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Finite-temperature properties of the easy-axis Heisenberg model on frustrated lattices
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Motivated by recent experiments on a compound displaying Ising-type short-range correlations on the triangu-
lar lattice, we study the anisotropic easy-axis spin- 1

2 Heisenberg model on the triangular and kagome lattices by
performing numerical calculations of finite-temperature properties, in particular of static spin structure factor and
of thermodynamic quantities, on systems with up to 36 sites. On the triangular lattice, the low-temperature spin
structure factor exhibits long-range spin correlations in the whole range of anisotropies, whereas thermodynamic
quantities reveal a crossover upon increasing the anisotropy, most pronounced in the vanishing generalized
Wilson ratio in the easy-axis regime. In contrast, on the kagome lattice, the spin structure factor is short range,
and thermodynamic quantities evolve steadily between the easy-axis and the isotropic cases, consistent with the
interpretation in terms of a spin liquid.

DOI: 10.1103/PhysRevB.109.035110

I. INTRODUCTION

Quantum spin S = 1
2 Heisenberg model (HM) on frustrated

lattices has been attracting ongoing theoretical interest ever
since Anderson’s seminal conjecture [1] that the HM with
antiferromagnetic (AFM) exchange coupling between nearest
neighbors on the triangular lattice (TL) can exhibit properties
of quantum spin liquid (QSL). Theoretical studies intensified
after the discovery of several classes of insulators with local
magnetic moments [2–5], which do not reveal any magnetic
long-range order (LRO) down to the lowest experimentally
accessible temperature T . The most established case of QSL
ground state (gs) is the AFM HM on the kagome lattice (KL)
even though the precise nature of the QSL is still under active
debate [6–10]. On the other hand, studies of the isotropic HM
on TL have revealed long-range order (LRO) at T = 0 with
spins in 120◦ alignment [11–14].

AFM HM on TL with anisotropic exchange has also been
considered theoretically since the ground-state (gs) properties
of the Ising limit have been evaluated analytically, revealing
finite remanent entropy s0 = 0.323 [15] as well as Curie-type
susceptibility χ0 ∼ C/T at low T [16–18]. The extension
including a weak transverse spin exchange with relative α =
J⊥/Jz < 1 has been initially investigated in relation to possible
stabilization of QSL [19–21] while more elaborate numerical
studies revealed the persistence of gs long-range spin corre-
lations [22–25] in the whole range of anisotropies 0 � α �
1. The effect of quantum fluctuations on finite-T properties
has been so far mostly restricted to the analogous problem
of the frustrated Ising model with an additional transverse
field [26–30] while some numerical results of thermodynamic
quantities of anisotropic HM on modest-size frustrated lat-
tices have also been performed [31,32] to show the lifting of
macroscopic degeneracy by quantum fluctuations introduced
via α > 0.

The motivation for this study of finite-T properties of
anisotropic HM is the recent discovery and study of the
material neodymium heptatantalate (NdTa7O19) [33] with ef-
fective S = 1

2 on a perfect TL, which due to the strong
spin-orbit coupling is expected to map on HM in the regime
with strong easy-axis anisotropy, but still with the crucial
role of quantum fluctuations. Inelastic neutron scattering
revealed Ising-type short-range spin correlations between
nearest neighbors, while evidence of spin fluctuations per-
sisting down to the lowest accessible T was found via muon
spectroscopy [33], suggesting QSL behavior.

In this paper, we present numerical results for thermody-
namic quantities, including the entropy density s(T ), specific
heat c(T ), and the longitudinal magnetic susceptibility χ0(T ),
as well as the static spin structure factor Sq(T ). For compari-
son, we also discuss these quantities and their T dependence
within the anisotropic HM on the KL. In analogy with previ-
ous studies for the isotropic HM [10,34], we present results
on lattices with up to N = 36 sites. It should be emphasized
that due to large s(T ) at low T in systems with α � 1, we
are able to obtain reliable results even for very low T , i.e.,
typically T � 0.1αJ . The generalized Wilson ratio R(T ) has
been used as a hallmark of possible QSL in the isotropic
HM [34–37], expressing the ratio of low-lying magnetic vs
all excitations. In the anisotropic HM on TL, R(T → 0) re-
veals a qualitative change or crossover at α � 0.3, i.e., from
divergence at α = 1 to vanishing at α � 0, indicating that
nonmagnetic Sz = 0 gap �0 is well below the magnetic gap
which becomes finite with the departure from the Ising limit,
i.e., �1 ∼ αJ/2. On the other hand, spin correlations Sq(T )
at q0 in the corner of the Brillouin zone (BZ) still appear
to diverge at T → 0, implying the persistence of gs LRO
with rather modest dependence on α. The easy-axis regime
is accompanied also by a more pronounced magnetization
plateau at m = 1

3 [38] at finite magnetic field h. Within the
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related HM on KL, the thermodynamic quantities behave
in a similar manner in the regime of α � 1, but in con-
trast to TL continuously evolve into the isotropic QSL at
α = 1, with vanishing R(T → 0). The essential difference
to TL is a large number of nonmagnetic excitations below
the lowest magnetic excitation [34,39,40], but also short-
range spin correlations as manifested in Sq(T ) in the whole
range of α < 1.

