs between their respective IVC order
parameters. As a result, the IVC character of this order will not
manifest in charge density modulations but as a spin density
wave.

Nematicity is also observed in certain regions of the phase
diagram, for example near points 18 and 19 of Fig. 5(a), with
the latter exhibiting a partial polarization of the low-density
Fermi pockets, i.e., the pockets deform in a C3-breaking man-
ner, although no pocket is entirely removed.

IV. PHASE DIAGRAM OF SPIN-ORBIT-COUPLED RTG

In this section, we address our key motivating question,
namely, the role of induced Ising SOC on the interacting phase
diagram of RTG.

A. Zero Hund’s coupling

We first consider the case without Hund’s coupling, and
compare Hartree-Fock phase diagrams with λI = 1 meV and

3 meV in Figs. 6(a) and 6(b), respectively. [Ising SOC reduces
the nongeneric SU(2) × SU(2) symmetry present without
Hund’s coupling down to U(1) × U(1), corresponding to spin
rotations about the Ising axis that can be carried out indepen-
dently for each valley. All states related by this U(1) × U(1)
symmetry are degenerate.]

The degeneracy between the SP, VP, and SVL states
observed in the limit with SU(4)-symmetric Coulomb inter-
actions (Fig. 4) is now lifted to favor the spin-valley locked
(SVL) phase ( ). Note that regions previously occupied by
the fourfold degenerate metal also acquire a slight spin-valley
polarization, due primarily to a noninteracting band structure
effect. In these regions ( ), the extent of Ising polarization
(τ zsz) is an order of magnitude smaller than in the SVL phase
and roughly matches noninteracting expectations.

Interestingly, a new type of intervalley coherent phase
emerges: the spin-valley-locked SVL-IVC order [64] occu-
pying hatched yellow regions ( ). Similarly to the SVL
state, SVL-IVC exhibits a large and uniform Ising polar-
ization ∼τ zsz, as shown in Fig. 3(e), while additionally
developing intervalley coherence within the relevant sub-
spaces (K+↑, K−↓) and/or (K+↓, K−↑), depending on the
sign of λI as well as the electronic density. Interestingly,
SVL-IVC states preserve an effective antiunitary symmetry
T ′ = τ ysyK that corresponds to the electronic time-reversal
symmetry T followed by a π valley rotation around the τ z

axis. Representative Fermi surfaces of SVL-IVC states appear
in subpanels 12–18 of Fig. 6.

We also find that nematic tendencies are greatly enhanced
in the presence of induced SOC. In particular, large regions
of spin- and valley-polarized Stoner states exhibiting ne-
maticity are observed in Fig. 6(a)—comprising one or two
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FIG. 6. Spin-orbit-coupled RTG phases in the absence of Hund’s coupling (JH = 0). (a) Phase diagram of RTG in the electron density–
interlayer potential (ne–�1) parameter space in hole- and electron-doped regimes, at moderate Coulomb strength εr = 20 and Ising SOC
λI = 1 meV. Different phases are denoted by their color and hatching (see Table I for legends). (b) Phase diagram at increased λI = 3 meV.
Ising SOC breaks the degeneracy between the g = 2 Stoner ferromagnets in favor of the spin-valley-locked (SVL) phase, promotes nematicity
at low carrier density, and converts SP-IVC phases to SVL-IVC phases. The fully degenerate (g = 4) phases without SOC acquire marginal
spin-valley-locked polarization ( ) mostly due to band structure (noninteracting) effects. Bottom panels show Fermi surfaces at numbered
points in (a); colors denote the number of mean-field valence bands occupied by carriers.

deformed Fermi pockets, in some cases superimposed on
larger trigonally warped Fermi surfaces (subpanels 1–6). This
observation contrasts with the SOC-free problem, Fig. 4,
where only small (mostly low-density) regions exhibit ne-
maticity. At large interlayer potential, a region of nematic
SVL-IVC phase is also observed (subpanel 16), with partial
momentum polarization of six small Fermi pockets lying atop
a valley-hybridized hexagonal Fermi surface. The extended
nematic regions in Figs. 6(a) and 6(b) are quite similar, sug-
gesting that the enhancement of nematicity saturates rapidly
upon increasing Ising SOC.

B. Nonzero Hund’s coupling

The phase competition in RTG becomes most complex
when both Hund’s interaction and Ising SOC are present, as
shown in Fig. 7. In this regime, the doubly degenerate Stoner
phase that is selected depends on the dominant perturbation to
the long-range Coulomb interaction. When λI dominates, as in
Fig. 7(b), the spin-valley-locked (SVL) state dominates. How-
ever, when both JH and λI compete, a compromise solution is
found in the form of a state ( ) that combines spin-valley
locking (τ zsz) and in-plane spin-polarization (∼τ 0sx/y). Spin
polarization is favored by Hund’s coupling—but due to the
energy cost of polarizing along the Ising axis, an in-plane
spin polarization is preferred over the out-of-plane alternative
(∼τ 0sz). The resulting Fermi surfaces remain doubly degen-
erate as the two order parameters anticommute.

The preferred IVC state also depends on the competition
between Hund’s and Ising terms. We find that the SVL-IVC

order is preferred almost everywhere, with the exception of
small regions of parameter space for weak Ising SOC and
interlayer potential (on both electron- and hole-doped sides)
that host a new state dubbed SVL-IVCz. This state is similar
to the IVCz order stabilized in a similar parameter regime
in the absence of SOC (Fig. 5), but now with an additional
∼τ zsz polarization induced by Ising SOC [see Fig. 3(c)].
The SVL-IVCz order is also invariant under the antiunitary
T ′, and its Fermi surfaces remain doubly degenerate due to
the anticommutation of its constituent order parameters (see
Table I). The SVL-IVCz and IVCz states are distinguished by
a subtle symmetry feature: while both states break SU(2)s and
U(1)v, IVCz preserves the product τ zsx of a π valley rotation
and a π spin rotation, while SVL-IVCz does not.

