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Floquet engineering of the Lifshitz phase transition in the Hubbard model
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Within the Floquet theory of periodically driven quantum systems, we demonstrate that an off-resonant high-
frequency electromagnetic field can induce the Lifshitz phase transition in periodical structures described by the
one-dimensional repulsive Hubbard model with the nearest- and next-nearest-neighbor hopping. The transition
changes the topology of electron energy spectrum at the Fermi level, transforming it from the two Fermi points
to the four Fermi points, which facilitates the emergence of the superconducting fluctuations in the structure.
Possible manifestations of the effect and conditions of its experimental observability are discussed.
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I. INTRODUCTION

Controlling electronic properties by an off-resonant high-
frequency electromagnetic field, which is based on the Floquet
theory of periodically driven quantum system (“Floquet engi-
neering”), has been thoroughly explored in last decades and
by now is an established research area [1–6] with numerous
predicted and experimentally observed phenomena in atomic
systems [7–13], quantum circuits [14–17], solid state systems
[18–21], and nanostructures [22–28]. Since the off-resonant
field cannot be absorbed by electrons, it only dresses them,
modifying all electronic properties. Such a dressing leads
both to the renormalization of the existing terms in the elec-
tron Hamiltonian and to the emergence of new terms (e.g.,
the spin-orbit coupling [29]), which drastically changes band
structure and electronic transport. Particularly, the electro-
magnetic dressing results in the substantial modification of
the electron interactions, inducing the electron states bound
at repulsive potentials [30], the electron pairing in systems
containing charge carriers with different effective masses
[31,32] and the new interactions (such as pair hoppings and
density-dependent tunneling) in the electronic systems with
the nonparabolic dispersion (e.g., within the simplest one-
dimensional single-band Hubbard model) [33]. The interplay
of modified electron dispersion and electron interactions leads
to the emergence of the many-body phase transitions in the
driven systems, including such correlated phases as the Kitaev
spin liquids [34–36] and the superconducting phases arisen
from the modification of interaction potential [37] or the sup-
pression of competing correlated phases (e.g., charge-density
waves [38,39]).

In the present article, we demonstrate theoretically that a
dressing electromagnetic field induces changing the topology
of the Fermi surface (the Lifshitz phase transition) for a peri-
odical structure described by the one-dimensional single-band
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Hubbard model with the nearest- and next-nearest-neighbor
hopping. As a consequence of the phase transition, the op-
tically induced superconductivity can appear. The article is
organized as follows. In Sec. II, the effective stationary
Hamiltonian of the considered structure is derived within the
conventional Floquet theory of periodically driven quantum
systems. In Sec. III, the optically induced Lifshitz transition
and the associated superconductivity are discussed. The last
two sections contain the conclusion and acknowledgments.

II. MODEL

Let us consider a one-dimensional infinite periodical
structure irradiated by a linearly polarized off-resonant elec-
tromagnetic field within the conventional Hubbard model with
the nearest- and next-nearest-neighbor hoppings (see Fig. 1).
The electron Hamiltonian of the system reads

Ĥ(τ ) =
∑
k,σ

ε(k − eA(τ )/h̄)ĉ†
kσ

ĉkσ

+
∑
k,k′,q

V0ĉ†
k−q,↑ĉ†

k′+q,↓ĉk′↓ĉk↑, (1)

where ĉ†
kσ

(ĉkσ ) are the creation (annihilation) operators,

ε(k) = −t cos(kd ) − t ′ cos(2kd ) (2)

is the electron energy spectrum in the field’s absence, k is
the continuous electron wavevector defined within the first
Brillouin zone, A(τ ) = E sin(ωτ )/ω is the vector potential
of the field, τ is the time, E is the electric field amplitude,
ω is the field frequency assumed to be far from all reso-
nant frequencies of the electron system, σ =↑,↓ is the spin
quantum number, d is the period of the structure, and t and
t ′ are the nearest- and next-nearest-neighbor hopping coeffi-
cients, V0 is the potential of the onsite Coulomb repulsion of
electrons, and q is the wavevector transferred in the process
of electron-electron interaction. It should be noted that we
consider an off-resonant field, assuming the field frequency
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FIG. 1. Sketch of the system under consideration: A one-
dimensional periodic structure consisting of identical unit cells
marked by circles and irradiated by a linearly polarized electro-
magnetic wave (EMW) with the electric field amplitude E and
the frequency ω, where t and t ′ are the nearest- and next-nearest-
neighbor hopping coefficients, respectively, describing the electron
transitions between the unit cells, and d is the period of the structure.

to be far from resonant frequencies of the electronic system.
As a consequence, the field absorption is suppressed and,
correspondingly, the heating of the system can be neglected.