II. MODEL AND NUMERICAL METHOD

We consider the anisotropic S = 1
2 HM with the nearest-

neighbor exchange interaction J in the presence of a
longitudinal magnetic field h,

H = J
∑
〈i j〉

[
Sz

i Sz
j + α

2
(S+

i S−
j + S−

i S+
j )

]
+

∑
i

hSz
i , (1)

where the first sum runs over the nearest-neighbor pairs. We
consider the easy-axis regime α � 1 and we set J = 1 as the
unit of energy. We numerically study HM on the frustrated
TL and KL with N = 18–36 sites and periodic boundary
conditions (PBC).

We calculate thermodynamic quantities as well as Sq(T )
by employing the finite-temperature Lanczos method (FTLM)
[35,41], used in numerous studies of T > 0 properties of mod-
els of strongly correlated systems [42], including QSL models
[10,34,36,43]. In this study we employ a highly parallelized
code [44] and reach N = 36 sites requiring the handling of
Nst ∼ 1010 basis states in the largest Sz = 0 sector. To avoid
the considerable sampling Ns > 1 over initial wave functions
required by FTLM, we use the orthogonal Lanczos method
[45] which treats the gs (within each sector) within the Lanc-
zos procedure, and all other states orthogonal to the gs in a
standard FTLM approach, resulting in considerably reduced
number of required samples, i.e., Ns ∼ 3.

First, we consider the h = 0 case. The central quantity eval-
uated within FTLM for a given system is the grand-canonical
sum Z (T ) = Tr{exp[−(H − E0)]/T } where E0 is the gs en-
ergy. Orthogonalized FTLM reproduces exactly Z (T → 0) =
1 (for nondegenerate gs) even for Ns = 1. Within the same
procedure, we evaluate the entropy density

s(T ) = [ln Z + (〈H〉 − E0)/T ]/N, (2)

as well as the corresponding specific heat c(T ) = T (ds/dT )
and the uniform (easy-axis) magnetic susceptibility χ0 =
M2/T (using theoretical units kB = g = μh = 1) where the
magnetization fluctuations are M2 = 〈(Sz )2〉/N . Of special
interest, in particular in relation to the QSL phenomenon, is
the generalized Wilson ratio [34–37]

R = 4π2T χ0/(3s), (3)

which equals the standard Wilson ratio (constant at T → 0)
in the case of Fermi-liquid behavior at low T , i.e., for s =
c = γ T . It should be noted that a constant R(T → 0) = R0

appears also within the Ising limit (α = 0) since χ0 ∼ C/T
and s0 > 0, so that R0 = 4π2C/(3s0) > 0. For the considered
models at α > 0, this is not the case. Still we have R(T ) ∝
M2(T )/s(T ) at T > 0 which represents a measure for the

FIG. 1. Comparison of FTLM results for the entropy s(T ), as
obtained for different sizes N = 18–36 for two characteristic α =
0.1, 0.5 (a) for the triangular lattice, and (b) for the kagome lattice.

ratio of easy-axis magnetic excitations (contained in M2)
to all excitations (represented with s). In particular, in the
frustrated isotropic models, the signature of QSL is R0 → 0
[34,36], which is the case for α = 1 model on KL, but not on
TL, where the lowest magnetic excitation is a triplet leading
to a diverging R0 → ∞.

It is relevant to realize the limitations of obtained nu-
merical results for T > 0. With the use of orthogonalized
FTLM, statistical fluctuations at fixed N are suppressed even
at T → 0, so the actual limitations are finite-size effects. For
thermodynamic quantities, it is essential to capture enough
many-body states. This requires T > Tf s(N ) [35] mostly re-
ducing to an entropy requirement s(T ) > smin(N ). For the
largest TL cluster with N = 36, we estimate smin ∼ 0.07. In
frustrated systems, this restriction comes into play only at
very low T � J , in particular for at α � 1, reflected in the
quite accurate reproduction of the remanent gs entropy s0.
Conversely, long-range correlations remain more sensitive to
N as revealed in Sq0 (T → 0).