V. BENCHMARKING WITH EXPERIMENTS

Thus far we have treated the interaction parameters εr

and JH largely from an exploratory standpoint, which has
afforded a discussion of RTG ground states in successively
more complicated scenarios (Secs. III and IV). To close our
discussion, we attempt a benchmarking of our Hartree-Fock
phase diagrams to available experimental data on Stoner-type
symmetry breaking in RTG [3,4].

To date, experiments on RTG have reported results without
induced SOC from an adjacent WSe2 monolayer. Therefore
we present in Fig. 8 phase diagrams computed with λI = 0
as well as JH = 0, 4 eV× Auc, and 8 eV×Auc. Experimental
phase boundaries [3] separating the fully symmetric metal
and half-metal phases (solid lines), and a spin-polarized
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FIG. 7. Spin-orbit-coupled RTG phases in the presence of Hund’s coupling. (a) Phase diagram of RTG in the electron density–interlayer
potential (ne–�1) parameter space in hole- and electron-doped regimes, at moderate Coulomb strength εr = 20, JH = 4 eV × Auc, and Ising
SOC λI = 1 meV. Different phases are denoted by their color and hatching (see Table I for legends). (b) Phase diagram at increased λI =
3 meV. The simultaneous presence of Ising SOC and Hund’s coupling promotes the composite SVL + SPπ phase over the plain spin-valley-
locked (SVL) phase; for larger Ising SOC, a larger Hund’s coupling is required for this transition. The dominant IVC instability is towards the
SVL-IVC state, except for a small region of SVL-IVCz phase for weak Ising SOC and interlayer potential. Bottom panels show Fermi surfaces
at numbered points in (a); colors denote the number of mean-field valence bands occupied by carriers.

half-metal and a quarter-metal phase (dashed lines) are drawn
for comparison. We continue to assume an out-of-plane
dielectric constant ε⊥

r = 4.4, typical of h-BN-encapsulated
devices, to convert between displacement field D and inter-
layer potential �1 via Eq. (2). As mentioned in Sec. III B,
JH > 0 is needed to account for the spin-polarized half-metal
in experiments, as opposed to other Stoner-type half-metals.

Notably, Fig. 8(b) suggests a reasonable agreement be-
tween the numerical and experimental phase boundaries at
εr ∼ 20 and JH ∼ 4 eV× Auc ≈ 210 meV nm2, which explains
our choice of parameters in the preceding figures (Figs. 4–
7). A larger JH ∼ 8 eV× Auc ≈ 420 meV nm2 produces also
a plausible agreement to experiment phase boundaries [see
Fig. 8(c)]. The above energy scales for Hund’s coupling rep-
resent a significant perturbation on the long-range Coulomb
interaction: for reference, at εr = 20 and typical Fermi mo-
mentum q ≈ 0.1a−1, the screened Coulomb potential VC(q) ≈
1 eV nm2. Because local interactions beyond Coulomb, such
as electron-phonon coupling, can also contribute to the Hund’s
interaction, a direct estimation of JH is not straightfor-
ward. Additionally, our Hartree-Fock treatment features weak
residual three-quarter-metal phases that are absent from the
experimental observations; beyond-Hartree-Fock effects [65]
may destabilize such phases and thus change the JH values
that give best agreement with the data.

We also show comparisons with phase diagrams obtained
with εr = 15 and εr = 30 in Appendix C, which do not agree
comparably well with experiments. In all, we estimate 18 �
εr � 25 and 3 eV× Auc � JH � 10 eV× Auc to be consistent
(at the mean-field level) with currently available data for RTG.
The value εr = 20 used in this work represents a weaker

Coulomb interaction than in Ref. [43], but is considerably
stronger (especially near the van Hove singularities) than RPA
treatments of electronic screening used in Refs. [32,64].

VI. CONCLUSION AND OUTLOOK

In this work, we performed extensive self-consistent
Hartree-Fock simulations to investigate the phase diagram
of RTG in the presence of long-range Coulomb interac-
tions, short-range Hund’s coupling, and Ising SOC induced
by proximity to a neighboring WSe2 monolayer. Our main
conclusions can be summarized as follows.

In the absence of SOC, there is a competition between
Stoner-type ferromagnets (where a subset of the spin-valley
flavors are uniformly polarized along the Fermi surface), and
IVC states which exploit the momentum-space structure of the
trigonally warped Fermi surfaces of RTG to lower their kinetic
energy. As such, IVC states tend to be stabilized in regimes
of ‘intermediate’ correlations, which are likely relevant in
RTG for experimentally accessible displacement fields D of
order ∼0.5V/nm. The addition of a ferromagnetic Hund’s
coupling, motivated by empirical observations [3], breaks the
degeneracy of the g = 2 Stoner ferromagnets in favor of spin
polarization (SP), which dominates the corresponding part
of the phase diagram with the exception of a small region
of (g = 2) IVCz phase for weak interlayer potential. In the
parameter regime where g = 1 phases are preferred, Hund’s
coupling enlarges the regions occupied by SP-IVC states at
the expense of Stoner SVP states.

Among the different ground states we obtained in the SOC-
free limit, three (SP, SP-IVC and IVCz) may be conducive to
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FIG. 8. Comparison of self-consistent Hartree-Fock simulations
to prior experiments. RTG phase diagrams in the electron density–
displacement field (ne–D) parameter space in hole- and electron-
doped regimes without induced SOC, at εr = 20 and (a) JH = 0,
(b) 4 eV × Auc, and (c) 8 eV × Auc. In the hole-doped regime, solid
lines denote experimental phase boundaries between a fully sym-
metric and a partially polarized g = 2 phase. In the electron-doped
regime, dashed lines denote phase boundaries between a quarter-
metal and a spin-polarized half-metal phase, and solid lines denote
phase boundaries into the fully symmetric metal. Experimental data
reproduced from Ref. [3]. An out-of-plane ε⊥

r = 4.4 is used to con-
vert between interlayer potential �1 and displacement field D [see
Eq. (2)].