Within the conventional Floquet theory of periodically
driven quantum systems, one can introduce the unitary trans-
formation Û (τ ) = eiŜ(τ ), which transforms the periodically
time-dependent Hamiltonian Eq. (1) into the effective station-
ary Hamiltonian

Ĥeff = Û (τ )†ĤÛ (τ ) − ih̄Û†(τ )∂τ Û (τ ). (3)

There is the regular method to find the transformation operator
Ŝ(τ ) in the case of high-frequency field which satisfies the
condition Ĥn/h̄ω � 1, where Ĥn are the components of the
Fourier expansion of the time-dependent Hamiltonian Eq. (1)

Ĥ(τ ) =
∞∑

n=−∞
Ĥneinωτ . (4)

Namely, both the operator Ŝ(t ) and the stationary Hamiltonian
Eq. (3) can be found as a 1/ω expansion (the Floquet-Magnus
expansion) [1–4], which leads to the effective stationary
Hamiltonian

Ĥeff = Ĥ0 +
∞∑

n=1

[Ĥn, Ĥ−n]

nh̄ω
+ o

(
Ĥn

h̄ω

)
. (5)

In the following, we will restrict the analysis by the high-
frequency limit

t/h̄ω � 1. (6)

Under this condition, one can take into account only the main
term of the expansion Eq. (5), which reads

Ĥ0 =
∑
k,σ

ε̃(k)ĉ†
kσ

ĉkσ +
∑
k,k′,q

V0ĉ†
k−q,↑ĉ†

k′+q,↓ĉk′↓ĉk↑, (7)

where

ε̃(k) = −t̃ cos(kd ) − t̃ ′ cos(2kd ) (8)

is the electron energy spectrum modified by the field, t̃ =
tJ0(η) and t̃ ′ = t ′J0(2η) are the hopping coefficients modified
by the field (dressed hopping coefficients), J0(η) is the Bessel
function of the first kind, and η = eEd/h̄ω is the dimen-
sionless parameter describing the strength of electron-field
interaction in the considered system. The effective Hamil-
tonian Eq. (7) derived under the condition Eq. (6) has the

FIG. 2. Electron energy spectrum near the Fermi level (dashed
horizontal line) for the half-filled system with t ′ = 0.2t : (a) in the
absence of irradiation; (b) under irradiation with η = eEd/h̄ω = 2.2.

clear physical meaning. Namely, the condition Eq. (6) can be
rewritten as τ0/T � 1, where τ0 ∼ h/t is the characteristic
lifetime of an electron in a unit cell of the periodic struc-
ture pictured in Fig. 1, and T = 2π/ω is the field period.
Evidently, if the lifetime τ0 much exceeds the field period
T , the electron “feels” only the time-averaged Hamiltonian
Eq. (1), which is described by Eq. (7). It follows from the
Hamiltonian Eq. (7), particularly, that the high-frequency field
modifies only the hopping coefficients, whereas the interac-
tion part of the Hamiltonian remains the same in the main
order of the Floquet-Magnus expansion. As to neglected terms
of the Hamiltonian Eq. (5), they contribute with the smallness
∼(t/h̄ω)2 and can be omitted under the condition Eq. (6) (see
Appendix for more details).

III. RESULTS AND DISCUSSION

The structure of the electron energy spectrum Eq. (8) at
the Fermi level depends on the ratio of the dressed hopping
coefficients

t̃ ′

t̃
= t ′

t

J0(2η)

J0(η)
. (9)

Normally, the hopping coefficient t much exceeds the coef-
ficient t ′. As a consequence, the Fermi surface in the field’s
absence consists of the two Fermi points with the wavevectors
±kF0 [see Fig. 2(b)]. It follows from Eq. (9) that the dressing
field changes the hopping coefficients in the broad range.
Particularly, the ratio Eq. (9) can be very large near η = η0,
where η0 ≈ 2.409 is the first root of the Bessel function
J0(η0) = 0. Therefore, the field crucially changes the Fermi
surface, inducing the four Fermi points with the wavevectors
±kF1 and ±kF2 [see Fig. 2(b)]. As a consequence, the Lifshitz
transition with the phase diagram plotted in Fig. 3 appears. It
should be noted that the Fermi surface has four points even at
very low filling factors near the root η = η0.