To elucidate finite-size effects on thermodynamic quanti-
ties, we present a direct comparison of the results for entropy
s(T ) on various N = 18–36 and two different α = 0.1, 0.5
in Fig. 1, both for TL and KL. Deviations are generally
very small, with some finite-size discrepancies (related also
to different lattice shapes) even in the limit α → 0 where
the exact result for TL is known to be s0 = 0.323 [15,26],
while our finite-size result mildly deviates, e.g., in Fig. 4(a)
we show s0 = 0.345 (and corresponding R0) obtained on
N = 36. A few conclusions directly follow: (a) finite-size
effects on thermodynamic quantities are more pronounced
for larger α � 0.5, both for TL and KL, which can be
understood in terms of larger and N-dependent gaps; (b)
finite-size effects are more visible for TL (also persisting
to higher T ), while being very small for KL (this has been
realized already for the isotropic α = 1 case [34]); (c) within
TL and at α � 1 our T → 0 results can slightly deviate
from exact s0 = 0.323 [we get, e.g., for N = 36 the value
s0 = 0.345 as shown in Fig. 4(a)] depending on actual lat-
tices which are of different shapes, but all with PBC. On
the other hand, such deviations are apparently quite negli-
gible within KL as the finite systems reproduce the known
exact s0 = 0.502.
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FIG. 2. Color plots of the static spin structure factor Sq(T ), as
obtained via FTLM for anisotropic HM on TL with N = 30 sites,
shown for different α = 0.05, 0.2, 1.0 and T = 0, 0.2, 1.

III. TRIANGULAR LATTICE

A. Spin structure factor

The spin structure factor Sq = (1/N )
∑

i, j exp[iq · (ri −
r j )]〈Sz

i Sz
j〉 is expected to reveal the persistence of gs long-

range spin correlations [20–25] in the whole α � 1 regime.
Aside from T = 0 gs properties, the behavior of Sq(T > 0) is
much less explored, except for the isotropic model [46]. Here,
we present results for the Sq(T ) within the anisotropic HM
on TL, as obtained within FTLM on N = 30 sites. In Fig. 2
we present numerical results for Sq(T ) throughout the Bril-
louin zone (BZ) for q consistent with the finite-size N = 30
lattice with PBC, for several α = 0.05, 0.2, 1.0 and different
T = 0, 0.1, 0.5. Apparently, the behavior at all considered
α is qualitatively similar. At low T , the results reveal very
pronounced maxima at the corners of the BZ q0 = (4π/3, 0),
being the signature of the LRO. It is significant that absolute
and relative maxima (relative to neighboring q �= q0, e.g.,
qM at the middle BZ edge) at q0 are even stronger in the
Ising regime α � 1. Clearly, at T ∼ 1 the dependence on α

is largely washed out.
More detailed results on T dependence of Sq are shown in

Fig. 3 for the ordering q = q0 and for a more general q = qM

in the middle of the BZ edge. It should be noted that here we
present results (for finite system N = 30) in the whole range
T � 0, although it is evident that results for Sq(T ∼ 0) are
size dependent [23], due to long-range spin correlations, in
particular for q = q0. This is confirmed by the comparison
to our results on N = 18, presented in the inset of Fig. 3
for α = 0.05 and q = q0. As expected Sq0 (T ∼ 0) ∝ μ2

z N is
consistent with the gs LRO with the finite moment μz. It is re-
markable that the falloff of Sq0 with T is quite independent of
α and does not appear to be related to the typical temperatures
visible in thermodynamic quantities s(T ) and χ0(T ). On the

FIG. 3. The spin structure factor Sq vs T , calculated for the HM
on TL with N = 30 sites, presented for q = q0 at the BZ corner
corresponding to ordering as well as for q = qM in the middle of
the BZ edge. The results correspond to various anisotropies, namely,
α = 0.05, 0.2, 0.5, 1. The inset shows the comparison of S−1

q0
(T ) for

α = 0.05 as calculated on N = 18, 30 sites, respectively.

other hand, as shown in Fig. 3 for other q = qM inside the BZ,
our results reveal some anomalies at low T in the Ising regime,
which seem to indicate the relation T ∗ ∝ α observed also in,
e.g., s(T ), although we cannot exclude that they disappear for
increasing N → ∞.