zero-momentum Cooper pairing at low temperature, as their
Fermi surfaces preserve the k ↔ −k resonance condition.
The SP and SP-IVC states exhibit spin-polarized Fermi sur-
faces that naturally lead to (intraband) superconductivity of
spin-triplet character, and may therefore be relevant for the
SC2 phase identified in Ref. [4]. For these two states, the
resonance condition appears as a consequence of the spin-
less time-reversal symmetry Tspinless = τ xK. We thus expect
perturbations that break Tspinless to be detrimental to pairing
in the SP or SP-IVC state. Such perturbations include spin-
orbit scattering from impurities but also the native SOC in
graphene. The energy scale of native SOC is estimated to be
of order ∼10 μeV [66] and is usually neglected—including
in our Hartree-Fock treatment where typical energy differ-
ences between competing ground states are of order 100 μeV
(see Fig. 2). However, Cooper pairing in RTG is character-
ized by energy scales �BCS = 1.76 kBTc ≈ 15 and 4 μeV for
the SC1 and SC2 phases, respectively—sufficiently low to
be adversely affected by native SOC. Similarly, the IVCz

state is invariant under the antiunitary T ′, which is also an
approximate symmetry as it relies on emergent U(1)v valley
conservation at low energies. Short-range potential disorder
and edge terminations will therefore be pair breaking, but
such effects are presumably small as superconductivity re-
sides deep in the clean limit. Unfortunately, in our simulations
IVCz is only stabilized for low interlayer potential, where
superconductivity is not observed in RTG.

The addition of Ising SOC of order λI ∼ 1 meV, the rel-
evant scale for BLG/WSe2 [9,10,54], significantly tilts the
energetic balance between the various candidate phases. In the
electronic density and D field region where the Stoner picture
predicts a g = 2 state, a sufficiently large λI (compared to
the Hund’s energy scale) favors the spin-valley-locked (SVL)
state. This phase is naturally conducive to Cooper pairing as
it preserves time-reversal symmetry T —and further admits a
nonzero projection of a spin-singlet s-wave pairing interac-
tion on its Fermi surface. When Ising and Hund’s coupling
terms are comparable, a linear combination of their respective
(SVL and SP) preferred order parameters is selected. If the
spin polarization points in the plane, this state can benefit
energetically from Hund’s coupling while avoiding paying
the penalty associated with polarizing along the Ising quan-
tization axis. The corresponding Fermi surfaces are doubly
degenerate (g = 2) because the order parameters τ zsz and τ 0sx

anticommute, and are also k ↔ −k symmetric. However,
this resonance condition is not symmetry-enforced and can
be understood as an artifact of neglecting symmetry-allowed
terms (in the presence of the WSe2 substrate) such as Rashba
SOC, which would deform the SVL + SPπ Fermi surfaces in
a pair-breaking manner [67].

The most robust intervalley coherent order in the pres-
ence of Ising SOC is the SVL-IVC state, which hybridizes
both valley and spin degrees of freedom. Such a state has
nondegenerate Fermi surfaces (g = 1) and arises from devel-
oping intervalley coherence within the subset of electronic
states favored by the spin-valley-locked order. Crucially, the
SVL-IVC state respects the effective antiunitary T ′ that guar-
antees the k ↔ −k symmetry of its Fermi surfaces [again
provided that U(1)v valley rotations remain a good symme-
try], and therefore represents a promising candidate to host
zero-momentum superconductivity at low temperature. If re-
alized experimentally, the SVL-IVC state could be used as
a resource to engineer topological superconductivity in gate-
defined Josephson junctions, following ideas in Ref. [46], due
to its unique combination of nondegenerate Fermi surfaces
protected by an antiunitary symmetry.

Interestingly, we find that Ising SOC promotes nematic
ordering tendencies among the small Fermi pockets of RTG,
a phenomenon for which experimental evidence is mounting
in the closely related BLG/WSe2 platform [9,10]. Provided
that nematic ordering preferentially selects pairs of pockets
that are related by k ↔ −k, superconductivity may naturally
coexist with nematicity.

Our study neglects Rashba SOC, which is symmetry-
allowed in experiments due to the breaking of vertical mirror
symmetry at the graphene/TMD interace. While the impact of
Rashba SOC is expected to be suppressed by wave-function
effects at large D field [63], it may have a stronger effect in
the weak D field regime, where two of our IVC ground states
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(IVCz and SVL-IVCz) are stabilized. Moreover, even weak
Rashba SOC could have important effects on potential pairing
instabilities, especially for phases that develop nonzero in-
plane spin components. As mentioned above, in the SVL +
SPπ state, the introduction of Rashba SOC is expected to be
detrimental to pairing. In contrast, in the SVL-IVC state the
T ′ symmetry does not rely on preserving the U(1)s rotations
along the Ising axis; the Fermi surface resonance condition
is therefore a robust feature. In fact, Rashba SOC may even
favor the SVL-IVC state at the expense of competing Stoner
SVP states, due to its nontrivial in-plane spin texture. Explor-
ing this interplay represents an interesting avenue of future
work. Conversely, it should be possible to minimize Rashba
effects experimentally by constructing devices encapsulated
with WSe2 on both sides [45,54], which may furnish a more
robust platform for stabilizing superconductivity.

Intriguingly, RTG is to date the only member of the rhom-
bohedral graphene multilayer family known to superconduct
in the absence of external perturbations (other than the ap-
plied perpendicular displacement field D). Disentangling the
physical mechanisms underlying this observation, and under-
standing the perturbations that may favor Cooper pairing in
the other members of the family, represent promising oppor-
tunities for future work.

