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Nuclear spin-lattice relaxation rate in disordered paramagnetic diluted magnetic semiconductors
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Nuclear spin-lattice relaxation signatures in paramagnetic diluted magnetic semiconductors involving mag-
netic disorder are examined. By utilizing the dynamical mean-field theory for the Kondo lattice model with
disorder potential, in the infinite-dimensional limit, we have derived a set of self-consistent equations to enable
the numerical evaluation of the single-particle Green’s function and its self-energy. The local dynamical spin
susceptibility function and then the nuclear spin-lattice relaxation rate is evaluated in terms of the single-particle
Green’s function. Our numerical results reveal the spin fluctuations, evidenced by the sharp peak appearing at a
low frequency in the spin dynamical susceptibility function, become dominant in the case of large magnetic cou-
pling and high magnetic impurity density with temperatures close to the paramagnetic-ferromagnetic transition.
In that situation, the nuclear spin-lattice relaxation divided by temperature obeys the Curie law that attributes
the formation of the coherent magnetic bound states or the magnons in the paramagnetic state. Sufficiently large
intensity of the magnetic disorder or the thermal fluctuations might deplete all of the bound states and then the
system would settle in the normal metallic state expressing the Korringa mechanism or the nematic instability.
Our observations thus have underlined the significance of the magnetic coupling and the magnetic disorder
in determining the spin-lattice relaxation processes in DMSs and highlighted the advantage of the dynamical
mean-field theory in studying the spin dynamics in a doped magnetic system.
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I. INTRODUCTION

The dynamical scenario of nuclear spin induced by sur-
rounding electrons is always one of the most essential issues
stimulating much interest in a strongly correlated electron
system. In a nonmagnetic metal or semiconductor, the nu-
clear spin might be relaxed due to its hyperfine interaction
with the surrounding electrons following the Korringa mech-
anism [1,2]. In a strongly correlated electron system, besides
the hyperfine interaction, electrons might strongly correlate
with nuclei, the Korringa law generally must be deviated. One
of the most prospective schedules to check the Korringa law
in a strongly correlated electron system is considering the
nuclear spin relaxation in a diluted magnetic semiconductor
(DMS) where a slight amount of magnetic ions are doped in a
semiconducting host [3,4]. Due to a light doping of magnetic
ions, a small localized impurity band appears beside the main
band of the host semiconductor. In the case of the Fermi
level located in the impurity band, strong correlations between
carrier spins and local magnetic moments might release and
establish magnetic fluctuations in the systems. The DMS thus
plays a dual role of magnetic and semiconducting materials,
that might open various potential applications in future spin-
tronics, where the integration of data processing and magnetic
storage are incorporated into a single chip [3,4].

The nuclear spin relaxation describes the relaxation
of a nonequilibrium spin population of nuclei towards
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equilibrium. Due to the coupling with surrounding electrons,
nuclear spin with higher energies might relax to lower levels
and transfer energies to the lattices. The spin-lattice relax-
ation process can be characterized by a relaxation time T1;
that is the time constant it takes for the energy transfer to
establish the equilibrium longitudinal nuclear magnetization.
The inverse of the spin-lattice relaxation time 1/T1 is the
so-called relaxation rate quantifying the damping of the nu-
clear spin precession due to the coupling to the electron
spins, one of the useful quantities revealing basic physics of
the electron system. In experiments, the nuclear spin-lattice
relaxation rate is usually extracted from the nuclear mag-
netic resonance (NMR) spectroscopy. NMR measurement has
proven to be a powerful probe of local spin dynamics in many
strongly correlated electron materials [5]. In theory, the nu-
clear spin-lattice relaxation rate in turn can be evaluated from
the imaginary part of the dynamical spin susceptibility of the
electron system, measured at the very low Larmor frequency
of the nuclear spins [5]. By using the dynamical mean-field
theory (DMFT) or spin-wave and random-phase approxima-
tion, the spin-lattice relaxation in a single-band Hubbard
model has been addressed [5–10]. In all these studies, the
spin-lattice relaxation rate reveals the non-Korringa relation
in the strongly electronic correlation limits. In the case of
large magnetic coupling, DMS is also one of the strongly
correlated electron systems [3,4,11], using DMFT thus is an
applicable way to examine the spin-lattice relaxation process
in DMSs.

In a dirty metal, one has found that randomness disor-
der significantly enhances the nuclear spin-lattice relaxation

2469-9950/2024/109(3)/035108(10) 035108-1 ©2024 American Physical Society

https://orcid.org/0000-0002-9009-4025
https://orcid.org/0000-0003-0009-3932
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.035108&domain=pdf&date_stamp=2024-01-05
https://doi.org/10.1103/PhysRevB.109.035108