B. Thermodynamic quantities

We present results for the anisotropic HM on TL for vari-
ous α between the Ising (α = 0) and the isotropic limit (α =
1) in Fig. 4: for the entropy density s(T ), inverse susceptibility
1/χ0(T ) and the corresponding Wilson ratio R(T ) given by
Eq. (3). All presented results in Fig. 4 are restricted to the

FIG. 4. Entropy density s(T ) (a), inverse susceptibility 1/χ0(T )
(b), and related Wilson ratio R(T ) (c) for the Heisenberg model,
as obtained with FTLM on N = 36 TL for anisotropies 0 < α � 1.
Thin dashed lines mark the residual entropy s0 in the Ising limit
and the corresponding Wilson ratio R0 while the arrows denote the
crossover T ∗ = 0.3αJ for selected α = 0.2.
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FIG. 5. Specific heat c vs T for the HM on TL for different
α. Marked is the maximum of the low-T peak at T ∗ = 0.3αJ
for α = 0.2.

estimated s > smin since below they can be dominated by
various finite-size effects. Results in Fig. 4(a) reproduce the
residual entropy s0 at α → 0 and T → 0, whereas the effect
of α > 0 is the final drop s(T � T ∗) → 0, where T ∗ ∼ 0.3αJ
is a characteristic crossover temperature. There is an evident
high-T regime with T > T0 ∼ 0.4 J , where s(T ), as well as
other quantities, remain weakly dependent on α.

The susceptibility 1/χ0(T ) in Fig. 4(b) reveals several
regimes. For T > T0 the susceptibility (for all α) follows the
Curie-Weiss law with χ0(T ) ∝ 1/(T + �) where � ∼ 1.5 J .
On the other hand, in the Ising limit (α = 0), the dependence
turns into a Curie law χ0(T < T0) = C/T with C = 0.045,
where our value is comparable with C = (5/36)/4 = 0.035
from Ref. [16] and with C = 0.042 from Ref. [18]. In Ap-
pendix A, we present an analytical analysis that gives a simple
and quite accurate value for the obtained Curie constant C.

The effect of finite α > 0 is the vanishing of χ0(T → 0) =
0, leading to a pronounced maximum at χ0(T ∼ T ∗), i.e., the
minimum of χ−1

0 (T ∼ T ∗) in Fig. 4(b). The most important
implication for the gs, however, follows from R(T ) shown in
Fig. 4(c). The isotropic case with α = 1 exhibits a minimum
in R at T ≈ 0.2 J [34] and R(T → 0) is expected to diverge
(in the thermodynamic limit) due to the onset of magnetic
LRO at T = 0 (note that Tf s > 0.15 J is the most restrictive
for α ∼ 1). Results shown in Fig. 4(c) indicate that this min-
imum disappears for α < α∗ � 0.3 and the behavior changes
into the vanishing R(T → 0) = 0. The crossover at α ∼ α∗ is
quite robust, i.e., independent of finite-size effects, since we
observe it in R(T ), as well as in c(T ), for a range of reachable
system sizes N = 24–36, as presented and analyzed in more
detail in Appendix B. Approaching α → 0, a broad plateau at
the Ising value R0 ∼ 4π2C/(3s0) also becomes evident and a
downturn in R(T ) only occurs at T < T ∗. Relevant for exper-
iments is also the specific heat c(T ) presented in Fig. 5, di-
rectly related to s(T ) in Fig. 4(a). Its characteristic feature is a
double-peak structure, that is becoming well resolved for α <

α∗. The high-T peak at T ∼ 0.3 J reflects correlations due to
the dominant exchange J and is nearly α -independent. On the
other hand, the maximum of the lower-energy peak coincides
with the drop of s(T ) in Fig. 4(a) and occurs at T ∼ T ∗.

Moreover, the two-peak structure in c(T ) persists partly
even for larger α > α∗ values and remains visible even in

FIG. 6. Magnetic and nonmagnetic gaps �1,�0, respectively, vs
α, as obtained on TL systems with N = 24–36 sites. For α < 0.5
next-lowest-lying nonmagnetic excitations �∗

0 are also presented.
The dashed line in the lower panel shows the linear scaling of the
magnetic gap on α in the Ising regime.

the isotropic case α = 1. This seems to agree with recent ex-
periments on TL materials NaYbO2 [47] and NaYbSe2 [48],
which are closer to the isotropic limit, albeit they realize the
easy-plane regime α � 1 of the HM.