Note added. While finalizing this work, we became aware
of a parallel study [64] investigating the interplay of (long-
range) Coulomb interactions and induced Ising SOC in RTG.
The reported phase diagrams are qualitatively similar to ours
(when setting Hund’s coupling JH = 0). The authors also
uncover a quarter-metal IVC order that takes advantage of
spin-valley-locked polarization, equivalent to our SVL-IVC
state (which they name “spin-valley coherent” order).
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APPENDIX A: HAMILTONIAN

1. Tight-binding model and spin-orbit coupling

The full six-band (per spin) microscopic tight-binding
Hamiltonian can be written in sublattice basis

ĤB =
∑

k

∑
τ sσσ ′

h(τK + k)σσ ′c†
τ sσkcτ sσ ′k, (A1)

where the fermion operator cτ sσk annihilates an electron at
momentum k for valley index τ ∈ {±1}, spin index s ∈ {↑,↓}
and sublattice index σ , with [47]

h(q)σσ ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1 + �2 + δ γ2/2 −γ0 fq −γ4 fq −γ3 f †
q 0

γ2/2 �2 − �1 + δ 0 −γ3 fq −γ4 f †
q −γ0 f †

q

−γ0 f †
q 0 �1 + �2 γ1 −γ4 fq 0

−γ4 f †
q −γ3 f †

q γ1 −2�2 −γ0 fq −γ4 fq

−γ3 fq −γ4 fq −γ4 f †
q −γ0 f †

q −2�2 γ1

0 −γ0 fq 0 −γ4 f †
q γ1 �2 − �1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
σσ ′

, (A2)

for microscopic momentum q such that q = 0 at the
-point of the Brillouin zone. The sublattice basis is
(A1, B3, B1, A2, B2, A3) where A, B label the sites and l in
Al , Bl labels the layer, and

fq = eiqya/
√

3 + 2e−iqya/2
√

3 cos (qxa/2)

describes the in-plane component of nearest-neighbor hop-
ping centered at sublattices [68,69]. The valley point K =
(4π/3a)x̂ for graphene lattice constant a = 2.46Å. Here �1

is a potential difference between adjacent layers due to
an external perpendicular displacement field D, given by
Eq. (2) and of order ∼10 to 50 meV for experimentally
relevant values of D. The values of all other parameters
are fixed by fitting against ab initio (DFT) calculations,

as available in the literature [3,27,28,32,47] and listed in
Table II.

The spin-orbit coupling (SOC) induced by the WSe2 sub-
strate is captured by Ising- and Rashba-type terms,

ĤI = λI

2

∑
k

c†
k(τ zszP3)ck,

(A3)

ĤR = λR

2

∑
k

c†
k(τ zsyσ x − sxσ y)P3ck,

where λI and λR are the SOC coefficients, τμ, sμ, and σμ

are Pauli operators acting on the valley, spin and sublattice
degrees of freedom, respectively. The operator P3 projects
onto the top layer of RTG and cT

k = [c+↑A1k . . . c−↓A3k]
enumerates the fermion operators in valley, spin and sublat-
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TABLE II. Numerical values of tight-binding parameters used throughout this work.

γ0 γ1 γ2 γ3 γ4 δ �2

3.1eV 380 meV −15 meV −290 meV −141 meV −10.5 meV −2.3 meV

tice basis. However, due to the suppression of Rashba SOC
effects by the sublattice polarization of the low-energy wave
functions of RTG at large D fields [63], we focus on Ising-type
SOC in this work. Our starting point for the Hartree-Fock
procedure is therefore the noninteracting Hamiltonian Ĥ0 =
ĤB + ĤI. We detail the self-consistent Hartree-Fock method
in Appendix B.

2. Screened Coulomb interactions

We consider gate-screened Coulomb interactions, which
can be separated into long-range ĤC and short-range ĤV parts,

ĤC = 1

2A

∑
q

VC(q) :ρ(q)ρ(−q) :,

ĤV = JH

2A

∑
k,k′

∑
q

∑
τ

∑
ss′

∑
σσ ′

η(q)τσσ ′

× :c†
(−τ )sσk cτ sσ (k+q)c

†
τ s′σ ′k′c(−τ )s′σ ′(k′−q) :, (A4)

where A is the sample area, JH the strength of short-range
interactions, and : : denotes normal ordering. An approximate
recasting of the short-range ĤV in terms of spin operators
in the two valley sectors is possible [32], which reveals a
similarity in physical character to an intervalley Hund’s cou-
pling between electron spins—thus we refer to ĤV also as
the Hund’s coupling Hamiltonian. Above in ĤC, ρ(q) is the
slowly varying component of the electron density operator
involving only intravalley terms,

ρ(q) =
∑

k

∑
α

c†
αkcα(k+q), (A5)

where α = (τ sσ ) encompasses valley, spin and sublattice in-
dices, and VC(q) is the repulsive dual gate-screened Coulomb
interaction potential,

VC(q) = q2
e

2εrε0q
tanh (qd ), (A6)

for qe the electron charge, screening length d which can be
taken as the distance from the graphene plane to the gates, εr

the relative permittivity, and ε0 the permittivity of free space.
We take d ≈ 50 nm and phenomenologically model screening
arising from the electron gas in the graphene plane by treating
εr as a free parameter, which takes values larger than εr = 4.4
expected simply from encapsulation in an h-BN dielectric
environment.

Alternatively, to account for screening of the Coulomb
interaction by mobile electrons, one may consider a random
phase approximation (RPA) correction by itinerant electrons,

VC(q) ← V RPA
C (q) = VC(q)

1 + χρρ (q)VC(q)
, (A7)

for static Lindhard response function χρρ (q). Disregarding
the frequency dependence of the screening reduces χρρ (q) ≈

χ0(1 − cq2/k2
F + . . .) ≈ χ0 with the zero-temperature density

of states at the Fermi surface χ0 ∼ 0.16 eV−1 per unit cell, as
was used in Ref. [32]. However, we remark that the present
RTG setting lies outside the conventionally accepted regime
of validity of RPA. Fundamentally, RPA is an expansion in the
small parameter χρρ (q)VC(q) � 1, but in the present context
near van Hove singularities, χρρ (q)VC(q) > 1 and the expan-
sion is not guaranteed to converge. For a ballpark estimate,
at a characteristic Fermi momentum scale q ≈ 0.1a−1 and
εr ≈ 4.4, one finds χρρ (q)VC(q) ≈ χ0VC(q) ≈ 16 � 1. Qual-
itatively, large χ0VC(q) produces an RPA potential V RPA

C (q) ≈
1/χ0 that is momentum-independent, implying short-range
Coulomb interactions. While not directly comparable due to
the difference in momentum dependence, at a characteristic
scale q ≈ 0.1a−1 the RPA potential VC(q)RPA matches VC(q)
at corresponding εr ≈ 70. That is, the RPA interaction energy
scale is considerably smaller than the screened Coulomb po-
tential as benchmarked in our study (see Figs. 8–10) which
indicates εr ∈ [18, 25] approximately. The Coulomb energy
scale in our study therefore lies between the weak RPA inter-
actions of Refs. [32,64] and the stronger εr ≈ 4.4 interactions
of Ref. [43].

