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Band-center metal-insulator transition in bond-disordered graphene
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We study the transport properties of a tight-binding model of noninteracting fermions with random hopping
on the honeycomb lattice. At the particle-hole-symmetric chemical potential, the absence of diagonal disorder
(random on-site potentials) places the system in the well-studied chiral orthogonal universality class of disor-
dered fermion problems, which are known to exhibit both a critical metallic phase and a dimerization-induced
localized phase. Here, our focus is the behavior of the two-terminal conductance and the Lyapunov spectrum
in quasi-one-dimensional geometry near the dimerization-driven transition from the metallic to the localized
phase. For a staggered dimerization pattern on the square and honeycomb lattices, we find that the renormalized
localization length ξ/M (M denotes the width of the sample) and the typical conductance display scaling behavior
controlled by a crossover length scale that diverges with exponent ν ≈ 1.05(5) as the critical point is approached.
However, for the plaquette dimerization pattern, we observe a relatively large exponent ν ≈ 1.55(5), revealing
an apparent nonuniversality of the delocalization-localization transition in the BDI symmetry class.
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I. INTRODUCTION

Quenched disorder plays a significant role in determin-
ing electronic transport properties, particularly when quantum
interference enhances its effects and leads to Anderson local-
ization phenomena [1–3]. Such disorder effects are controlled
crucially by the symmetries of the disordered Hamiltonian.
For instance, in a two-dimensional (2D) electron gas with
potential scattering from random impurities, the sign of the
quantum interference correction for the conductivity depends
on whether the electronic system has spin-rotation symmetry.
As a result of the important role played by such symmetry
considerations, our modern understanding of such phenomena
relies heavily on a symmetry-based classification of disor-
dered systems [4,5].

Tight-binding models of free fermions with real-valued
random hopping amplitudes on the nearest-neighbor links of
a bipartite lattice fall in a particularly interesting symmetry
class, labeled BDI by Altland and Zirnbauer in their tenfold
classification of disordered systems [4]. Due to the absence
of on-site potential energy terms and the bipartite structure of
hopping amplitudes, the free-fermion spectrum in this class
is distinguished by the presence of a particle-hole symmetry
which guarantees that each eigenstate at energy +ε has a
partner at energy −ε. The band-center energy ε = 0 is thus
special.

Within the field-theoretical approach pioneered by Gade
and Wegner [6,7], the bare conductivity at the band center
receives no quantum corrections in two dimensions, while
the density of states develops a characteristic “Gade-Wegner”
singularity ρ(ε) ∼ |ε|−1 exp[− ln1/x(1/|ε|)] (with x = 2) for
energies |ε| smaller than a characteristic crossover energy
scale controlled by this conductivity. The conclusion is that
such particle-hole-symmetric systems can have a critical

metallic phase whose low-energy properties are characterized
by a fixed line within the field-theoretical renormalization
group framework.

As is well known from the work of Dyson and others
[8–11], the corresponding one-dimensional (1D) system has
a stronger “Dyson singularity” ρ(ε) ∼ |ε|−1 ln−y(1/|ε|) (with
y = 3) in the density of states at the band center. Generaliza-
tions to multichannel cases and the nature of the zero-energy
wave functions in both 1D and 2D cases have also been
studied more recently [12–15].

In the one-dimensional case, this singular behavior can
be derived from the properties of an infinite-disorder fixed
point of a real-space strong-disorder renormalization group
approach [16]. In the 2D scenario, it is difficult to obtain con-
clusive results from a direct numerical implementation of this
strong-disorder renormalization group approach. However, it
motivates a closely related strong-disorder analysis [17] of
the low-energy properties of the critical metallic phase via a
connection to optimal defects in a related dimer model. This
real-space approach predicts a singularity of the Gade-Wegner
form but corrects the associated exponent to x = 3/2.

This prediction of a modified Gade-Wegner form for the
band-center singularity in two dimensions was also confirmed
by subsequent work [18,19] that refined the original field-
theoretical analysis of Gade and Wegner. More recent work
also studied the effects of vacancy disorder in such 2D sys-
tems, finding that vacancies lead to a stronger Dyson form
of the singularity (albeit with nonuniversal y) at intermediate
energies before the system crosses over at the lowest energies
to the modified Gade-Wegner form [20–22].