C. Lowest excitations

In order to understand the thermodynamic quantities, it is
informative to follow the lowest excitations within the model.
Their general structure within TL for α � 1 is presented in
Fig. 6. The gs (at h = 0) belongs to the nonmagnetic Sz = 0
sector. In the whole α < 1 range the lowest gap �0 belongs
to a single nonmagnetic (Sz = 0) state, lying below the first
magnetic Sz = 1 excitation with the gap �1. The next non-
magnetic gap is, however, �∗

0 > �1. The N and α variations
of gaps are very different in α � 1 and α ∼ 1 regimes. In the
latter, the magnetic �1 is expected to vanish with increasing N
as �1 ∝ N−1, as established for α ∼ 1 [12]. This is consistent
with our results in Fig. 6. We note that at least at α = 1, �0

should merge with �1, representing in this case the triplet
excitation. On the other hand, the behavior for α < α∗ is
markedly different. Results in Fig. 6 indicate that the mag-
netic �1 is almost N independent and seems to converge to
�1 ∼ α J/2. The lowest nonmagnetic �0 � �1 thus quali-
tatively explains the vanishing R(T → 0) → 0 in Fig. 4(c),
whereby �0(N ) might even vanish for N → ∞. Still, higher
nonmagnetic excitations are above the lowest magnetic one,
i.e., �∗

0 > �1. This is in marked contrast with the analogous
HM on KL, characterized by numerous nonmagnetic exci-
tations below the lowest magnetic excitation in the whole
regime of α � 1, well established for α = 1 [34,39,40].

The emergence of the magnetic gap �1 at α > 0 can be
considered through the lifting of the Ising gs degeneracy. For
α → 0 one can apply the degenerate perturbation theory (this
is in analogy to the Hubbard model for large U [49]), where
the concept of “interchangeable pairs” of spins has emerged
[19,20]. This amounts to treating the α term perturbatively
within the degenerate gs manifold. In our case, one transforms
the Hamiltonian in such a way that it does not change the num-
ber of frustrated bonds. The application of the linear α term
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FIG. 7. Configurations on TL in the gs manifold which allow a
spin exchange without changing the Ising energy. Green hexagons
show the dual honeycomb lattice [15,26] with the red dimer indi-
cating energetically unfavorable (parallel) orientation of spins on
particular TL bond.

changes the configuration to the one shown on the right side
of Fig. 7 (denoted with |ψ2〉). The corresponding antisymmet-
ric combination |ψs〉 = (|ψ1〉 − |ψ2〉)/

√
2 has lower energy

Es = E0 − αJ/2 (E0 is the energy of the Ising gs manifold)
and Sz = 0. One can also create a Sz = 1 state |ψt 〉 = S+

i |ψ1〉
by flipping the “free spin” on site i on the left configuration in
Fig. 7 and making spins at sites i and j parallel. This state has
Sz = 1 and energy Et = E0 (up to a linear order in α). Within
this picture, it follows that �1 = Et − Es = αJ/2, comparing
favorably with FTLM results (see Fig. 6) for small α.

D. Finite fields

The variation of the (normalized) magnetization density
m = 〈Sz〉/(NS) with external magnetic field h in Eq. (1) can
be evaluated within FTLM without additional numerical ef-
fort. The magnetization curves m(h) are of particular interest
also for the experiment since in related materials the whole
regime of h can potentially be explored. On frustrated lattices,
such as TL and KL, a pronounced plateau at m = 1

3 is ex-
pected and has been investigated within gs calculations [38].
The focus here is on the behavior at small finite α � 1 since
in the Ising limit (α = 0) the variation of m(h) is anomalous,
with a discontinuous jump at T ∼ 0, i.e., any small h > 0 sta-
bilizes the m = 1

3 plateau. Numerical results for m(h) for some
characteristic α are presented in Fig. 8 where we show results
up to α = 1 for completeness. The variation with α at small

0 5
h [J ]

0.0
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FIG. 8. Magnetization curves m(h) for the anisotropic HM on
TL: (a) for different α at fixed T = 0.1, and (b) for different T at
fixed α = 0.1.

FIG. 9. Color plots of the static spin structure factor Sq(T ), as
obtained via FTLM for anisotropic HM on KL with N = 30 sites,
shown for two α = 0.05, 0.5 and T = 0., 0.2, 1.

finite T = 0.1 J reveals that the jump at α = 0 transforms into
a nearly linear variation m ∝ h up to the m = 1

3 plateau. At the
same time, the plateau melts with increasing T and essentially
disappears for T > T0 = 0.4J even for small α, as shown in
Fig. 8(b).

Closely related to the nontrivial variation of magnetization
m(h), as presented in Fig. 8, is also the variation of thermody-
namic quantities s(t ) and c(T ) at finite fields h > 0, which
might be directly relevant for the comparison with experi-
ments on candidates for the anisotropic spin systems on TL
(e.g., those considered in Refs. [47,48], which were consid-
ered to be more in the easy-axis regime α > 0). Characteristic
results for various α and h > 0 are presented and discussed in
more detail in Appendix C.