In the intervalley Hund’s coupling ĤV, the phase factors
η(q)τσσ ′ must be chosen to preserve C3 rotation symmetry.
The action of C3 rotations on the fermionic operators is

C3[c†
τ sσk] = eiτλσ (2π/3)[eiszπ/3]ssc

†
τ sσ (C3k), (A8)

where C3k rotates k by 120 ◦, and index λσ = 0,+1,−1
for the A1/B3, B1/A2 and B2/A3 sublattices σ, respectively.
Applying these transformations to the operators in ĤV and
demanding that ĤV is C3-symmetric yields the following con-
straint on the phase factors,

η(k)τσσ ′ = η(C3k)τσσ ′e2iτ (λσ ′−λσ )(2π/3). (A9)

We adopt a solution

η(q)τσσ ′ =
{

e2iτ (λσ −λσ ′ )θq q �= 0

δσσ ′ q = 0
, (A10)

where θk = arg (kx + iky), which satisfies the constraint
[Eq. (A9)] and fixes our gauge. Generically, while the short-
range component of the Coulomb interaction is expected to
give a ferromagnetic Hund’s coupling (JH > 0), which con-
fers an energy advantage to aligned spins across valleys,
lattice-scale effects as well as electron-phonon interactions
may generate additional contributions; hence we treat JH as
a phenomenological parameter.

APPENDIX B: SELF-CONSISTENT HARTREE
FOCK METHODOLOGY

1. Setup and overview

We focus on translation-symmetry preserving ground
states in RTG, where the momentum k remains a good quan-
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tum number. The mean-field Hamiltonian is then diagonal
in k,

ĤHF =
∑

k

∑
αα′

HHF(k)αα′c†
αkcα′k. (B1)

The Hartree-Fock wave function |
HF〉 is accordingly
identified as the (Slater determinant) ground-state of ĤHF at
a mean-field energy E . We define the covariance matrix char-
acterizing |
HF〉 as

�(k)αα′ = 〈
HF|c†
αkcα′k|
HF〉. (B2)

Given a fermionic ground state |
HF〉, the covariance ma-
trix �(k) is a Hermitian projector. The Hamiltonian we study
is

Ĥ = Ĥ0 + ĤC + ĤV − Ĥref, (B3)

where Ĥ0 = ĤB + ĤI contains the noninteracting tight-
binding and spin-orbit coupling components, ĤC and ĤV are
the long- and short-range parts of the screened Coulomb
interactions (see Appendix A), and Ĥref is a reference Hamil-
tonian that is subtracted off to avoid a double-counting of
interactions effects. Indeed, since ĤB is fitted to ab ini-
tio calculations (see Appendix A 1), it already includes to
an extent interaction effects at charge neutrality, and Ĥref

is defined to cancel the double-counting of interactions
by ĤC and ĤV—we discuss the details shortly. Apply-
ing mean-field decoupling to Ĥ yields a concrete form of
ĤHF, wherein ĤC and ĤV are replaced by effective single-
body approximations dependent on the covariance matrix
solution �,

ĤHF[�] = Ĥ0 + H̄C[�] + H̄V[�] − Ĥref

=
∑

k

[Ĥ0(k) + H̄C[�](k) + H̄V[�](k) − Ĥref(k)]︸ ︷︷ ︸
HHF[�](k)

.

(B4)

The long-range part of Coulomb interactions ĤC splits
into Hartree and Fock terms, arising from the diagonal and
exchange decoupling channels, respectively,

H̄C[�](k) = (H̄C)hart[�](k) + (H̄C)fock[�](k),

(H̄C)hart[�](k) = N

A

∑
α

VC(0)c†
αkcαk,

(H̄C)fock[�](k) = − 1

A

∑
q

∑
αα′

VC(q)[�(k + q)T]αα′c†
αkcα′k,

(B5)

where N = ∑
k tr�(k) is the total number of electrons in the

system. The Hartree term represents a uniform background
Coulomb potential arising from the average electron density,
whereas the Fock term involves momentum transfer. Like-
wise, the intervalley Hund’s coupling Hamiltonian ĤV splits
into Hartree- and Fock-like contributions,

H̄V[�](k) = (H̄V)hart[�](k) + (H̄V)fock[�](k),

(H̄V)hart[�](k) = JH

A

∑
τ sσ

[trs�
τ (−τ )]σσ c†

(−τ )sσkcτ sσk,

(H̄C)fock[�](k) = −JH

A

∑
q

∑
τ

∑
ss′

∑
σσ ′

η(q)τσσ ′

× [�ττ (k + q)T](sσ )(s′σ ′ ) c†
(−τ )sσkc(−τ )s′σ ′k,

(B6)

where, for convenience, we have defined
�ττ ′

(sσ )(s′σ ′ ) = ∑
k �(k)(τ sσ )(τ ′s′σ ′ ) to be the ττ ′ valley sector

of the covariance matrix traced over all k points, and trs

denotes the partial trace over the spin degrees of freedom.
As expressed above, the Hartree contribution is manifestly
of an intervalley character. We then define the reference
Hamiltonian

Ĥref(k) = 1
2 H̄C[�ref](k) + 1

2 H̄V[�ref](k), (B7)

where the reference covariance matrix �ref is the fully sym-
metric noninteracting ground state at charge neutrality.