The real-space approach of Motrunich et al. [17] also
predicts that such two-dimensional systems can realize, in
addition to the critical metallic phase, a localized Griffiths
phase with a weaker nonuniversal power-law divergence
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FIG. 1. Top: Schematic phase diagram as a function of dimer-
ization. Without disorder, there is a dimerization-driven transition
from semimetal to band insulator. With bond disorder, there is a
corresponding transition from a critical metal to a Griffiths insulator
[17]. Bottom left: Staggered dimer pattern on a honeycomb flake.
Bottom right: E = 0 wave function amplitudes log |ψ |2 for a typical
disorder realization of disorder with a staggered dimer pattern (1).
The system size is 64 × 64 with periodic boundary conditions in both
directions. The wave function shows more spreading in the critical
metal phase compared to the Griffiths phase, as expected.

ρ(ε) ∼ |ε|−1+2/z (with nonuniversal z) of the density of states
near the band center. As noted in Motrunich et al. [17],
such a localized phase can be established by strong enough
dimerization in the values of the hopping amplitudes (see
Fig. 1). While both the critical metallic phase and the local-
ized Griffiths phase have been discussed extensively in the
literature, the transition between the two has received much
less attention [17,23,24].

Here, we focus on the transport properties of the 2D sample
in the vicinity of this transition via numerical studies of both
the two-terminal Landauer conductance and the full Lyapunov
spectrum λ. The transfer matrix and the Lyapunov spectrum
studies provide complementary evidence in favor of or against
particular scaling results that are obtained by the renormaliza-
tion group approach. For small dimerization, the density ρ(λ)
of Lyapunov exponents λ in quasi-1D geometry is nonzero
at λ = 0. This corresponds [25] to a nonzero conductivity.
In this phase, we find that the conductivity extracted from
the typical two-terminal conductance is roughly independent
of the sample geometry and consistent with the conductiv-
ity obtained from the Lyapunov density ρ(0), indicating a
metallic phase. With increasing dimerization, the Lyapunov
density of states develops a gap around λ = 0, signaling the
transition to a gapped insulating phase at a critical dimer-
ization strength δc. A qualitative phase diagram is shown
in Fig. 1.

In the gapped insulating phase close to δc, we perform a
finite-size scaling analysis of the renormalized localization
length ξ/M (where M � 1 is the width of the quasi-1D sam-
ple whose length L � M). For staggered dimerization on both
the square and honeycomb lattices, we argue that the rigid
shift [17] of the Lyapunov spectrum, characteristic of stag-
gered dimerization, implies that ξ/M diverges as ∼(δ − δc)−ν ,
with ν = 1 as δ approaches δc from above. The value of
ν we obtain from both the Lyapunov spectrum study and
direct measurement of the typical two-terminal conductance
in the wide-sample geometry is consistent with this prediction

within the numerical errors associated with these calculations.
A calculation of the transport properties in the direction per-
pendicular to the strong bonds of the staggered dimerization
pattern also yields the same value of ν within numerical un-
certainties. However, on the honeycomb lattice, for a more
symmetric plaquette dimerization that does not have this rigid-
ity property, we observe a larger exponent ν ≈ 1.55(5). This
apparent nonuniversality in the value of the exponent is one of
our main findings.

Intriguingly, the larger value of ν that we find for pla-
quette dimerization on the honeycomb lattice is consistent,
within our numerical errors, with a recent prediction [26] of
the same exponent in the closely related problem of random
bipartite hopping with complex hopping amplitudes on the
square lattice with the same kind of plaquette dimerization.
This falls in Altland-Zirnbauer class AIII, while the systems
we study are in class BDI. Since that study also used a plaque-
tte dimerization pattern for the numerical work, it would be
interesting in follow-up work to determine whether a similar
nonuniversality is also present in the problem with complex
hopping amplitudes and explore this apparent nonuniversality
within the framework of the theory developed in Ref. [26].

II. MODEL AND OBSERVABLES

We consider a model of free fermions hopping on the
honeycomb lattice and an analogous model on the square lat-
tice. In this model, the real-valued nearest-neighbor hopping
amplitudes are independent random variables sampled from
a uniform distribution. For the conductance calculation, we
take a clean one-dimensional lead attached to the disordered
sample. The Hamiltonian of the system thus reads

Ĥ = −
∑
〈i j〉

ti j (c
†
i c j + H.c.), (1)

where ci (c†
i ) is the fermion annihilation (creation) opera-

tor at site i and the sum is over all nearest-neighbor links
〈i j〉. We define a dimerization pattern by choosing the
hopping strength of selected “dimerized” bonds to be inde-
pendent random variables uniformly distributed in the range
[0, eδ], while the hopping amplitudes on other “nondimer-
ized” bonds are random variables drawn uniformly in the
range [0,1]. The parameter δ thus represents a dimerization
in the mean value of the hopping amplitudes. Since the ra-
tio of the width of the distribution to its mean remains the
same, tuning δ changes the dimerization without changing
the strength of the bare disorder. In all our numerical simula-
tions, typically, we average over ∼103 disorder configurations
for the correlation length calculations, and for conductance,
typically, we average over ∼104 samples unless specified
otherwise.