IV. KAGOME LATTICE

A. Spin structure factor

In contrast to TL, gs spin correlations within the
anisotropic HM on KL are expected to be short range even
in the Ising limit α = 0 [26,27]. Here, we present finite T �
0 results for easy-axis spin structure factor as obtained via
FTLM for systems up to N = 30 sites. We note that for the
isotropic case with α = 1 our results for Sq(T ) correspond
well to previous studies [46]. In Fig. 9 we present results in
analogy with Fig. 2, shown for the same q (taking the site and
bond distance as unit a = 1) as for TL (at same N). It is quite
evident that (in contrast to TL) the variation of Sq(T ) with q
is quite smooth even in the gs with a weak maximum at the
boundary of the extended BZ. The dependence on both α and
T is modest. This signals very short-range spin correlations
and SL character, well established in the isotropic α = 1 case.

B. Thermodynamic quantities

We present further results for thermodynamic quantities
for the anisotropic HM on KL, in analogy to previous results
for TL. In Fig. 10 results are shown for various α � 1 for
the entropy density s(T ), inverse susceptibility 1/χ0(T ), and
Wilson ratio R(T ), as obtained via FTLM on the largest KL
with N = 36 sites (the cutoff here is at s > smin = 0.05). In
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FIG. 10. Thermodynamic quantities for the Heisenberg model on
KL, as obtained with FTLM on N = 36 sites for different α � 1:
(a) entropy density s(T ), (b) inverse susceptibility 1/χ0(T ), and
(c) Wilson ratio R(T ). Marked are also exact s0 = 0.502 as the
Ising-limit result, and the corresponding Wilson ratio R0 = 1.306.

Fig. 11 the corresponding specific heat c(T ) is shown. The
comparison with results on TL in Figs. 4 and 5 reveal simi-
larities, but also pronounced qualitative differences between
both lattices: (a) There is an essential difference close to the
isotropic regime α ∼ 1, where HM on KL is the prominent
example of a QSL without LRO [6–10], showing up also in
the smoothly vanishing R(T → 0) [34,36]. (b) In the regime
α < α∗ for TL thermodynamic properties appear qualitatively
similar. The drop of s(T ) from the Ising value s0 with the
corresponding lower peak in c(T ) appears at T ∼ T ∗ ∼ αJ/2.
Related is the minimum of 1/χ0(T ) in Fig. 10(b). (c) Still,
there is a marked difference between TL and KL in the sharp-
ness of the lower peak in c(T ). As evident in Fig. 11 the latter
peak in KL extends to much lower T , which can be attributed
to a large density of low-lying nonmagnetic excitations, valid
also for the isotropic case HM at α = 1 [34,39,40]. Additional
structure apparent in c(T ) at lowest T � Tf s can be partly

10−3 10−2 10−1 100
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FIG. 11. Specific heat c vs T (in logarithm scale) for the
anisotropic HM on KL for various α.

FIG. 12. The magnetic gap �1 vs α, obtained on KL systems
with N = 24–36 sites.

attributed to finite-size effects, as also observed for α = 1 for
even larger N = 42 [10].

C. Lowest excitations

In analogy to TL, we also analyze the gap structure on
KL. In Fig. 12 we present the variation of the magnetic gap
�1 with α for different system sizes N . The gap vanishes
(linearly for all N) approaching Ising limit α → 0, in analogy
to TL in Fig. 8. However, the gap for KL increases steadily
up to α � 1, which contrasts TL. The N dependence is less
systematic even at α � 1 in accordance with the open ques-
tion whether �1 remains finite in the N → ∞ limit [39].
The same question applies to our results in Fig. 12 for the
regime of α � 1, where we do not observe clear convergence
with N , unlike the TL case in Fig. 6. However, the crucial
difference to TL is the behavior of nonmagnetic excitations. It
is known that in the isotropic case, there are (macroscopically)
numerous nonmagnetic excitations below the lowest magnetic
one [39,40]. Our results reveal that this remains the case in
the whole regime of α � 1, i.e., we find many Sz = 0 states
satisfying �0 � �1, which are hard to enumerate fully within
our Lanczos-based method.

Presented results for the HM on KL offer an important in-
sight into the well-established QSL state in that its properties
in the isotropic α = 1 model are smoothly connected to the
Ising regime at α � 1. This contrasts with the corresponding
HM on TL.

D. Finite fields

Finally, we show results for the magnetization curves m(h)
for KL. Again, in the Ising limit α = 0 the variation m(h)
reveals a discontinuous jump at T ∼ 0, i.e., even small h > 0
stabilizes m = 1

3 magnetization. Numerical results for m(h)
for some characteristic cases are presented in Fig. 13. The
variation with α at small finite T = 0.1 J shows that the jump
at α = 0 transforms into a nearly linear variation m ∝ h up to
the m = 1

3 plateau. At the same time, the plateau disappears
with increasing T > T0 already at small α � 1, as shown in
Fig. 13(b).