NGUYEN, TRAN, AND PHAN PHYSICAL REVIEW B 109, 035108 (2024)

rates [12]. The observation of Knight shift and NMR re-
laxation for diluted nonmagnetic alloys has manifested that
marked property [13,14]. The disorder thus plays an impor-
tant impact in the signatures of the nuclear spin-relaxation
process in doping system [12]. In DMSs, due to the mag-
netic doping in the semiconducting host, for instance, doping
Mn2+ in GaAs, magnetic disorder naturally arises from the
random magnetic dopants [11,15–18]. Even in an ideal an-
nealed (Ga,Mn)As sample in which only Ga positions are
substituted by Mn ions, randomness in the Mn microstructure
also leads to both Coulomb and spin-dependent exchange po-
tential scattering, in some situations, the Coulomb scattering
even dominates over the exchange potential scattering [11].
In this sense, the Coulomb scattering or the randomness dis-
order is actually important near the onset of ferromagnetism
at low Mn density [11]. Discussing the nuclear spin-lattice
relaxation in DMSs induced by the disorder thus is essen-
tial and more practical in comparison with experimental
observations. Without the disorder, the nuclear spin-lattice
relaxation in DMSs has been recently examined in the frame-
work of the DMFT employed to the Kondo lattice model [19].
The Kondo lattice model here has been proven to be a
consistent microscopic model used to investigate the mag-
netic properties in DMSs [11] and its results have revealed
that the nuclear spin-lattice relaxation in DMSs obeys the
Korringa rule in the range of large temperature or small
magnetic coupling. In the present paper, an additional term
describing the disorder in DMSs is involved in the Kondo
lattice model as a kind of diagonal disorder. That kind of
disorder has been intensively studied in the literature by
DMFT [20–24]. Note here that the DMFT has proven as
a prevailing method dealing with strongly correlated elec-
tron systems, and gives an exact solution in the limit of
infinite-dimensional space [20]. The DMFT has been widely
used in studying the magnetic properties in DMSs and in
other similar systems [25–28]. In our present paper, the nu-
clear spin-relaxation rate is evaluated from the imaginary part
of the dynamical spin susceptibility measured at the very
low Larmor frequency of the nuclear spins. In the infinite-
dimensional limit, the dynamical spin susceptibility function
can be derived in the Baym-Kadanoff approach [29,30].
In the paramagnetic (PM) state, the imaginary part of the
spin dynamical susceptibility function shows a sharp peak
at a low frequency in the case of large magnetic coupling
with temperatures close to the paramagnetic-ferromagnetic
(PM-FM) transition. In that situation, one finds the Curie law
of the nuclear spin-lattice relaxation divided by temperature
that attributes the formation of the coherent magnetic bound
states. Increasing the random magnetic disorder or the thermal
fluctuations might suppress the bound state and the spin-
lattice relaxation rate releases the Korringa law addressing the
Fermi-liquid state and then the nematic instability.

The rest of the paper is organized as follows: Section II
outlines a microscopic Hamiltonian describing the electronic
correlations in DMSs with diagonal disorder represented
in real space. In the infinite-dimensional limit, a set of
self-consistent equations in DMFT approximation is briefly
derived. In Sec. III we present an analytical solution for
the dynamical spin susceptibility function and expression for
the nuclear spin-lattice relaxation rate. Section IV shows the

numerical results and their discussions. A summary and con-
clusion are presented in Sec. V.

II. HAMILTONIAN AND DYNAMICAL
MEAN-FIELD THEORY

In DMSs, magnetic ions are slightly doped in the semi-
conducting host, and play a role of an acceptor inducing
local magnetic moments and itinerant carriers. To describe
the electronic and magnetic properties of the DMSs, it is
applicable if one uses the Kondo lattice model [11]. In the
real space, the microscopic Hamiltonian of the Kondo lattice
model involving a magnetic local disorder can be written as

H = − t
∑
〈i, j〉σ

c†
iσ c jσ + 2J

∑
i

αiSisi −
∑

i

(μ − Uαi )ni, (1)

where the first term describes the carrier hopping written
in the tight-binding approximation with c†

iσ and ciσ being
respectively the creation and annihilation operators of the
spin-σ itinerant carrier at lattice site i. t in the first term
indicates the hopping integral that is scaled as t = t∗/

√
2d

for a d-dimensional system [20]. In the calculation below,
t∗ = 1 is chosen as the energy unit. In the second term of
Hamiltonian (1), si = ∑

σσ ′ c†
iσ σσσ ′ciσ ′/2 (σ are the Pauli ma-

trices) and Si are the spin operators of the itinerant carrier
and localized impurity moment at lattice site i, respectively.
Here we have included a variable αi = 1(0) to specify if
site i is occupied (unoccupied) by a magnetic ion. If x is
the doping fraction, α satisfies a binary distribution function
P(α) = (1 − x)δ(α) + xδ(1 − α). In the case of αi = 1 for all
i, the Hamiltonian recovers the original Kondo lattice model
with magnetic randomness disorder [25]. The second term
thus expresses the local magnetic coupling J between the itin-
erant carrier spin and impurity magnetic moment. To simplify
our calculation, the magnetic coupling is considered in the
Hund-like coupling, i.e., only z component of the mag-
netic moments is examined. In this case, the second term
in Hamiltonian (1) can be rewritten as 2J

∑
i αiS

z
i sz

i , where
sz

i = ∑
σ c†

iσ σciσ /2. The Hamiltonian given in Eq. (1) has
ignored a direct spin-spin interaction between the localized
impurity moments. The interaction might significantly affects
the nuclear spin-lattice scenario in DMSs and it will be con-
sidered in our forthcoming papers.

The local disorder U due to the magnetic doping is given
in the last term of the Hamiltonian (1). In the last term, ni =∑

σ c†
iσ ciσ is the occupation number operator of the itinerant

carriers and μ is the chemical potential. The disorder potential
is mapped onto the difference in the local potential, which
splits energetically in favor of the lattice site with and without
magnetic doping. It looks like a binary alloy disorder and can
be approximately suitable for a lightly doped material [31,32].
In general, the disorder is site dependent; however, in our
paper, we handle the bulk system by approximating to infinite
dimensions, thus the disorder can be introduced in average
and is considered as a kind of diagonal disorder. The diagonal
disorder has been intensively studied in the literature by the
DMFT [20–24].