We study both the staggered and plaquette dimerization
patterns (described below) on the honeycomb lattice and
the staggered pattern on the square lattice to access
the dimerization-driven transitions from metallic to
localized behavior in this model on both lattices at E = 0.
The staggered anisotropic pattern was chosen to be a
representative of patterns that break the rotational symmetry
between the transverse direction and the direction of the
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FIG. 2. (a) The Lyapunov spectral density ρ(λ) for A-sublattice
transfer along the direction of the arrow in the staggered graphene
lattice as shown in the inset in Fig. 3(b). With increasing δ, the
spectral density shifts rigidly, and the horizontal dotted lines indicate
the value where the density curves cut the λ = 0 axis, i.e., ρ(λ = 0),
and this gives an estimate of the conductivity (up to a trivial constant)
of the sample in the metal phase [25]. (b) The collapse of all curves
with the rigid shift by δ. (c) The conductivity σ = G(L, M )L/M as
a function of δ estimated from the Lyapunov density of states in
quasi-1D geometry and the scattering matrix formalism for a wide
sample L/M ∼ 1/4 (see further details in the text). One-dimensional
lattice leads are used for the conductance calculation.

current and leads to a rigid shift of the Lyapunov spectrum.
The other plaquette pattern was chosen because it maintains
the rotational symmetry and does not lead to a rigid shift
of the Lyapunov spectrum. Further, note that the staggered
dimerization pattern can choose any one out of the three
equivalent bond orientations and enhance the corresponding
bond strengths. Given the symmetry of the honeycomb
lattice, all these choices are equivalent, and the only
physical distinction then is in the direction of the current
flow relative to the chosen orientation for the staggered
pattern.

In the staggered dimerization pattern on the honeycomb
lattice [shown in the inset in Fig. 3(b)] the horizontal bonds
along the direction of the arrow are dimerized, while along the
other direction the bonds are nondimerized in the way defined
above. The plaquette dimerization pattern on the honeycomb

lattice [shown in the inset of Fig. 5(b)] is a more symmetric
pattern that does not single out a particular direction as in
the staggered pattern. In this pattern, the strong dimerized
bonds are ordered at the three-sublattice wave vector of the
underlying triangular Bravais lattice. On the square lattice,
we mainly study the staggered pattern, in which the strong
dimerized bonds are all of one orientation and arranged in a
pattern corresponding to wave vector (π, π ). The plaquette
dimerization pattern on the square lattice, on the other hand,
has strong dimerized bonds that form perimeters of elemen-
tary plaquettes that are ordered at wave vectors (π, 0) and
(0, π ) and was studied in Ref. [26] with complex hopping
amplitudes.

A. Lyapunov analysis

The standard Lyapunov spectrum λi of the transfer ma-
trix T = ∏

n Tn (Tn is the transfer matrix for the nth slice)
for a quasi-1D geometry of width M is used to study the
metal-insulator transition (MIT) [27]. In the quasi-1D limit,
the inverse of the smallest Lyapunov exponent in the limit of
large L in the localized phase defines the localization length
ξ = 1/λmin [25]. The normalized localization length ξ/M [25]
is expected to exhibit finite-size scaling across an MIT, allow-
ing one to extract the exponent ν from a finite-size scaling
analysis of ξ approaching the transition from the localized
side. Moreover, the limiting spectral density of Lyapunov
exponents {λi} in such a quasi-1D geometry,

ρ(λ) = lim
M→∞

1/M
∑

i

δ(λ − λi ), (2)

contains information about the transport properties of the sam-
ple (here, the width M of the sample is assumed to increase
while maintaining the quasi-1D geometry with L � M). In
particular, the λ = 0 density of states ρ(λ = 0) is finite in a
metal and proportional to the conductivity, while it is strictly
zero in an insulating phase [25]. Therefore, at a transition to
a localized insulating phase, we expect the Lyapunov spec-
tral density to develop a gap in the spectrum at λ = 0. In
our calculation, we use the fact that the Hamiltonian has
chiral symmetry. Due to this, the wave functions at E = 0
can be chosen to have support only on one sublattice, and
the transfer of such a wave function from one side to the
other can be performed just on this sublattice; this decou-
pling allows a trivial factor of two increases in the system
width M [17,28] since one can assemble the full Lyapunov
spectrum from such a calculation for just one sublattice.
The full spectrum ρ(λ) is symmetric about λ = 0, and this
symmetry implies that a Lyapunov mode at +λ on one sub-
lattice has a partner at −λ on the other sublattice, allowing
a reconstruction of the full spectrum from this sublattice
calculation.