The mean-field (Hartree-Fock) energy of a state |
HF〉
characterized by covariance matrix � is then

E = 〈
HF|Ĥ |
HF〉

=
∑

k

tr

[
�(k)T

(
Ĥ0(k) + 1

2
H̄C[�](k)

+ 1

2
H̄V[�](k) − Ĥref(k)

)]
, (B8)

where the factors of 1/2 on the interacting Hamiltonians
arise from Wick’s theorem, that decouples two-body energy
expectation values into one-body contributions. Thus Ĥref in-
deed cancels energetic contributions from interactions at the
charge-neutral reference point � = �ref as desired.

The self-consistent Hartree-Fock method computes a so-
lution for |
HF〉 defining the covariance matrix �, such that
|
HF〉 is the ground-state of ĤHF[�]. The covariance matrix
� characterizes the many-electron ground-state of the mean-
field Hamiltonian ĤHF[�]; its construction therefore involves
a projection onto the subspace spanned by filled electronic
states. In a grand-canonical ensemble picture, electronic states
are filled up to a pinned chemical potential μ. In a canoni-
cal ensemble approach, electronic states are filled to match
the desired carrier density; the dressed chemical potential,
automatically including effects of renormalization due to the
interactions, is thereby determined. We use the latter approach
as it allows for convenient simulation sweeps across carrier
densities.

2. Fixed-point iteration and restricted symmetry-breaking

We implement self-consistent Hartree-Fock through a vari-
ation of fixed-point iteration [70]. Conceptually, one begins
with an initial Ansatz for � satisfying desired symmetry
properties—e.g., fully symmetric metal, valley- or spin-
polarized, intervalley coherent, etc.—constructs ĤHF[�] and
computes its ground state, revises � based on the updated
ground state, and repeats until convergence. It is, however,
nontrivial in practice to construct an initial guess � that sat-
isfies all required properties of a fermionic covariance matrix,
breaks only the desired symmetries, and is reasonably close
to the true ground state within the symmetry sector of interest.
Instead, it is generally easier to impose a transient perturbation
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TABLE III. Transient symmetry-breaking Hamiltonian perturbations Ĥδ used in self-consistent Hartree-Fock, specified up to phase factors
(arising from transformation properties under C3 rotations). The tight-binding interlayer hopping amplitude γ1 (see Appendix A 1) sets the
band gap between valence/conduction and lower occupied/higher unoccupied bands in hole-/electron-doped RTG, and is used as an energy
scale for Ĥδ perturbations. For each order and associated Ĥδ (k), we present the band degeneracy within the four spin-valley sectors (with
g = 4 representing a fully degenerate state), and whether the perturbation preserves C3 rotation symmetry, which can be broken either due to
an in-plane spin component or an orbital component in the case of nematicity. More complex composite orders (e.g., intervalley coherence
with nematicity) are realized by superimposing multiple Ĥδ perturbations. For nematic perturbations, b = 0.1a−1 sets a momentum scale and
corresponds to typical Fermi momenta.

Order Description Ĥδ (k)/γ1 Degeneracy C3

Fully symmetric 0 4
√

Valley-polarized τ z 2
√

Spin-polarized (out-of-plane) sz 2
√

Spin-polarized (in-plane) sx/y 2 ✗

Spin-valley-locked τ zsz 2
√

Intervalley-coherent spin-singlet τ x 2
√

Intervalley-coherent spin-triplet (out-of-plane) τ xsz 2
√

Intervalley-coherent spin-triplet (in-plane) τ xsx/y 2 ✗

Spin-valley-polarized (τ 0 ± τ z )(s0 ± sz )/4 1
√

Nematic (y2) tanh(k2
y /b2 ) - ✗

Nematic (x) tanh(kx/b) - ✗

Ĥδ to the Hamiltonian that encourages the breaking of desired
symmetries; the symmetry-breaking is then inherited by the
resultant ground state �. In fact, for robustness and speed of
convergence of the Hartree-Fock procedure, it is advantageous
to apply a sequence of small perturbations Ĥδ at multiple
scheduled time steps,2 rather than a single larger perturbation
Ĥδ at the beginning of the procedure.

Concretely, let t ∈ N label time steps. We start with �0,
the ground state of the noninteracting Hamiltonian Ĥ0 at the
desired carrier density. Then for t � 0, we consider the mean-
field Hamiltonian

(ĤHF)t = ĤHF[�t ] + At Ĥδ, (B9)

and �t+1 is computed as the ground state of (ĤHF)t with
associated mean-field energy Et+1—see Appendix B 3 for de-
tails on the computation of ground-state covariance matrices.
Here At are perturbation amplitudes, nonzero and decreas-
ing in magnitude for a scheduled sequence of time steps
t ∈ Tδ , and zero for all t > tδ . The iteration continues—�t+1

yields (ĤHF)t+1 by Eq. (B9), which produces �t+2 and Et+2,
henceforth—and terminates at time step t > tδ when

max
αα′

|(�t − �t−1)αα′ | < ε� and |Et − Et−1| < εe|Et−1|,
(B10)

for small convergence tolerances ε� and εe. In our work, we
adopt

At =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1/4 t = 0

1/8 t = 6

1/16 t = tδ = 12

0 all other t

, (B11)

2The idea is similar to simulated annealing in numerical optimiza-
tion.

and tolerances ε� ≈ 10−4 and εe ≈ 10−8, more than sufficient
to resolve the pertinent fine structure and degeneracy-breaking
in our simulation sweeps. Note that standard machine pre-
cision presents ∼10−16 relative uncertainty per operation,
which accumulates to ∼10−10 relative uncertainty per com-
puted scalar on our RTG system (24 bands per k point
across ∼103 k points). For the vast majority of cases, con-
vergence is achieved within t � 200. We summarize the
symmetry-breaking Hamiltonian perturbations Ĥδ we used in
Table III.