To solve the Hamiltonian given in Eq. (1), in the present
paper, we use DMFT, one of the powerful methods inves-
tigating a strongly correlated electron system. Unlike the
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original mean-field theory, DMFT takes into account the lo-
cal quantum fluctuations indicating by the time or frequency
dependence of the single-particle Green’s function [20]. In the
infinite-dimensional system, self-energy of the single-particle
Green’s function is localized, and depends only on the fre-
quency. The single-particle Green’s function of the itinerant
carrier thus might read

Gσ (k, iωn) = 1

iωn − ε(k) + μ − �σ (iωn)
, (2)

where ε(k) = −2t
∑d

i=1 cos ki is the dispersion of the itiner-
ant carriers in the tight-binding approximation, ωn = (2n +
1)πT is the fermion Matsubara frequency at temperature T .
Equation (2) is a kind of the Dyson equation with the self-
energy �σ (iωn) depending solely on frequency. In the infinite
dimensions, the Green’s function is also localized, and reads

Gσ (iωn) = 1

N

∑
k

Gσ (k, iωn)

=
∫

dερ(ε)
1

iωn − ε + μ − �σ (iωn)
. (3)

Here, ρ(ε) = ∫
dd k/(2π )dδ(ε − εk ) is the noninteracting

density states. For the hypercubic lattice case, one finds
ρ(ε) = exp(−ε2)/

√
π . The Green’s function (3) can also be

determined by solving an effective single-site problem. In the
imaginary time τ representation, that Green function is

Gσ (τ ) = −〈Tτ cσ (τ )c†
σ (0)〉Seff , (4)

where Tτ is the time ordering operator and Seff is an action
of the effective problem. Based on the Hamiltonian written in
Eq. (1), the effective action might be read

Seff(s, α) = −
∫ β

0
dτ

∫ β

0
dτ ′ ∑

σ

c†
σ (τ )G−1

σ (τ − τ ′)cσ (τ ′)

+
∫ β

0
dτ

∑
σ

[(Jsσ + U )α − μ]c†
σ (τ )cσ (τ ),

(5)

with Gσ (τ ) is the bare Green’s function of the Weiss effective
medium written in the imaginary time representation and β =
1/T with T is temperature. s in Eq. (5) is the z component of
the localized magnetic moments. The partition function of the
effective problem can be evaluated as

Zeff (α) = Tr
∫

Dc†Dce−Seff (s,α), (6)

where Tr implies the trace taken over all values of s. Us-
ing the Fourier transformations c(†)

σ (τ ) = (1/
√

β )
∑

n c(†)
nσ exp

(±iωnτ ), Gσ (τ−τ ′) = (1/β )
∑

n Gσ (iωn) exp (−iωn(τ−τ ′)),
and the Grassmann algebra, one might derive an expression
of the partition function

Zeff (α) = 2Tr exp

{∑
nσ

ln
G−1(iωn) − (Jsσ + U )α

iωn

}
. (7)

The local single-particle Green’s function of the effective
problem defined in Eq. (4) can be evaluated from the partition

function. In the Matsubara frequency representation, one has

Gσ (iωn) =
∫

dαP(α)
δ lnZeff (α)

δG−1(iωn)
, (8)

and finds an explicit expression of the single-particle Green’s
function of the effective problem

Gσ (iωn) = (1 − x)Tr
w0s

G−1(iωn)
+ xTr

w1s

G−1(iωn) − Jsσ − U
,

(9)

where wαs (α = {0, 1}) indicates the weight factors that are
the functionals of the Green’s function

wα,s = 1

Zeff(α)
exp

∑
nσ

ln
G−1(iωn) − (Jsσ + U )α

iωn
. (10)

As addressed above, G−1(iωn) plays a role of the Green’s
function describing the noninteracting Weiss effective
medium around the carrier localized at a lattice site. The local
Green’s function of the itinerant carrier with respect to spin σ

thus might be read, following the Dyson’s equation

Gσ (iωn) = 1

G−1
σ (iωn) − �σ (iωn)

. (11)

From Eqs. (3), (9), and (11) one finds a set of self-consistent
equations permitting us determining numerically the local
Green’s function and self-energy depending on frequency of
the itinerant carriers for a given set of parameters.

III. DYNAMICAL SPIN SUSCEPTIBILITY FUNCTION
AND NUCLEAR SPIN-RELAXATION RATE

The nuclear spin-lattice relaxation rate, in the present pa-
per, is analyzied in the signatures of the dynamical spin
susceptibility of the carriers. In doing so, the nuclear spin-
lattice relaxation rate divided by temperature T is evaluated
from the imaginary part of the dynamical spin susceptibility
function measured at the very low Larmor frequency of the
nuclear spins [5]

1

T1T
= lim

ωL→0

1

N

∑
q

|A(q)|2 Imχ zz(q, ωL )

ωL
, (12)

where χ zz(q, ω) is momentum q dependence of the trans-
verse dynamical spin susceptibility function and ωL is the
Larmor frequency [20]. A(q) in Eq. (12) is a hyperfine in-
teraction. In case that the hyperfine interaction is momentum
independent, 1/T1T can be estimated as the slope of the
imaginary part of the local spin susceptibility function χ zz

loc =
χ zz(ω) = (1/N )

∑
q χ zz(q, ω) in the zero-frequency limit [7].