V. DISCUSSION

Isotropic AFM spin models on frustrated lattices have
been intensively studied, mostly as candidates for the QSL
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FIG. 13. Magnetization curves m(h) for the anisotropic HM on
KL: (a) for different α at fixed T = 0.1, and (b) for different T at
fixed α = 0.1.

phenomenon. The anisotropy studied here offers another route
to interesting collective phenomena. Our analysis indicates
that with the increasing easy-axis anisotropy, the thermody-
namic quantities within the Heisenberg model on TL undergo
a crossover from the isotropiclike regime to the Ising regime
at α < α∗ � 0.3, most pronounced in the behavior of the
Wilson ratio R(T → 0) vanishing at α < α∗ and increasing
for α > α∗, at least within the range of low T but above
finite-size T > Tf s(N ). On the other hand, spin correlations
as displayed in Sq(T → 0) are consistent with LRO in the
gs in the whole α � 1 regime, thus apparently coexisting
with strongly α-dependent thermodynamic properties. It is
quite remarkable that the calculated thermodynamic quanti-
ties, at least in the Ising regime α � 1, do not exhibit any
significant finite-size effects down to the lowest T ∼Tf s � αJ
while the gs static spin structure factor Sq0 remains consis-
tent with gs LRO and, consequently, also with finite-size
(N) dependence Sq0 (T → 0) ∝ N , but at the same time not
reflecting any evident influence of the quantum-fluctuation
scale T ∗ ∝ α.

Remarkably, in the Ising limit (α = 0), there are analogies
between the low-T thermodynamic properties of spin models
on the TL and KL. In particular, the existence of remanent
entropy s0 > 0 and the Curie susceptibility χ0 ∼ C/T . How-
ever, in contrast to the TL case, in the KL case there is a
continuous (smooth) variation of all quantities from α � 0
regime to the most studied isotropic α = 1 QSL. Moreover,
on KL, contrary to TL, there are numerous nonmagnetic ex-
citations below the lowest magnetic one (i.e., the triplet at
α = 1 [34,39,40]) within the whole range of α � 1. Still, there
are evident differences in the spin correlations. In contrast to
TL, within KL spin structure factor Sq(T ) smoothly varies
with q within the BZ, but only weakly depends on T and
α, consistent with the short-range correlations and the QSL
character.

Finally, let us return to the potential relevance of our
study for experimental realizations of anisotropic HM on TL
and KL, even though these are rather scarce. Recently, the
TL antiferromagnet NdTa7O19 was shown to host dominant
Ising spin correlations between nearest neighbors and the
anisotropy was estimated to be α = 0.18 [33]. This estimate
was based on the assumption that the exchange anisotropy in

0 1 2 3 4 5 6
spin

0

1

2

3

p g
s

×10−4
Triangular ×100

Kagome

FIG. 14. Probability of states with given Sz in the Ising gs
manifold, relative to the total number of states. The distribution
is numerically calculated for TL and for KL on N = 36 sites and
fitted with the Gaussian (dashed lines). Note that the normalized
probabilities are small due to a large portion of nonfree spins in the
system.

the lowest order follows the anisotropy of the g factor squared
[50]. Various experiments suggest QSL gs arising from strong
Ising anisotropy of the exchange interactions. A direct com-
parison to our results is at present limited, as susceptibility
data are so far restricted to powder samples at T � J , and
the specific heat has not been measured yet. Recently, the
delafossite compound KTmSe2 has been also proposed as
another quantum-Ising TL candidate [51].
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APPENDIX A: ORIGIN OF THE CURIE SUSCEPTIBILITY

In the Ising limit α = 0 the Curie susceptibility is related
to “free spins” or “orphans” [15,26,31], which can be flipped
without any energy cost within the gs manifold. From the
magnetization curves in Fig. 8(a) and gs results showing
m = 1

3 plateau one can estimate the density of free spins as
pfree = 1

6 , based on the observation that any h � 0 at T = 0
leads to m = 1

3 . The resulting C = pfree/4 = 0.042 compares
well with FTLM numerical results of C = 0.045, as obtained
from Fig. 4(b). Further support for this interpretation can be
made by counting the number of states with a certain total
Sz, within the gs manifold. Such distribution is a Gaussian
and our numerical results comply well with that (see Fig. 14).
The width of the distribution is directly related to the number
of free spins and by fitting it we get pfree = 0.176, leading
to the estimate C = 0.044, which agrees even better with the
FTLM result.
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FIG. 15. Specific heat c(T ) and related Wilson ratio R(T ) for
three different anisotropies α = 0.1, 0.3, 0.5 around the crossover
value α∗ � 0.3, as calculated for different system system sizes N =
24–36 on the TL.