Constructing Ĥ δ with no C3 symmetry requirement is
straightforward—Ĥ δ (k) at each k-point can be initialized
uniformly, as specified in Table III. On the other hand, con-
structing Ĥδ that are C3-symmetric requires one to impose the
following gauge-fixing condition,

Ĥδ (C3k) = UC3 Ĥδ (k)U †
C3

,

UC3 = U τσ
C3

U s
C3

, (B12)

where U τσ
C3

and U s
C3

are rotation unitaries acting on valley-
sublattice and spin degrees of freedom respectively,

U τσ
C3

= exp

[
iτ zs0

(
2π

3

)
diag (0, 0, 1, 1,−1,−1)

]
,

U s
C3

= exp
[
isz
(π

3

)]
. (B13)

3. Computation of ground state covariance matrices

A single-body Hamiltonian H̃ diagonal in k can be diago-
nalized as

H̃ (k) =
∑

ω

εωkφ
†
ωkφωk, φ

†
ωk =

∑
α

v(k)αωc†
αk,

c†
αk =

∑
ω

v(k)∗αωφ
†
ωk, (B14)
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where ω enumerates the bands, φωk are band fermionic oper-
ators, and εωk and v(k)αω are respectively eigenenergies and
normalized wave function coefficients. In our self-consistent
Hartree-Fock procedure (Appendix B 2), the Hamiltonian H̃
for which the ground state is of interest is either Ĥ0 for
initialization or (ĤHF)t as the iterations proceed. Consider
sorting the eigenenergies εωk to produce εω1k1 � εω2k2 � . . ..
Then, for an N-electron system, one straightforwardly identi-
fies the Fermi energy εF = εωN kN and the occupied subspace of
electron states I = {ω1k1, ω2k2, . . . , ωN kN }. The N-electron
Slater determinant ground state of H̃ is then

|
HF〉 =
∏
ωk∈I

φ
†
ωk|0〉, (B15)

for electronic vacuum state |0〉. The ground state covariance
matrix characterizing |
HF〉 is

�(k)αα′ = 〈
HF|c†
αkcα′k|
HF〉 =

∑
ω: ωk∈I

v(k)∗αωv(k)α′ω.

(B16)

The above summarizes the standard construction of |
HF〉
and �(k) in a canonical ensemble setting. However, a
naive application of this construction can lead to anomalous
symmetry-breaking. The problem is that there may exist de-
generacies at the Fermi level, and the selection of ωN kN within
this degenerate level need not preserve symmetries. More
concretely, suppose εωm− km− = . . . = εωm+ km+ is a degenerate
level, and m− � N < m+ such that the level coincides with
the Fermi energy. Then the selection of occupied electron
states {ωm−km− , . . . , ωN kN } ⊂ I can break symmetries—for
example, the selection may comprise an unbalanced number
of states in the two valleys, thus producing valley polariza-
tion. Note that ωN kN can be arbitrarily chosen within the
degenerate level up to reshuffling of states; thus the resulting
symmetry-broken |
HF〉 and �(k) are nonunique and are
all degenerate, none of which provides an energy advantage
over a symmetry-unbroken solution. This kind of symmetry-
breaking is unphysical.

A reasonable treatment is to identify the Hartree-Fock
ground state �(k) as the ensemble average of the possible
degenerate symmetry-broken solutions, each arising from a
particular selection of occupied electron states at the Fermi
level. This averaged �(k) then does not exhibit any anoma-
lous symmetry-breaking. We write

Iocc = {ω�k� : εω�k�
< εωN kN − εg�ε},

Iavg = {ω�k� : εωN kN − εg�ε � εω�k�
� εωN kN + εg�ε},

�(k)αα′ =
∑

ω: ωk∈Iocc

v(k)∗αωv(k)α′ω

+ N − |Iocc|
|Iavg|

∑
ω: ωk∈Iavg

v(k)∗αωv(k)α′ω, (B17)

where εg is a small relative tolerance for detection of the de-
generate level and �ε = εωN kN − εω1k1 sets the energy scale.
Defined in this manner, �(k) is no longer a projector, in
contrast to the solution in Eq. (B16), and does not correspond
to any unique pure state |
HF〉; rather it is an ensemble-
averaged mixed state. We refer to this construction also as

the fractional filling scheme. We use εg ≈ 10−10 in our work,
which approaches numerical precision in the diagonalization
of our Hamiltonians.

A slight further subtlety arises for self-consistent Hartree-
Fock runs targeting the fully symmetric sector, wherein it is
desired that the ground state � breaks no symmetries spon-
taneously. These calculations are ubiquitous in our study, as
we assess all Hartree-Fock energies against fully symmetric
solutions (see, e.g., Fig. 2 of the main text). Throughout much
of the parameter space explored—i.e., carrier densities, in-
teraction and SOC strengths—spontaneous symmetry-broken
ground states are energetically favorable, and thus the fully
symmetric solution is unstable to perturbations. Numeri-
cal imprecision that minutely break degeneracies can lead
to a proliferation of symmetry-breaking artifacts as the
Hartree-Fock iterations proceed. Moreover, at λI �= 0 the non-
interacting Ĥ0 already introduces a spin-valley splitting, such
that spin-valley locking always confers an energy advantage
and fully symmetric solutions cannot naturally arise through
the iteration procedure.

To enable and stabilize Hartree-Fock runs targeting fully
symmetric states, we project out symmetry-breaking compo-
nents of � that are possibly present before proceeding to the
next iteration. Given a set of operators P = {τμ�sν�}� acting
on spin-valley degrees of freedom, the projection of � onto
the space spanned by P can be written

P [{τμ�sν�}�]�(k) = 1

4

∑
�

τμ�sν� ⊗ trτ s[τ
μ�sν��(k)],

(B18)

where trτ s denotes partial trace over spin-valley degrees of
freedom. Then P [{τ 0s0, τ zs0}]�(k) gives the fully symmetric
� with symmetry-breaking components removed. The τ 0s0

component encodes overall filling of electron states, and τ zs0

accommodates local valley polarization at each k point, which
occurs naturally even in fully symmetric states, as the Fermi
surfaces in the two valleys are mirror images (reflected about
ŷ) of each other and do not exactly coincide on the k grid. The
global valley polarization traced over all k-points, of course,
vanishes for fully symmetric states,

∑
k P [{τ zs0}]�(k) = 0.