As emphasized earlier [17,28], the staggered dimerization
pattern leads to an interesting simplification: The two sub-
lattice Lyapunov spectra at E = 0 shift rigidly in opposite
directions with increasing δ, all the while maintaining the
λ → −λ symmetry of the full spectrum (see Appendix A for
more details). It is therefore possible to determine the critical
value δc at which the metal gives way to the insulator simply
by knowing the spectrum for one sublattice at δ = 0. For
δ > δc in the insulator, this rigidity also implies that λmin ∼
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FIG. 3. (a) Results for the staggered dimerization pattern on armchair graphene shown in the inset in (b). The normalized localization length
ξ/M for a transfer along the direction of the arrow of the lattice as a function of dimerization δ for different values of width M = 64–768 and
length L = 105 in the localized phase. (b) The corresponding finite-size data collapse with critical exponent ν ≈ 1.05 and critical dimerization
strength δc ≈ 1.431. (c) 〈ln G〉 calculated within the two-terminal setup for the same lattice with 1D clean lattice leads connected along the
direction of the arrow in the localized phase for various system lengths L = 32–112 for L/M ∼ 1/4. (d) The corresponding approximate
scaling collapse for 〈ln G〉, which yields ν ≈ 1.1.

FIG. 4. (a) Renormalized localization length as a function of the
dimerization strength δ for the staggered dimerization pattern on
the honeycomb lattice in the direction of the arrow shown in the
inset. (b) The scaling collapse, which yields ν ≈ 1.05(5). (c) The
renormalized localization length ξ/M for the staggered dimerization
pattern on a square lattice for transfer along the direction of the
arrow. Details are similar to (a). (d) The corresponding data collapse,
yielding critical exponent ν ≈ 1.01(3).

(δ − δc), implying that ξ/M ∼ 1/[M(δ − δc)]. This argument
suggests that the correlation length exponent ν takes on the
value ν = 1 for an MIT driven by such a rigid shift in the
sublattice Lyapunov spectrum. It is interesting to note that
such an argument is also valid for complex hoppings with a
staggered dimerization pattern, but we do not study it further
here.

Below we explore the validity of this argument and check
if it also controls the scaling of the two-terminal conduc-
tance calculated from the scattering wave functions (described
below). We also ask if a generic transition, not driven by
dimerization patterns that involve a rigid shift, has a different
value of ν characterizing its critical behavior.

B. Two-terminal conductance

The two-terminal linear conductance at zero temperature is
calculated using the Landauer formula

G = e2

h

∑
nm

|Snm|2,

where G is the dimensionless conductance (in units of e2/h)
and Snm is the scattering matrix element between scattering
channels n and m obtained in terms of the zero-energy wave
functions. It relates electrical conductance to the total trans-
mission probability of electron waves through a region of
random scatters. As is well known, a closely related analysis
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FIG. 5. (a) Results for the plaquette dimerization pattern on armchair graphene as shown in the inset in (b). The normalized localization
length ξ/M as a function of dimerization δ for different values of width M = 30–384 and length L = 105 in the localized phase. (b) The
corresponding finite-size data collapse with critical exponent ν ≈ 1.55 and critical dimerization strength δc ≈ 0.015. (c) 〈ln G〉 calculated
within the two-terminal setups for the same lattice with 1D leads connected along the direction of the arrow in the localized phase for various
system lengths L = 32–128 for L/M ∼ 1/4. (d) The corresponding approximate scaling collapse for 〈ln G〉, which yields ν ≈ 1.47.

[29] in terms of Green’s functions also leads to the Landauer
formula, which relates electrical conductance to the total
transmission probability of electron waves through a region
of random scatters; in this sense, our results are expected
to be equivalent to those obtained from explicit use of the
two-terminal Landauer formula.