To evaluate the nuclear spin-lattice relaxation rate, firstly, we
determine the transverse dynamical spin susceptibility func-
tion. In the imaginary time representation, one might define

χ zz
i j (τ, τ ′) = 〈T sz

i (τ )sz
j (τ

′)〉, (13)

where T is the imaginary time order operator and

sz
i (τ ) = 1

2

∑
σ

c†
iσ (τ )σciσ (τ ) (14)

is time dependence of the z component of the spin operator at
lattice site i. Using the Fourier transformation, one might find
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the transverse dynamical spin susceptibility function written
in momentum and frequency spaces

χ zz(q, iωl ) =
∫ β

0
dτeiωl τ

∑
i j

eiq(Ri−R j )
〈
T sz

i (τ )sz
j (0)

〉
, (15)

where ωl = 2πT l is a bosonic Matsubara frequency. Note
here that the real frequency ω dependence of the susceptibility
in Eq. (12) can be obtained from its Matsubara frequency in
Eq. (15) by the analytic continuation iωn → ω + i0+ [20]. In
the infinite-dimension limit, one might deliver the dynamical
spin susceptibility in Eq. (15) expressed as a summation over
bubble and ladder diagrams [20]. It results

χ zz(q, iωl ) =
∑
nn′

χ̃ zz
q (iωn, iωn′ ; iωl ), (16)

where

χ̃ zz
q (iωn, iωn′ ; iωl )

= χ̃0
q (iωn; iωl )

[
δnn′ + 1

β

∑
σσ ′n′′

σσ ′
(iωn, iωn′′ ; iωl )σσ ′

× χ̃ zz
q (iωn′′ , iωn′ ; iωl )

]
, (17)

where χ̃0
q (iωn; iωl ) denotes for the bare susceptibility that is

internal momentum summation of the elementary particle-
hole bubble contribution,

χ̃0
q (iωn; iωl ) = −

∑
k

G(k, iωn)G(k + q, iωn+l ). (18)

Here we have assumed that the system settles in the homoge-
neous paramagnetic phase and the spin index is omitted in the
Green’s function. In the infinite-dimension limit (d → ∞),
the momentum dependence of χ̃0

q (iωn; iωl ) can be transferred
to a single parameter X = ∑

i cos qi/d [20,30] given by

χ̃0
q (iωn; iωl ) = Y

∫
dερ(ε)

F [Y (Xε − zn+l )]

zn − ε
, (19)

where Y = −1/
√

1 − X 2, F (x) = ∫
dερ(ε)/(x − ε) is the

Hilbert transform of the noninteracting density of states and
zn = iωn + μ − �(iωn).

In Eq. (17), σσ ′
(iωn, iωn′ ; iωl ) plays the role of the lo-

cal irreducible vertex function that might be evaluated by
the Baym-Kadanoff approach [19,29,33,34]. In that scheme,
the irreducible vertex function can be produced as the
derivative of the self-energy with respect to the Green’s func-
tion. In the frequency representation, one finds

σσ ′
(iωn, iωn′ ; iωl ) = 1

T

δ�σ (iωn, iωn+l )

δGσ ′ (iωn′ , iωn′+l )
, (20)

where both the Green’s function and self-energy are two-
frequency dependent. To evaluate the two-frequency depen-
dence of the Green’s function, in the DMFT an external
magnetic field hσ (τ ) coupling to the itinerant carrier spin is
included into the action in Eq. (5). The effective medium
Green’s function in that reason would be two-time-dependent
and from Eq. (9), the two-frequency Green’s function

Gσ (iωn, iωm) might be written in a matrix form

[Gσ ]nm =
∑

s

∫
dαP(α)

wα,s

[Gσ ]−1
nm − (Jsσ + U )α

, (21)

where the weight factors wα,s are defined in Eq. (10) and
[Gσ ]−1

nm is inverse matrix of the two-frequency effective
Green’s function. In the first order of the external magnetic
field for a single frequency hσ (iωl ), the Green’s function and
self-energy matrices would contain only diagonal (n = m)
and off-diagonal linearly in hσ (iωl ) (n = m + l) terms are
nonzero [29,30]. The Dyson’s equation in Eq. (11) thus might
be rewritten in matrix form like

�σ (iωn, iωn+l ) = [Gσ ]−1
n,n+l − [Gσ ]−1

n,n+l . (22)

Combining Eq. (22) with Eq. (21), one might derive an ex-
plicit relation between the two-frequency self-energy and its
Green’s function as

�σ (iωn, iωn+l ) = �σ
nl

�σ
nl

Gσ (iωn, iωn+l ), (23)

where

�σ
nl = �σ (iωn) − 2U

2Gσ (iωn+l )

[
G−1

σ (iωn) + G−1
σ (iωn+l )

]
− [�σ (iωn+l ) − 2U ]

[
G−1

σ (iωn+l )
]2

+ Aσ + U

2Gσ (iωn)Gσ (iωn+l )
− (U 2 − J2)�σ (iωn+l ), (24)

and

�σ
nl = Gσ (iωn)

{[
�σ (iωn) − 2U

][
G−1

σ (iωn) + G−1
σ (iωn+l )

]
+ U 2 − J2 + [

G−1
σ (iωn+l )

]2} + Aσ + U, (25)

in which we have denoted

Aσ = U (1 − x)(w0,−1 + w0,1) + Jσx(w1,−1 − w1,1). (26)