To describe the effect of the complex structure of the
Fermi surface on the emergence of superconducting insta-
bility, one has to account for the dynamical screening of
the repulsion potential V0 by the electron-hole fluctuations
in the vicinity of the Fermi surface. Within the conventional
random phase approximation (RPA), the screened potential of
electron-electron interaction reads [40]

V (q) = V0

1 + V0	q
, 	q =

∑
k

f0(ε̃k ) − f0(ε̃k+q)

ε̃k+q − ε̃k
, (10)
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FIG. 3. Phase diagram of the Lifshitz transition from the two-
point Fermi surface to the four-point Fermi surface at t/t ′ = 0.2,
where the filling factor f ∈ [0, 2] is the number of electrons per unit
cell.

where 	q is the static polarizability of the electrons, and
f0(ε) is the Fermi-Dirac distribution function. In the case of
complex Fermi contour, polarizability 	q has peaks at the
wavevectors ±2kF1, ±2kF2 and ±(kF1 − kF2). This leads to
the strong nonmonotonic dependence of the screened poten-
tial V (q) plotted in Fig. 4(a) as a function of the wavevector q
transferred in the interaction process. In the coordinate space,
this nonmonotonic profile projects to the negative value of the
interaction potential as shown in Fig. 4(b). The attraction at
finite distance, which corresponds to these negative values,
can favor the Cooper instability with the formation of electron
pairs. Following Kohn and Luttinger [41], such a mechanism
results in the formation of pairs with finite angular momen-
tum, which leads to superconductivity. Within the mean-field
approach [42], the order parameter of the superconducting

FIG. 4. The interaction potential for the half-filled system with
t ′ = 0.2t under irradiation with η = eEd/h̄ω = 2.2 in the reciprocal
space (a) and the coordinate space (b).

FIG. 5. Order parameter (in arbitrary units) for the half-filled
system with t ′ = 0.2t under irradiation with η = eEd/h̄ω = 2.2 in
the reciprocal space (a) and the coordinate space (b).

phase 
(q) is defined by the self-consistent equation


(k) = −
∑

k′
V (k − k′)

tanh(Ek′/(2T ))
(k′)
2Ek′

, (11)

where T is the temperature, Ek =
√


2(k) + (ε̃k − εF )2 is the
excitation spectrum, and εF is the Fermi energy. To estimate
the critical temperature Tc and the order parameter near this
temperature, it should be noted that |
(k)| → 0 at T → Tc

and therefore, one can linearize Eq. (11) near the temperature
Tc by setting Ek ≈ |ε̃k − εF |. Then the linearized Eq. (11)
reads


(k) = −
∑

k′
V (k − k′)

tanh(|ε̃k − εF |/2T )

2|ε̃k − εF | 
(k′). (12)

It can be seen that the right-hand side of Eq. (12) acts on the
function 
(k) as a linear integral operator with the eigenval-
ues λ = λ(T ). The maximal temperature T which satisfies the
self-consistent Eq. (11) is the critical temperature Tc, which
corresponds to λ(Tc) = 1. As a result of solving this equation,
we arrive at the profile of the order parameter slightly below
the temperature Tc, which is plotted in Fig. 5. It follows from
the plots that the order parameter has nodes and is sym-
metric with respect to the replacement q → −q. Following
the conventional terminology, such a behavior of the order
parameter corresponds to the spin-singlet nodal superconduc-
tivity. It should be noted that the appearance of the nodes in
the profile of the superconducting gap is a typical feature of
the Kohn-Luttinger mechanism [41]. Within this model, the
interaction potential is nonmonotonic in the momentum space
and changes its sign in the real space. Thus, the potential is
repulsive at short distances and attractive at larger distances.
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Such an interaction potential structure favors the Cooper pair
wave function with a complex profile in both the momentum
space and the coordinate space. In turn, the profile of the
Cooper wave function defines the order parameter profile.