We used the open-source KWANT package [30], a wave
function based method for the conductivity calculation. The
“effective” disorder in the system is large, and thus, the con-
ductivity is small, O(1). To avoid small numbers we use a
wide geometry M > L, which has more conducting chan-
nels and ensures a larger value of the conductance. This is
useful because the divergent density of states at zero energy
gives rise to numerical instability in the opposite limit of
a quasi-1D sample. In all our conductance calculations we
use one-dimensional lattice leads which allow having a finite
density of states in the lead at E = 0. The sample width M
is chosen in such a way that the clean band structure with
armchair edges has linear energy dispersion.

In a generic Anderson delocalization-localization transi-
tion, the typical conductance exp(〈ln G〉) acts as an order
parameter and displays scaling behavior [31]. With this in
mind, we study the L and δ dependence of 〈ln G〉, and also
we monitor the probability distribution of ln G for a range
of L and δ in the metallic phase. We obtain data for the
staggered dimerization patterns on both the square and hon-
eycomb lattices and honeycomb lattice data for the plaquette
dimerization pattern (Figs. 3 and 4 and their insets).

III. NUMERICAL RESULTS

A. Staggered dimerization on the honeycomb lattice

Lyapunov spectrum and δc. The Lyapunov spectral density
(2) for the A sublattice transfer along the direction of the
arrow in the staggered quasi-1D sample [shown in the inset in
Fig. 3(b)] of width M = 768 is shown in Fig. 2(a). The curves
show a finite density at λ = 0 in the metallic phase.

Increasing δ further creates a finite gap around the center,
i.e., zero spectral density at λ = 0. This marks the onset of
the localized phase of the system, and that allows precise
determination of δc. The estimated critical disorder strength
is found to be δc ≈ 1.431. In this case, the spectrum does shift
rigidly, consistent with the general argument made earlier.

In the Griffiths insulator phase, we see that ξ/M de-
creases with increasing δ − δc and M, showing increasing
localization, as seen in Fig. 3(a). A one-parameter scaling of
ξ/M is performed with the following scaling form: ξ/M =
F(χ (w)M1/ν, φ(w)My) (see Appendix B for more details),
where y is the irrelevant scaling exponent. The corresponding
data collapse is shown in Fig. 3(b). The estimated critical
disorder strength from the analysis is δc = 1.431(2), which is
consistent with the critical dimerization value extracted from
the Lyapunov density of states (see Fig. 2). The localiza-
tion length exponent is found to be ν = 1.05(5), consistent
with the theoretical prediction of ν = 1 for cases when the
dimerization leads to a rigid shift in the sublattice Lyapunov
spectrum.
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FIG. 6. (a) and (b) Conductance distribution P(G) at δ = 0 calculated within the two-terminal geometry for the finite staggered honeycomb
sample shown in the inset in Fig. 3(b), with two different aspect ratios, L/M ∼ 1/2, 1/4. The corresponding L and M and the average
conductance G[e2/h] along with the mean conductivity σ [e2/(πh)] ≈ 0.85(2) are indicated in the legend. (c) The ln G distribution in the
localized phase δ = 1.55 for different sample lengths L = 64–112. The open armchair boundary is used for these calculations.

Conductance calculation in localized phase. We compute
〈ln G〉 via the scattering matrix formulation as described ear-
lier. In the localized phase, this provides an independent
window to these localization properties.

We find that the conductance is exponentially small for δ >

δc, i.e., G 	 1, and decreases with system length L � ξ as
well as with increasing dimerization δ, as shown in Fig. 3(c).
We investigate the dependence on δ and M via a finite-size
scaling analysis at fixed L/M for wide samples, as shown
in Fig. 3(d). The scaling collapse gives a critical disorder
of δc = 1.46(2) and exponent ν = 1.10(4). The marginally
higher critical parameters can be attributed to the slightly
different geometry, L/M ≈ 1/4, used for the numerical simu-
lation. Within the available computational resources, we could
not directly probe the true 2D limit L/M = 1 because that
would require simulation of large sample sizes. The estimate
of ν obtained in this way is also very close to the value
obtained from the Lyapunov exponent analysis; indeed, the
theoretical prediction of ν = 1 is just outside the error bars of
this numerical estimate.

Additional confirmation of scaling behavior for staggered
dimerization. To explore this further, we also determine ν

using a Lyapunov spectrum analysis for transfer in the perpen-
dicular direction, i.e., along the zigzag edge of the honeycomb
lattice [shown in the inset in Fig. 4(a)]. The results are shown
in Fig. 4(a). A one-parameter scaling collapse gives a lo-
calization length exponent of ν ≈ 1.05, in agreement with
the transfer along the other direction. The critical disorder
strength is estimated to be δc ≈ 1.38. The smaller critical
disorder strength in this direction could be related to the strong
anisotropy of the bond arrangement. We also observe (data not
shown) an extremely slow flow towards the larger δc ∼ 1.43
with increasing system sizes M.