We do not invoke this projection scheme for Hartree-Fock
runs targeting other symmetry sectors.

4. Momentum grid

The primitive lattice vectors a j and reciprocal lattice vec-
tors b j for graphene can be chosen to be

a1 =
(

a

2
,

√
3a

2

)
, a2 =

(
a

2
,−

√
3a

2

)
,

b1 =
(

2π

a
,

2π√
3a

)
, b2 =

(
2π

a
,− 2π√

3a

)
, (B19)

where the lattice constant a = 2.46Å. An L × L grid of unit
cells (in real space) then produces the microscopic momentum
grid

q ∈
{

m1b1

L
+ m2b2

L

}
, (B20)
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where m1, m2 are integers that run from −L/2 to L/2, and
q = 0 is the -point of the Brillouin zone. The sampled area
is then A = L2Auc for unit cell area Auc ≈ 0.0524 nm2. To
capture the relevant low-energy physics, it suffices to retain
only momenta near the two valley points where the Fermi
surfaces lie. Imposing a circular momentum cutoff �, the
retained valley-centered momentum grid is

k ∈
{

k = n1b1

L
+ n2b2

L
: n1 ∈ Z, n2 ∈ Z, |k| � �

}
.

(B21)

Since K = (b1 + b2)/3, we choose L to be a multiple
of 3, such that the k-grid maps onto the microscopic grid
under translation—∀k ∃q : k + τK = q for both valleys τ ∈
{±1}—and k = 0 correspond to the valley points. Under
this definition the local momentum grid around both val-
leys coincide, and each k point can encode the degrees of
freedom of both valleys. That is, each k-point carries a
(2 valley) × (2 spin) × (6 sublattice) = 24-dimensional local
Hilbert space.

The maximum Fermi momenta found in our interact-
ing symmetry-restricted ground states do not exceed kF ≈
0.12a−1, therefore in principle a momentum cutoff � ≈
0.18a−1 suffices. However, as the Fermi surfaces can be
much smaller in some cases, especially at low carrier den-
sities, setting a universal large � is wasteful. Instead we
adopt a semiadaptive scheme for our momentum grid. We
precompute the noninteracting ground state �0 (using Ĥ0) at
each carrier density of interest and acquire the noninteracting
Fermi momentum k0

F, and set a carrier-density dependent � =
max(�0, rk0

F) for �0 ≈ 0.12a−1 and r ≈ 1.5, such that the
momentum cutoff scales with the size of the noninteracting
Fermi surfaces. Then, given a target number K ∼ 103 of k
points, which is held fixed for a simulation sweep, appro-
priate L can be chosen that adapts to carrier densities. Thus
the computational cost of our self-consistent Hartree-Fock
procedure is largely independent of carrier density and the
size of resultant Fermi surfaces, and is dependent only on the
momentum grid resolution K .

5. Convergence and stability checks

Inaccurate solutions from self-consistent Hartree-Fock can
result from unsuitable momentum grid settings—namely, an
insufficient number K of k points, thus presenting a momen-
tum grid too coarse to capture pertinent detail of the Fermi
surfaces; or too small a momentum cutoff �, which introduces
truncation error in the interacting Hamiltonians (that involve
momentum transfer) and in extreme cases may cut off parts of
Fermi surfaces. Separately, there is also a possibility that cer-
tain broken symmetries are missed in the set of Hamiltonian
perturbations chosen, and as a result lower-energy solutions
harboring those broken symmetries remain unobserved in the
Hartree-Fock runs.

To verify that our Hartree-Fock calculations were per-
formed on suitably large momentum grids, we ran subsets of
our simulations across the different considered scenarios (i.e.,
with and without Hund’s coupling, and with and without Ising
SOC) on significantly larger momentum grids—in particular
∼1.5× larger K and momentum cutoff � than in our pre-
sented results (Figs. 4–7). The phase diagrams obtained from
these verification runs matched with our presented results.
To check that no lower-energy broken-symmetry ground state
is missed in our Hartree-Fock calculations, we repeatedly
impose random symmetry-breaking perturbations on each
identified ground state and run again until convergence. In
these checks, the randomly perturbed Ansatz do not exhibit
energy advantages relative to the original ground state upon
convergence.

APPENDIX C: FURTHER RESULTS AND ANALYSES

Benchmarking against experiments

In Sec. V of the main text, we presented a benchmarking of
our self-consistent Hartree-Fock phase diagrams against prior
experiments [3] at εr = 20. Here in Figs. 9 and 10, we show
additional comparisons with experiment phase boundaries at
εr = 15 and 30 and across a range of JH interaction strengths.

FIG. 9. Additional comparisons of Hartree-Fock phase diagrams to prior experiments. Phase diagrams of electron-doped RTG in the
electron density–displacement field (ne–D) parameter space, at εr = 15 and (a) JH = 0, (b) 4 eV × Auc, (c) 8 eV × Auc, and (d) 12 eV × Auc.
Dashed lines denote experimental phase boundaries between a quarter-metal and a spin-polarized half-metal phase, and solid lines denote
phase boundaries into the fully symmetric metal. Experiment data reproduced from Ref. [3]. An out-of-plane ε⊥

r = 4.4 is used to convert
between interlayer potential �1 and displacement field D [see Eq. (2)].
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FIG. 10. Additional comparisons of Hartree-Fock phase diagrams to prior experiments. RTG phase diagrams in the electron density–
displacement field (ne–D) parameter space in hole- and electron-doped regimes, at εr = 30 and (a) JH = 0, (b) 4 eV × Auc, and (c) 8 eV × Auc.
In the hole-doped regime, solid lines denote experimental phase boundaries between a fully symmetric and a partially polarized g = 2 phase.
In the electron-doped regime, dashed lines denote phase boundaries between a quarter-metal and a spin-polarized half-metal phase, and solid
lines denote phase boundaries into the fully symmetric metal. Experiment data reproduced from Ref. [3]. An out-of-plane ε⊥

r = 4.4 is used to
convert between interlayer potential �1 and displacement field D [see Eq. (2)].
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