Certainly, the RPA approach should be used carefully in
the strong coupling regime. Therefore, further analysis of the
strong coupling regime may be required for specific materials.
However, the superconducting instability emerges at arbitrar-
ily small values of interaction (at least, in the zero-temperature
limit) provided that the dynamically screened interaction be-
comes attractive. It should be noted also that the mean-field
results should be treated with care in the one-dimensional
system under consideration since fluctuations may play a
crucial role even in the finite systems. Particularly, the su-
perconducting correlations are 〈
(x)
(0)〉 ∼ x−γ , where γ

is the critical exponent. It is well known that there are mul-
tiple instabilities coexisting with superconducting ones (e.g.,
ferromagnetic or charge-density wave instabilities). In a suffi-
ciently long structure, an instability with the smallest value of
γ , which decays most slowly, is dominant. To find the dom-
inant instability, one has to calculate the critical exponent γ ,
which is a very complicated problem in the most general case.
However, in the particular case of the weak coupling regime
V0/t̃ � 1, the calculation of γ within the Hubbard model can
be made with the help of renormalization group technique
[43] or the Hartree-Fock approximation [44]. As a result of
the calculation, it has been shown that the superconducting
fluctuations are dominant in a wide range of parameters in
the phase with the four points at the Fermi surface within the
discussed t-t ′ one-dimensional Hubbard model [45]. It should
be noted that the strong coupling regime V0/t̃ � 1 can also
be realized in our set-up since the dressed hopping coefficient
t̃ = tJ0(η) is very small near a zero of the Bessel function.
The discussed one-dimensional Hubbard model with the next-
nearest-neighbor hopping in the strong coupling regime has
been analyzed numerically by the density matrix renormal-
ization group methods [45]. It follows from this analysis that
the spin-singlet superconductive fluctuations remain dominant
also in the strong coupling regime if the ratio Eq. (9) satisfies
the condition |t̃ ′/t̃ | > 1. Since the order parameter behavior
plotted in Fig. 5 and discussed above corresponds to the
spin-singlet superconductivity, the superconductivity can take
place in the considered one-dimensional Hubbard chain of
finite length.

It should be noted that the discussed phenomena can also
occur in coupled Hubbard chains—so-called two-leg Hubbard
ladders [46]—which are used, particularly, to describe the
wide class of novel unconventional superconductors based on
the copper oxides [47]. The two-leg Hubbard ladders com-
prise two parallel chains of atoms with the intrachain hopping
t and the interchain hopping t ′. In such systems, the ratio
Eq. (9) can be controlled by changing the angle between the
field polarization and the system axis, which will result in
the same optically induced Lifshitz transition and the cor-
responding superconductivity. Completing the discussion, it
should be stressed that the Lifshitz transitions can be achieved
also in a few-layer graphene via the static gate voltage or
the electromagnetic dressing [48]. Since the emergence of
unconventional superconductivity was observed recently in
the gating trilayer graphene [49], one can expect the experi-

mentally observable similar effects in the systems described
by the Hubbard model.

To estimate the experimental feasibility of the effect, one
can apply the dressing fields which were recently used to
observe the Floquet gap opening in graphene [20]. There the
graphene sample was irradiated by short (500 fs) pulses with
central frequency ∼10 THz, the mean fluence of 1 mJcm−2

and the peak intensity of 1 GWcm−2. For these field pa-
rameters and the chain period d ≈ 1 nm, the electron-field
interaction parameter is η ≈ 0.7. Thus, the currently available
THz fields are appropriate for observation of the discussed
effects.

It should be noted that the considered system may support
many correlated phases, including the Mott insulating phases
and the ferromagnetic phases. However, the question of the
dominant instability (charge waves or spin-density waves,
superconducting phase or ferromagnetic phase, etc.) is the
numerically challenging problem which cannot be solved in
a general form. Therefore, this problem should be analyzed
carefully for specific structures planned to be studied experi-
mentally.