Additionally, we also verify our results for staggered dimer
patterns on a square lattice. The main difference here is that
the density of states at E = 0 is finite in the clean limit
compared to the Dirac density of states. The results for the
transfer matrix are shown in Fig. 4. A finite-size analysis again
predicts the exponent is ν ≈ 1.01, in agreement with all our
previous estimates of staggered dimer patterns on the honey-
comb lattice. Again, we attribute this value of ν to the fact that

the Lyapunov spectrum on each sublattice shifts rigidly with
δ for this kind of staggered dimerization.

Critical metal phase. Following Chalker and Bernhardt
[25] we estimate the average conductivity in the critical metal
phase σ = G(L, M )L/M = bρ(0), where b is an order one
number and ρ(0) is the Lyapunov density, which is shown in
Fig. 2. The two-terminal conductance calculated in the wide
sample limit L/M 	 1 is also shown in Fig. 2 as a function
of dimerization δ and compares well to the estimate obtained
above from the Lyapunov spectrum. In the metallic phase,
it increases with δ until the metal-insulator transition point
is reached, perhaps reflecting the fact that the strengthened
dimerization facilitates transport in the measured direction.

B. Plaquette dimer configuration

The plaquette dimerization pattern on the honeycomb lat-
tice is shown in the inset of Fig. 5(b). This pattern does not
single out a particular direction of the lattice as in the case
of a staggered pattern. The plaquette dimerization also drives
a dimerization-driven critical metal-insulator transition, but
with a larger localization length exponent, which could point
towards a different fixed point.

The normalized localization length ξ/M and log conduc-
tance 〈ln G〉 data are shown in Figs. 5(a) and 5(c), respectively.
The finite-size analysis of both of our observables [Figs. 5(b)
and 5(d)] points towards a higher localization length exponent
in this dimer configuration. The localization length predicts
the exponent is ν ≈ 1.55(2), which agrees within error bars
with the conductance data, which predicts ν ≈ 1.4(1). As
noted earlier, recent work in the other chiral class, AIII, indeed
predicted a larger exponent ν ≈ 1.55(1) with a similar dimer
pattern on the square lattice with complex hopping [26].

C. Conductance distribution

In Fig. 6 we show the distribution of the conductance
G(L, M ) for the honeycomb lattice in the metallic phase at
δ = 0. The data are shown for two different aspect ratios,
L/M = 1/2, 1/4, in Figs. 6(a) and 6(b). For both aspect ratios
the width of P(G) is independent of the sample L, indicating
its scale-invariant properties. While the average conductance,
of course, depends on the sample geometry, the conductivity
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σ ≈ 0.85 [in units of e2/(πh)] for δ = 0 is independent of
the sample geometry, indicating that the value is close to its
true 2D limit. The distribution P(G) has a long tail with a
singularity at G ≈ 1 (in units of e2/h), which is reminiscent
of the critical conductance distribution at a 3D metal-insulator
transition [32].

In the localized insulating phase, the mean conductance
is small G(L, M ) 	 1; therefore, we show the log conduc-
tance ln G distribution in Fig. 6(c) at δ = 1.55, which is quite
close to δc. Deep in the localized phase, the conductance be-
comes extremely small and suffers from numerical instability.
P(ln G) is far from a normal Gaussian form, which one would
expect in the localized phase [27]. However, we observe the
peak at G ≈ 1 decreases rapidly with L in this regime and the
mean conductance becomes smaller. The scaling analysis of
the mean G was already presented in Fig. 3.

IV. DISCUSSION AND OUTLOOK

We present a numerical study of transport properties in
a bond-disordered tight-binding model of honeycomb and
square lattices. The disordered version of the phase transition
is allied with the opening of a band gap in the clean model due
to dimerization.

From our results for the critical behavior of the mean log
conductance and normalized localization length, we find an
apparent nonuniversality of critical exponents in the BDI sym-
metry class. In our analysis we estimated it to be ν ≈ 1.05(5)
for the staggered dimer pattern driven localization transition
and estimated the critical exponent to be ν ≈ 1.55(5) for the
plaquette dimer configuration. It is important to note that with
particle-hole symmetry, the localization transition is actually
preceded by the critical metal phase that we have discussed
here and not by the weak localized phase that is usually
observed in the 2D standard Anderson transition. The critical
phase itself is a strongly disordered phase, as signaled by
small conductivity σ [e2/πh] � 1.