Equation (23) gives us a solution of the derivation in Eq. (20)
and one finds an analytical expression for the irreducible
vertex function

σσ ′
(iωn, iωn′ ; iωl ) = δσσ ′δnn′

1

T

�σ
nl

�σ
nl

, (27)

From the simple result in Eq. (27), the correlation function
χ̃q(iωn, iωn′ ; iωl ) in Eq. (17) and then the dynamical trans-
verse spin susceptibility function in Eq. (16) can be written in
a regular expression

χ (q, iωl ) = T
∑

n

1[
χ̃0

q (iωn; iωl )
]−1 − nl

, (28)

where nl = ∑
σ �σ

nl/�
σ
nl plays the role of the vertex func-

tion. Note here that �σ
nl and �σ

nl , denoted respectively in
Eqs. (24) and (25), depend on the single-fermionic Mat-
subara frequency Green’s function and its self-energy only.
Evaluating nl and then the dynamical susceptibility func-
tion in Eq. (28) thus become simple by the solutions of the
DMFT in the previous section. The nuclear spin-lattice relax-
ation rate can be straightforwardly determined in the formula
of Eq. (12).
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FIG. 1. Imaginary part of the local dynamical spin susceptibility
function Imχ (ω) for different disorder strengths U at J = 4 and T =
0.1 for different carrier densities n with x = 0.1 (left panels), and for
different magnetic doping x with n = 0.05 (right panels).

IV. NUMERICAL RESULTS

In order to find solutions of the local Green’s function of
the itinerant carriers in Eq. (3) and its respective self-energy,
we solve self-consistently the set of equations in Eqs. (3), (9),
and (11). To simplify our further calculation, all Matsubara
frequencies are transformed to the real frequency by using
the analytical continuous iωn → ω + i0+. In that manner, the
dynamical spin susceptibility in Eq. (28) can be represented
in the real frequency ω, the limitation in Eq. (12) and then the
nuclear spin-lattice relaxation rate can be easily evaluated.

Firstly, we discuss the spin fluctuations in the system by
analyzing a spectrum of the imaginary part of the local dy-
namical spin susceptibility function Imχ (ω). In Fig. 1 we
show Imχ (ω) for a given large magnetic coupling J = 4 by
varying the disorder strength U , itinerant carrier densities
n, and the magnetic doping x. In the calculation, the tem-
perature T = 0.1 is chosen to ensure that the system settles
in the PM state. Note here that, in realistic DMSs, for in-
stance (Ga,Mn)As, the lattice constant a ∼ 5.64 Å and one
finds the hopping term t∗ ∼ 1.5 eV, or even in (Ga,Mn)N,
a ∼ 4.42 Å, the hopping term t∗ is around 0.5 eV [35]. The
magnetic coupling, respectively, evaluated for (Ga,Mn)As is
in between 0.89 eV and 3.34 eV, or that with the GaN host
in the range 1.85–6.93 eV [35–40]. So in the unit of the
hopping term t∗, the range of temperature T and magnetic
coupling 2J used in the our present calculation are reasonable.
For a given set of parameters, all panels show us that the
imaginary part of the susceptibility always indicates a single
peak at a low frequency ω0, representing the fluctuations or
the magnetic coherent bound states of the local moments
even in the PM state. In the absence of the magnetic dis-
order (U = 0), Fig. 1(a) shows that the peak shifts towards
a higher frequency as increasing the density of the itiner-
ant carriers for fixed magnetic density x = 0.1. The small

values of ω0 observed at low itinerant carrier density can be
explained by an energetical creating of the magnetic bound
state once all itinerant carriers enable feeling the magnetic
coupling with the local magnetic moments. However, as the
carrier density increases, the correlation between carriers and
local moments is screened, resulting in a suppressed bound
coherence energy or magnetic fluctuations being restrained in
the system. Consequently, the peak in the local dynamical spin
susceptibility shifts towards the right at a higher frequency.
In varying the carrier density, the peak in the susceptibility
spectrum gets maximum at n = 0.05 corresponding to the
half-filled impurity band situation, n = x/2. Note here that
in the half-filled band case, the critical temperature for the
PM-FM transition reaches a maximum for a large magnetic
coupling [25,27]. As the temperature is lowered from the PM
state, the magnetic fluctuations become reinforced rather than
the case in which the impurity band deviates from the half-
filled situation. The magnetic coherence thus is most favorable
in the half-filled impurity band case. For the fixed value of
the magnetic impurity doping, all panels on the left show that
once the disorder is switched on the spectrum structure of the
susceptibility keeps remained. By increasing the disorder, the
potential of the magnetic scattering of the itinerant carriers
with majority spin is decreased while that of the minority spin
is increased [26,27,41]. As a consequence, taking into account
the disorder diminishes the magnetic coherent bound state in
the diluted system, that is specified by the suppression of the
peak height in the susceptibility spectrum once increasing the
disorder strength [see Figs. 1(a)–1(c)].

Once the itinerant carrier density is fixed but the magnetic
impurity doping is varied, increasing the magnetic disorder
also suppresses the dynamical susceptibility spectrum. In-
deed, in Figs. 1(d)–1(f) we address Imχ (ω) for some values of
x at given n = 0.05 with three different values of the magnetic
disorder strength. As increasing the disorder, the height of the
Imχ (ω) is depressed corresponding to diminishing the mag-
netic coherent bound states above the FM critical temperature.
At a given itinerant carrier density, increasing the magnetic
impurity density generally reinforces the possibility for the
magnetic correlations between the itinerant carriers with the
localized moments, resulting energetically in the magnetic
bound state of the carriers. That scenario has been specified
by enlarging height and shifting to the left of the peak in the
dynamical susceptibility spectrum shown in the right panels
in Fig. 1.