The Ising limit (α = 0) has a macroscopically degenerate
gs. In such a case, the spin susceptibility can be written as

χ0 = 1

NT

∑
Sz

pSz (Sz )2, (A1)

where pSz = NSz/Nall with NSz is the number of many-body
states with some value of Sz and Nall is the total number of all
states in the gs manifold. Assuming Nf free spins, each state
can have a certain number of up spins N↑ and down spins N↓
so that Nf = N↑ + N↓. Further, one can write the probability
for Sz = 1

2 (N↑ − N↓) = N↑ − 1
2 Nf as

pSz = 1

2Nf

(
Nf

N↑

)
≈

√
2

πNf
e−2(Sz )2/Nf (A2)

by using the normal approximation for large Nf and N↑. The
probability of free spins becomes Gaussian for large systems
and we clearly observe such behavior numerically on N = 36
sites within an Ising gs manifold by counting the number of
states (see Fig. 14). Further, the fitted width of the Gaussian
is an estimate of the number of free spins Nf , which gives a
good estimate for the Curie constant C = Nf /(4N ) = 0.044
for TL and C = 0.051 for KL.

APPENDIX B: CROSSOVER α∗: FINITE-SIZE RESULTS

We discuss here in more detail the robustness of
thermodynamic results for TL with respect to finite-size
effects, in particular the stability of the observation of the
crossover at α∗ � 0.3. In Fig. 15 we show results for specific
heat c(T ) and corresponding Wilson ratio R(T ) for three

0.0
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FIG. 16. Entropy variation s(T ) for (a) different α = 0.1–1 for
fixed field h = 1, and (b) for different fields h = 0–3 at fixed α =
0.1, and (c), (d) corresponding results for specific heat c(T ), respec-
tively. Results correspond to the TL.

different α = 0.1–0.5, as obtained via FTLM for different
system sizes N = 24–36. It should be noted that data are
presented only for T > Tf s whereby the restriction is mainly
determined by the marginal smin, which clearly allows the
lowest Tf s for N = 36 (still dependent on α).

First, we observe that despite some remaining finite-size
dependence (which can also be due to different shapes of
considered lattices) the results reveal quite consistent α de-
pendence. For α = 0.5, the Wilson ratio R(T ) reveals a clear
upturn at low T for larger N = 30, 36, consistent with the
onset of LRO. At the same time, the specific heat c(T ) is
quite featureless at T > 0.2 with some emergent two-peak
structure at the largest N = 36. On the other hand, at low
α = 0.1 the Wilson ratio shows a marked downturn at low
T , in particular for the largest N = 36. Related is a very
pronounced two-peak structure in c(T ) at all considered N .
At intermediate α = 0.3 the two-peak structure becomes quite
visible in c(T ) while the variation of R(T ) remains rather flat,
i.e., between both tendencies discussed above. Hence, we can
locate the crossover at α∗ � 0.3.

APPENDIX C: ENTROPY AND SPECIFIC HEAT
IN FINITE FIELDS h > 0

As evident from the pronounced field dependence of m(h)
shown in Fig. 8, one can also expect quite nontrivial depen-
dence of thermodynamic quantities on h, which can serve as
the hallmark for existing [47,48] and potential experiments
on TL spin systems. We present some selected results for
entropy s(T ) and specific heat c(T ) in Fig. 16, obtained via
FTLM on N = 36 HM on TL (shown beyond correspond-
ing finite size T > Tf s). Results in Figs. 16(a) and 16(c) are
shown for fixed field h = 1, which represents the plateau
region in m(h) at small α < 0.3. Consequently, we observe
the saturation of s(T → 0) > 0 (replacing the lower peak at
h = 0 for α � 0.3) and corresponding gapped c(T ) with a
strong peak at T ∼ 0.3, consistent with the second peak at
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h ∼ 0 in Fig. 8. On the other hand, for α = 1 (and to some
extent also α = 0.5) it is expected that the h = 1 case is
quite similar to h = 0 in the whole T regime. Figures 16(b)
and 16(d) show corresponding results for s(T ) and c(T ) for
one fixed α = 0.1 in various fields h = 0–3. Again, within

the range of the magnetization plateau, i.e., h = 1, 2, there
is finite entropy s(T → 0) > 0 with the gapped c(T ), while
away from the plateau, i.e., at h = 0, 3, there is a steady but
nontrivial increase of s(T ) with the corresponding two-peak
structure in c(T ).
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