At the critical point, we find that the distribution of
the conductance is scale invariant. In the range of sizes
accessible to our study, this scale invariance remains approx-
imately valid for a range of δ on the metallic side of the
transition.

In the immediate vicinity of the transition on the insulat-
ing side, the distribution shows a significant deviation from
the critical distribution. However, the expected log-Gaussian
distribution of log conductance has yet to develop fully in our
calculation.

Recently, similar transport statistics were studied in quasi-
1D armchair graphene with bond disorder [33]. In that work,
the focus was on understanding the crossover phenomenon of
the quasilocalized (chiral) critical point to an exponentially
localized regime by two parameters scaling with respect to
the energy and the system sizes. On the contrary, we are in
the 2D limit, where the shape of the conductance fluctuations
remains log Gaussian across the phase transition unlike in the
1D model. In particular, we observe system size independent
conductance fluctuations close to the critical point, which is
absent in the quasi-1D limit.

In the future, it will be relevant to investigate the effects of
temperature and interaction on the chiral-symmetric critical

FIG. 7. The 2D square lattice geometry for the transfer matrix
calculation. Blue and gray circles represent two different sublattices
in this bipartite lattice.

point. Exploring the stability of the phase transition and the
interaction effects on the universality of the exponent will
be important to investigate. Similarly, it will be important
to understand the origin of such nonuniversality in the ex-
ponent for different dimerization patterns, possibly using the
field-theoretical framework that was developed in Ref. [26],
particularly when the symmetry of lattice rotations is broken
by the dimerization pattern.
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APPENDIX A: TRANSFER MATRIX
AND RIGID SPECTRUM

Here, we discuss the rigid shift in Lyapunov spectrum
observed in Fig. 2 in detail. Figure 7 shows part of a 2D
square lattice with vertical slices denoted by (n − 1, n, n + 1),
and horizontal slices are denoted by (a, b, c). The hopping
t b
n,n+1 defines a connection between lattice points (n, b) and
(n + 1, b).

The wave amplitudes at the slice n + 1 at E = 0 are given
by the following transfer matrix [27]:(

ψn+1

ψn

)
=

(−hn,n

tn,n+1
− tn,n−1

tn,n+1

1 0

)(
ψn

ψn−1

)
, (A1)

where hn,n is the Hamiltonian of the nth slice. In a bipartite lat-
tice, the sites can be separated into A sites (blue circles) and B
sites (grey circles; see Fig. 7). For the nearest-neighbor Hamil-
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TABLE I. Finite-size scaling analysis table for data in Fig. 3(a).
N is the number of fitting parameters. The critical parameters (δc, ν )
are found by fitting the data in Fig. 3(a) to the scaling form in Eq.
(B3). The bootstrap error has been obtained by repeated resampling
(10000 data points) of the original data and the error is the standard
deviation of the resulting sampling distribution. The goodness of fit
(GOF) parameter as defined in Eq (B4) is also provided in the table.

L nR nI mR mI N δc ν GOF

32–384 6 0 1 0 10 1.430 ± 0.002 1.07 ± 0.04 0.03
32–384 6 0 2 0 11 1.431 ± 0.001 1.05 ± 0.05 0.04
32–384 4 0 1 0 8 1.428 ± 0.005 1.13 ± 0.05 0.16
32–384 4 0 2 0 9 1.431 ± 0.002 1.10 ± 0.06 0.13
32–384 4 1 1 0 11 1.430 ± 0.005 1.04 ± 0.04 0.46
64–384 4 1 1 0 11 1.430 ± 0.003 1.04 ± 0.09 0.51
128–384 4 1 1 0 11 1.431 ± 0.003 1.03 ± 0.05 0.43

tonian defined in Eq. (1), the transfer matrix equation (A1)
decouples into individual sublattices at E = 0, and the wave
function transfer is restricted to one sublattice. The transfer
matrix in Eq. (A1) gives the wave amplitude at the lattice site
(n + 1, b) as

ψn+1,b = − t a,b
n

tb
n,n+1

ψn,a − t b,c
n

tb
n,n+1

ψn,c − t b
n−1,n

tb
n,n+1

ψn−1,b. (A2)

In particular, for the brick wall (equivalent to honeycomb)
lattice the bond t b

n−1,n = 0 (see, e.g., Fig. 1), and Eq. (A2)
reduces to

ψn+1,b = − t a,b
n

tb
n,n+1

ψn,a − t b,c
n

tb
n,n+1

ψn,c; (A3)

that is, the transfer involves only two slices (n, n + 1) in
one iteration. Here, the bonds are distributed equally between
[0, 1] with an extra multiplicative factor eδ for the horizontal
bonds. Therefore, the multiplicative factor comes out of the
transfer matrix multiplication, which is the rigid shift of the
spectrum seen in Fig. 2. The magnitude of the shift is pro-
portional to δ, and in this sense the exponent is ν = 1.0 by
construction, as explained in the main text.