To inspect in more detail the magnetic resonance induced
by the presence of the magnetic randomness disorder in Fig. 2,
where we present the imaginary part of the local dynamical
spin susceptibility function Imχ (ω) for different values of
the disorder U by varying the temperature T and magnetic
coupling J at x = 0.1 and n = 0.05. We have to note here that
within the range of the set parameters, the system maintains
the PM state and the single peak structure in the imagi-
nary part of the local dynamical spin susceptibility function
Imχ (ω) remains signifying a magnetic coherence bound state
above the critical transition point. For a given large magnetic
coupling J = 4, all panels in the left of Fig. 2 display the
temperature dependence of the Imχ (ω) spectrum for different
values of the magnetic randomness disorder. For a fixed ran-
domness disorder, the peak appearing in Imχ (ω) gets sharper
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FIG. 2. Imaginary part of the dynamical local spin susceptibility
function Imχ (ω) for different disorder strengths U at x = 0.1 and
n = 0.05 for different temperatures T with J = 4 (left panels), and
for different magnetic coupling J with T = 0.1 (right panels).

and shifts to the left as decreasing temperature. In the presence
of thermal fluctuations, the bound state of the magnetic coher-
ence might be more or less destructed. Indeed, increasing the
thermal fluctuations causes a loss of the magnetic bound states
between the carrier spins and local moments, the magnetic
bound states thus might be destroyed. That evaluation has
been indicated in the shifting of the peak towards a higher
frequency as increasing temperature. The significant rise of
the peak at low frequency in the local dynamical spin sus-
ceptibility when the temperature reaches the critical PM-FM
transition point, in the meanwhile, demonstrates the strong
spin fluctuations attributing the bound state of the magnetic
coherence occurring before the FM transition. By switching
on the magnetic disorder, the magnetic scattering potential de-
presses the magnetic coherent bound states. The effect of the
magnetic disorder can be signified in the height suppression
of the peak in Imχ (ω) as increasing the disorder [see Figs.
2(a)–2(c)].

The effect of the magnetic randomness disorder on the
magnetic bound state before the PM-FM transition in DMSs
can also be indicated in the left panels of Fig. 2. Indeed,
Figs. 2(d)–2(f) has addressed the suppression of the Imχ (ω)
by increasing the magnetic disorder U at any given value of
the magnetic coupling J for T = 0.1, x = 0.1, and n = 0.05.
Once the disorder is fixed, increasing the magnetic coupling
rapidly reinforces the Imχ (ω) intensity, especially at low
frequency. The identification specifies the significant role of
magnetic coupling in establishing the formation of magnetic
coherence in the PM state. Increasing the magnetic coupling
enlarges the magnetic fluctuations of the carriers with respect
to local moments that make to reinforce the bound state of the
magnetic coherence. The short-range magnetic bound state
thus might be formed in case of sufficiently large magnetic
coupling once the temperature reaches the FM-PM transition
point [cf. Figs. 2(a)–2(c)].

FIG. 3. 1/T1T as a function of temperature T at given random-
ness magnetic disorder U = 0.2 for carrier doping n = 0.07 with
some data fits (a) and for different carrier dopings n (b) at J = 4 and
x = 0.1. TSF and TFL in panel (a) indicate the magnetic fluctuation
and Fermi-liquid transition temperatures that are addressed in solid
red and dashed purple arrows, respectively in the panel (b).

To examine the effect of the magnetic disorder in the spin
fluctuations and, more precisely, the nuclear spin-lattice re-
laxation process, we analyze the spin-relaxation rate divided
by temperature 1/T1T as a function of temperature T in
Fig. 3 for a given value of magnetic disorder U = 0.2 with
different carrier densities n at J = 4 and x = 0.1. In order to
inspect explicitly behavior of the nuclear spin-relaxation rate,
in Fig. 3(a), we show 1/T1T versus T at a given carrier doping
n = 0.07 with three different data fits corresponding to three
different regions of temperatures. In the large temperature
region, 1/T1T decreases linearly by lowering temperatures.
This scenario of the 1/T1T versus temperature has been ob-
served in the research of the nuclear spin-lattice relaxation in
optimally doped and overdoped iron-based superconductors
at large temperatures [42], the system thus stabilizes in a
so-called nematic order state [43–45]. The nematic instability
relates to rotational symmetry breaking that is a characteristic
feature of the normal state from which at lower temperatures
the system might stabilize in some ordered state such as super-
conductivity, magnetism, or even in topological states [43,44].
Recently, the nematicity fluctuations have been specified in
some doped magnetic semiconductors [46]. The strong in-
crease of the nuclear spin-lattice relaxation in this region is
typically caused by the thermal activation that accelerates the
internal motion. The correlation time then decreases under a
fast motion due to thermal fluctuations. For temperatures in
the range of TSF < T < TFL one finds 1/T1T to be a constant.
The temperature independence 1/T1T specifies the Korringa
law of the nuclear spin-lattice relaxation, and the system thus
settles in the Fermi-liquid state. In this regime, the strong
thermal fluctuations suppress the magnetic correlations and
the system behaves like conventional metals. At temperatures
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T < TSF , in contrast, 1/T1T increases as decreasing tem-
perature following the Curie law, 1/T1T ∼ 1/(T − θ ). That
behavior of the nuclear spin-lattice relaxation rate releases the
reinforcing of the spin fluctuations as decreasing temperature
toward the PM-FM transition point [42,47,48]. Within this
low-temperature range, although the system might seem to
attain a metallic state, it may well revert to an unconventional
metal state due to the intensification of spin fluctuations. At
such a point, the system generates nonuniform magnetization,
leading to the formation of the magnetic coherent bound states
close to the PM-FM transition.