IV. CONCLUSION

We showed theoretically that an off-resonant high-
frequency electromagnetic field can induce the Lifshitz phase
transition in periodical structures described by the one-
dimensional repulsive Hubbard model with the nearest- and
next-nearest-neighbor hopping. The transition changes the
topology of electron energy spectrum at the Fermi level,
transforming it from the two Fermi points to the four Fermi
points. This facilitates the emergence of the spin-singlet su-
perconducting fluctuations in the structure, which can be
experimentally observable for the currently available THz
fields.
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APPENDIX: THE EFFECTIVE HAMILTONIAN

To describe the electron-field interaction with the Hamil-
tonian Eq. (1), it is convenient to introduce the two
field-dependent dimensionless parameters η = eEd/h̄ω and
ξ = t/h̄ω, which can be varied independently by varying the
field amplitude E and the field frequency ω. In the present
theory, we assume the field frequency to be high enough to
satisfy the condition ξ � 1. This allows to describe the depen-
dence of electronic properties on the parameter ξ within the
conventional perturbation theory, expanding the Hamiltonian
into the ξ -power series. As to the field amplitude E , it is not
assumed to be small. Correspondingly, the parameter η can be
arbitrarily large and will be taken into account accurately.

To proceed, let us expand the periodically time-dependent
electron energy ε(k − eA(τ )/h̄) in the Hamiltonian Eq. (1)
into the Fourier series

ε(k − eA(τ )/h̄) = ε̃(k) +
∑

m

εm(k)eitmτ/h̄ξ , (A1)
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where

ε̃m(k) = −tJm(η) cos kd − t ′Jm(2η) cos 2kd, (A2)

Jm(z) is the Bessel function of the first kind, m = ±1,±2, ...

is the order of the Bessel function, and ε̃(k) = ε0(k). Then the
time-independent part of the Hamiltonian Eq. (1) reduces to
the unperturbed Hubbard Hamiltonian with the renormalized
tunneling coefficients t̃ = tJ0(η) and t̃ ′ = t ′J0(2η). To sim-
plify the following analysis, let us apply the time-dependent
unitary transformation Û0 = exp(iŜ0), where

Ŝ0 = −iξ
∑

k

∑
m

εm(k)

mt
eitmτ/h̄ξ ĉ†

kσ
ĉkσ (A3)

is the transformation operator. Then the transformed Hamilto-
nian Eq. (1) reads

Ĥ′(τ ) = Û0ĤÛ†
0 − iÛ0∂τ Û†

0

=
∑

k

ε̃(k)ĉ†
kσ

ĉkσ +
∑
k,k′,q

Ṽ (τ )ĉ†
k−q,↑ĉ†

k′+q,↓ĉk′↓ĉk↑,

(A4)

where

Ṽ (τ ) = V0 exp

[
ξ

∑
m

εm(k) + εm(k′)
mt

exp(itmτ/h̄ξ )

]

× exp

[
−ξ

∑
m

εm(k + q) + εm(k − q)

mt
exp(itmτ/h̄ξ )

]
.

(A5)

Comparing Eqs. (1) and (A4), one can see that the Hamil-
tonian Eq. (1) in the field’s absence (A(τ ) = 0) and the
Hamiltonian Eq. (A4) have the same form with the replace-
ments ε(k) → ε̃(k) and V0 → Ṽ (τ ). Therefore, the function
ε̃(k) defined by Eq. (8) should be treated as the electron
energy spectrum dressed by the field, whereas the function
Ṽ (τ ) defined by Eq. (A5) is the dressed interaction potential
discussed below.

Since the interaction part of the Hamiltonian Eq. (A4)
becomes periodically time dependent, it can be expanded
into the Fourier series V (τ ) = V0

∑
l V (l )eiltτ/h̄ξ , and re-

sults for ξ � 1 in V (0) = V0 + O(ξ 2) and V ( j �=0) = O(ξ ).
Applying the Floquet-Magnus expansion Eq. (5) to the
Hamiltonian Eq. (A4), one can find that the leading cor-
rection to the effective static Hamiltonian is proportional to
ξ

∑
j �=0[V ( j),V (− j)] ∼ O(ξ 3). Thus, up to the linear order in

ξ , the effective static interaction term remains unchanged:
V (τ ) ≈ V0 + O(ξ 2). As to the nonlinear terms, they have a
complicated structure describing the field-induced corrections
to the interaction between electrons localized at different
atoms, including such processes as the electron pair hopping,
the exchange interaction, the dissociation of electron pairs
localized at a single atom, and the density dependent tunneling
(see, e.g., Ref. [33]). However, the field-induced corrections to
the electron interactions decays exponentially as ξ 2n, where
nd is the distance between the interacting electrons (n =
1, 2, 3, ...). Therefore, these corrections can be neglected as
a first approximation under the condition ξ � 1. As a result,
we arrive at the effective static Hamiltonian Eq. (7).
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