In contrast, for the square lattice, the wave amplitude
ψn+1,b involves three slices at one iteration of transfer, and
the spectrum is nonrigid (not shown here). In this scenario, it
is not entirely obvious that ν ≈ 1, and therefore, we resort to
numerical simulation.

APPENDIX B: FINITE-SIZE SCALING ANALYSIS

This Appendix summarizes the finite-size scaling analysis
used to estimate ν and δc in the localized phase of the model
(Tables I–IV). We follow an approach similar to that in [31,34]

TABLE II. Finite-size scaling analysis table for data in Fig 3(c).
Further details are similar to Table-I.

L nR nI mR mI N δc ν GOF

32–112 6 0 1 0 10 1.457 ± 0.002 1.11 ± 0.04 0.45
32–112 4 0 1 0 8 1.456 ± 0.002 1.12 ± 0.05 0.46
48–112 4 1 1 0 11 1.455 ± 0.003 1.15 ± 0.09 0.39
64–112 4 1 1 0 11 1.456 ± 0.003 1.13 ± 0.07 0.29

TABLE III. Finite-size scaling analysis table for data in Fig 5(a).
Further details are similar to Table-I.

L nR nI mR mI N δc ν GOF

30–384 6 0 1 0 10 0.005 ± 0.002 1.64 ± 0.04 0.82
30–384 4 0 1 0 8 0.009 ± 0.003 1.58 ± 0.04 0.26
30–384 4 0 2 0 9 0.005 ± 0.002 1.55 ± 0.05 0.76
66–384 4 1 1 0 11 0.007 ± 0.003 1.54 ± 0.06 0.28
126–384 4 1 1 0 11 0.009 ± 0.003 1.59 ± 0.09 0.43

and expand the scaling function in the leading relevant (χ ) and
irrelevant (φ) scaling variables as follows:

ξ

M
= F(χ (w)M1/ν, φ(w)My),w = (δc − δ)/δc, (B1)

where F is a generic scaling function and M is the width of
the quasi-1D sample. The irrelevant exponent y < 0 charac-
terizes correction to finite-size scaling. The scaling variables
are expanded in terms of w as

χ (w) =
mR∑

n=0

anw
n, φ(w) =

mI∑
n=0

bnw
n, a0 = 0. (B2)

A further Taylor expansion of F leads to

ξ

M
=

nR∑
m

nI∑
n

amnχ
mLm/νφnLnyFmn. (B3)

An expansion of Eq. (B3) to order (mR, mI , nR, nI ) gives N =
2 + mR + mI + (nR + 1)(nI + 1) parameters to fit. An analo-
gous expansion was also used for the observable 〈ln G〉 in the
main text. We use nonlinear least squares to fit the function to
the available data. In the main text, we kept the order of expan-
sion (mR, mI , nR, nI ) = (1, 0, 4, 0) to avoid overfitting of the
model. But we checked the stability of the critical exponents
to various other orders of expansion (mR, mI , nR, nI ), and the
results are summarized in Table IV along with the goodness
of fit (GOF), defined as follows:

GOF =
ND∑
i=1

(Fi − 
i)
2/
i, (B4)

where Fi is the scaling function evaluated at the ith data
point, 
i is a numerically observed value at the same data
point, and ND is the number of such data points. The er-
ror bars are estimated using the bootstrap resampling of the
data set. The irrelevant exponent y is found to be rather
large.

TABLE IV. Finite-size scaling analysis table for data in Fig 5(c).
Further details are similar to Table-I.

L nR nI mR mI N δc ν GOF

32–128 6 0 1 0 10 0.005 ± 0.002 1.47 ± 0.04 0.24
32–128 4 0 1 0 8 0.003 ± 0.002 1.45 ± 0.05 0.56
48–128 6 0 1 0 11 0.015 ± 0.003 1.45 ± 0.09 0.51
64–128 6 0 1 0 11 0.010 ± 0.005 1.44 ± 0.05 0.15
80–128 6 0 1 0 11 0.009 ± 0.003 1.47 ± 0.08 0.18
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