Relationships of 1/T1T versus T for other carrier densities
at the same set of parameters are addressed in Fig. 3(b). In
the whole range of the carrier density, one always finds that
1/T1T decreases then gets a constant and finally increases
by decreasing temperature, being separated by TSF and TFL.
With increasing carrier density, both of these critical temper-
atures shift to the left. In DMSs, once the impurity band is
partly filled, the movement of the carriers through the lattice
is driven by the exchange coupling with the localized mag-
netic moments. The temperature dependence of the relaxation
process can be followed from the Korringa mechanism that
reflects the flip-flop transitions of nuclear spins and spins of
carriers near the Fermi surface and only carriers within kBT
of the Fermi surface can participate in the nuclear relaxation
process [49,50]. In this sense, by increasing the temperature,
the probability of the carriers fluctuating in the relaxation
process is enhanced that in general reinforces the nuclear
spin-lattice relaxation rate. This scenario actually happens in
case of large temperatures once the magnetic correlations are
suppressed. In this range of large temperatures, increasing
the carrier density enhances the fluctuating and the nuclear
spin-lattice relaxation rate is developed. However, in the case
of lower temperatures, the magnetic correlations play a more
important role in settling the mobility of the carriers than
that of the thermal fluctuations. The nuclear spin-lattice re-
laxation rate 1/T1 and its temperature dividend 1/T1T thus
increase as decreasing temperature. Due to the large mag-
netic coupling, the relaxation rate thus is largest once the
impurity band is half-filled [see the green lines in Fig. 3(b)].
Note here that in the half-filled impurity band case, the mo-
bility of the carriers becomes most favored in the case of
large magnetic coupling, resulting the promotion of the nu-
clear spin-lattice relaxation rate. Once the thermal fluctuations
become less important, the behavior of the spin-relaxation
rate versus carrier density in the low-temperature range once
more indicates the spin fluctuation signatures as addressed in
Figs. 1(a)–1(c) and in Fig. 3(a) with the formation of the mag-
netic coherent bound state above the PM-FM transition point.
The Curie law in 1/T1T behavior also attributes the magnon
processes contributing to the spin-lattice relaxation like in
the double-exchange mechanism with Jahn-Teller distortion
observed in doped manganites [51]. In the relationships of the
spin-relaxation rate, the magnon ascription in our situation is
significantly affected by the filling of the impurity band.

To address in detail the complex transitions in the system
depending on temperature, we display in Fig. 4 pointing out
the phase structure in T − n plane for the parameters settled
in Fig. 3. Here, the FM-PM transition temperature is evalu-
ated by the divergence of the static magnetic susceptibility

FIG. 4. Phase diagram addressing the instabilities of the nematic
state (NeS), Fermi liquid (FL), spin fluctuations (SF), and ferromag-
netic state (FM) in the T − n plane for magnetic disorder U = 0.2
and magnetic coupling J = 4 at magnetic impurity doping x = 0.1.
The FM transition temperature is evaluated by the divergence of the
static magnetic susceptibility function [27].

function [27]. At a given carrier density n, one always finds
stability of the FM state at sufficiently low temperatures. With
increasing temperature, the thermal fluctuations eliminate the
magnetic order and the system settles in the PM state. How-
ever, this PM state can be inspected in more detail in the
signatures of the nuclear spin-lattice relaxation. Indeed, at
temperatures larger than that of the FM-PM transition, firstly
one finds the strong spin fluctuations (SF) with respect to the
stability of the magnetic bound states. The bound state would
be suppressed by reinforcing the thermal fluctuations and the
system stabilizes in the Fermi liquid (FL) and then in the
nematic state (NeS). The enhancement of the spin fluctuations
at low carrier densities can be explained by an energetical
creation of the magnetic bound state once all itinerant carriers
enable feeling the magnetic coupling with the local magnetic
moments. However, as the carrier density increases, the cor-
relation between carriers and local moments is screened, the
bound coherence energy thus is suppressed or the magnetic
fluctuations are restrained in the system. These properties
have also been addressed in the evaluation of the dynamical
magnetic susceptibility spectra by varying the carrier density
as in the Fig. 1.

To analyze the influence of magnetic coupling on the nu-
clear spin-lattice relaxation process in the presence of the
randomness disorder, we present in Fig. 5 the spin-relaxation
rate divided by temperature 1/T1T as a function of tem-
perature T for the half-filled impurity band case (x = 0.1
and n = 0.05) at different values of the magnetic coupling
J and the randomness disorder. For a given set of random-
ness disorder and magnetic coupling, one always finds three
regimes separated by the Fermi-liquid TFL and spin fluctua-
tion TSF critical temperatures. At the large temperature, the
thermal fluctuations become dominant and the system settles
in the nematic stability and then in the Fermi-liquid states
by lowering the temperature to T < TFL. At T < TSF , 1/T1T
follows the Curie law expressing the existence of the mag-
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FIG. 5. Nuclear spin-lattice relaxation rate divided by tempera-
ture 1/T1T as a function of temperature T for different randomness
magnetic disorders U and magnetic couplings J at x = 0.1 and
n = 0.05. The critical temperatures for the spin fluctuation TSF and
the Fermi liquid TFL transitions are indicated, respectively, by the
solid red and dashed purple arrows.

netic fluctuations. That behavior attributes the formation of
the magnetic bound state above the PM-FM transition tem-
perature. For a given randomness disorder, TSF shifts to the
right with respect to the sustainable magnetic bound state
by enlarging magnetic coupling. The magnetic coupling thus
plays an important role in reinforcing the FM correlation
length in the PM phase, even beyond the PM-FM transition
temperature. That signatures have been observed in doped
manganites or some other similar materials [52,53]. Increas-
ing the randomness disorder, in one way, suppresses 1/T1T at
T < TSF indicating the suppression of the magnetic coherent
bound state or the breaking down of the magnon stability due
to the presence of the randomness disorder. In contrast, out
of the magnetic correlations, i.e., at T > TFL, increasing the
randomness disorder reinforces the thermal fluctuations and
develops the nuclear spin-lattice relaxation rate. Note here that
in our model given in Eq. (1), the presence of the random-
ness disorder excludes the magnetic scattering potential of
the majority spin carriers [27]. As a consequence, the critical
temperature for the magnetic fluctuation transition TSF (and
also TFL) shifts to the left indicating the suppression of the

FIG. 6. Nuclear spin-lattice relaxation rate divided by tempera-
ture 1/T1T as a function of temperature T for different randomness
magnetic disorders U and magnetic doping x at J = 4 and n = 0.05.
The critical temperatures for the magnetic fluctuation TSF and the
Fermi liquid TFL transitions are indicated, respectively, by the solid
red and dashed purple arrows.

magnetic coherent bound state by increasing the randomness
disorder.

To complete the feature examining the influence of the
randomness disorder on the magnetic coherent bound state
in DMSs we address in Fig. 6 the dependence of the nu-
clear spin-lattice relaxation rate divided by temperature 1/T1T
versus temperature for different values of randomness disor-
der U at J = 4 and n = 0.05 in varying the magnetic doping x.
At a given randomness disorder, one always finds the reinforc-
ing of 1/T1T by lowering temperature following the Curie law
that addresses the development of the magnetic fluctuations
when temperature reaches the critical value of the PM-FM
transition. By increasing the magnetic impurity density, the
magnetic fluctuation regime broadens to the larger tempera-
ture range. Noting here that in the case of the large magnetic
coupling, for a given itinerant carrier density increasing the
magnetic impurity generally reinforces the possibility for the
magnetic correlations between the itinerant carriers with the
localized moments, resulting energetically in the magnetic
bound state of the carriers. The magnetic bound state thus be-
comes more stabilized against thermal fluctuations. Of course,
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in case of sufficiently high temperature, the large thermal
fluctuations would destroy all the magnetic bound states, the
system would then settle in the normal metallic state and one
finds the Korringa law indicating the Fermi-liquid state at
TSF < T < TFL and then the nematic instability at T > TFL.
For a given magnetic coupling, increasing the randomness
disorder also suppresses the magnetic correlations between
the itinerant carrier spins and localized moments, specified
by the shift to the left with respect to decreasing magnetic
fluctuation temperature TSF .

V. CONCLUSIONS

In conclusion, our study has focused on examining
the nuclear spin-lattice relaxation process in disordered
paramagnetic diluted magnetic semiconductors by utiliz-
ing the dynamical mean-field theory for the Kondo lattice
model involving localized disorder potential. In the infinite-
dimensional limit, we have derived a set of self-consistent
equations that allows us to numerically evaluate the single-
particle Green’s function and its self-energy of the itinerant
carriers. These numerical evaluations provide insights into
the local dynamical spin susceptibility and then the nuclear
spin-lattice relaxation rate of the system. Our findings indicate
that, in cases of large magnetic coupling between the itin-
erant carrier spins and localized moments and temperatures
near the paramagnetic-ferromagnetic transition point, the spin
fluctuations become dominant addressed by the sharp peak in

the spin dynamical susceptibility spectrum appearing at low
frequency. The spin fluctuations are suppressed by increasing
the magnetic disorder. Signatures of the spin dynamics in
the system are also reflected in the properties of the nuclear
spin-lattice relaxation process. Indeed, results of the spin-
relaxation rate divided by temperature attribute formation of
the coherent magnetic bound state or the magnon stability in
the paramagnetic phase near the paramagnetic-ferromagnetic
transition point, indicated by the breaking down of the
Korrigna’s law for the temperatures smaller than that crit-
ical value of the Fermi liquid to the magnetic fluctuation
transition. The coherent magnetic bound state becomes
strengthened by increasing the magnetic coupling and mag-
netic doping density. Increasing the randomness magnetic
disorder or thermal fluctuations vice versa suppresses the
stability of the bound state. In this case, one finds the Fermi
liquid and then the nematic instability when temperature is
sufficiently large. Our observations thus have underlined the
significance of the magnetic coupling and the magnetic dis-
orders in determining the spin-lattice relaxation processes in
DMSs, and highlighted the advantage of the dynamical mean-
field theory in studying the spin dynamics in a doped magnetic
system.
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