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The random phase approximation (RPA) as formulated as an orbital-dependent, fifth-rung functional within
the density functional theory framework offers a promising approach for calculating the ground-state energies
and the derived properties of real materials. Its widespread use to large-size, complex materials is, however,
impeded by the significantly increased computational cost, compared to lower-rung functionals. The standard
implementation exhibits an O(N4)-scaling behavior with respect to system size N . In this work, we develop
a low-scaling RPA algorithm for periodic systems, based on the numerical atomic orbital (NAO) basis-set
framework and a localized variant of the resolution of identity (RI) approximation. The rate-determining step for
RPA calculations, the evaluation of noninteracting response function matrix, is reduced from O(N4) to O(N2)
by just exploiting the sparsity of the RI expansion coefficients, resultant from localized RI (LRI) scheme and
the strict locality of NAOs. The computational cost of this step can be further reduced to linear scaling if the
decay behavior of the Green’s function in real space can be further taken into account. Benchmark calculations
against existing k-space-based implementation confirms the validity and high numerical precision of the present
algorithm and implementation. The new RPA algorithm allows us to readily handle three-dimensional, close-
packed solid-state materials with over 1000 atoms. The algorithm and numerical techniques developed in this
work also have implications for developing low-scaling algorithms for other correlated methods to be applicable
to large-scale extended materials.
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I. INTRODUCTION

Random phase approximation (RPA) [1–3] as formulated
within the framework of adiabatic-correction fluctuation-
dissipation theorem (ACFDT) [4,5] provides an appealing
approach to compute the ground-state energy of interacting
many-electron systems [6–9]. It can be viewed as a nonlo-
cal approximation for the exchange-correlation (XC) energy
functional within Kohn-Sham (KS) density functional theory
(DFT) [10,11]. According to the Jacob’s ladder classifying
different XC functionals [12], the RPA sits on the top rung of
the ladder, and captures seamlessly nonlocal many-electron
correlations that are missing in lower-rung functionals. Ap-
plications of RPA to real materials show that this approach
performs rather well in describing energy differences, in par-
ticular the surface adsorption energies [13,14], the reaction
barrier heights [15,16], and the delicate energy differences
between different polymorphs [17–21]. Despite its promising
performance, a widespread use of RPA is hindered by its
quickly increasing computational cost with system size. To
deal with this issue, a considerable amount of recent works
are devoted to developing low-scaling algorithms to speed up
the RPA calculations [22–30], paving ways for applying RPA
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to large-scale, complex materials that are previously out of
reach.

The key quantity in RPA calculations is the noninteract-
ing KS density response function χ0, represented within a
suitable basis set. The standard computational scaling for
evaluating χ0 is O(N4) with N being a measure of system
size, for both plane-wave basis sets and the resolution-of-
identity (RI) formulation of RPA within atomic-orbital basis
sets. The O(N4) scaling can be reduced to O(N3) by utilizing
the space-time algorithm [31–33], initially developed for the
GW method [34]. Thanks to the development of the minimax
quadrature grid by Kaltak et al. [24,35], which enables an
efficient discrete Fourier transform from the imaginary time
domain to the imaginary frequency domain, the O(N3) al-
gorithm becomes superior to the standard O(N4) one at a
cross point of system size that can be handled by modern
computers. Such a dual real-space and plane-wave formula-
tion of O(N3) RPA (and analogously GW [36]) algorithm
was soon extended to Gaussian atomic-orbital framework,
combined with the RI technique of different flavors, such as
the overlap-metric [26] and attenuated-Coulomb-metric [37]
-based RI schemes, pair atomic density fitting (PADF) [38],
and the interpolative separable RI scheme [29,30,39]. Ben-
efited further from the spatial locality of atomic orbitals,
algorithms and implementations with O(N ) to O(N3) scal-
ing behaviors have been reported [26–30]. Apart from these,
radically different approaches based on solving the Riccati
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equation using the local correlation method [25] as well as on
a stochastic formulation of ACFDT-RPA via time-dependent
DFT [22,40] have been developed, allowing for linear or even
sublinear RPA correlation calculations. Practically, the plane-
wave-based implementations are more suitable for describing
periodic systems, whereas the atomic-orbital-based imple-
mentations are typically applied to finite molecular systems
and/or supercell-based �-only simulations.

In this work, we present yet another low-scaling algorithm
for periodic RPA calculations with finite k-point sampling
using numerical atomic orbital (NAO) basis sets. In this al-
gorithm, the computational cost for the key step of the RPA
calculations, namely, the evaluation of the KS response func-
tion matrix, scales quadratically or better with respect to the
number of atoms in the unit cell and linearly with the number
of k points in the Brillouin zone. This is enabled by the
localized resolution of identity (LRI) approximation [41], a
prescreening of the sparse RI coefficients [42–44], and an
efficient imaginary time-to-frequency Fourier transform using
the minimax grid [24,35]. The O(N2) scaling can in fact
be made asymptotically linear for insulating systems, if the
spatial decay of the Green’s function is further taken into
account. The algorithm has been implemented in a stand-alone
library package called LibRPA, which has been interfaced
with two NAO-based first-principles codes FHI-aims [45] and
ABACUS [46–48]. The development of LibRPA allows one to
do efficient RPA calculations with NAO-based first-principles
codes, with necessary inputs provided by the latter.

The LRI approximation, also known as PADF [49,50] or
concentric atomic density fitting (CADF) [51,52] in the litera-
ture, is crucial for the design of low-scaling algorithms, has
been used in periodic hybrid functional [42–44] and G0W0

calculations [53], as well as in RPA correlation energy [54]
and RPA force calculations for molecules [55] before. Various
benchmark calculations showed that this approximation is
sufficiently accurate for Hartree-Fock exchange calculations,
within the NAO basis set framework, for both molecules [41]
and periodic systems [42–44]. The LRI errors are admittedly
more pronounced for correlated methods that involve unoccu-
pied states. However, our own experience suggests that LRI
also provides adequate accuracy for correlated methods such
as PRA and GW , for both molecules [41,55] and extended
systems [53,56], provided that high-quality auxiliary basis
sets can be constructed. Recently, Spadetto et al. reported
a strategy that makes PADF-RPA work for large molecules
by projecting out parts of the basis set giving rise to orbital
products that are hard to describe by PADF. While the accu-
racy of LRI for NAO-based periodic RPA calculations will
be benchmarked elsewhere, here we mainly focus on the low-
scaling algorithm, the implementation details, and the scaling
behavior with respect to both system size and the number
of k points. Thanks to the existing canonical O(N4)-scaling
periodic RPA implementation in FHI-aims , the accuracy
and efficacy of the low-scaling RPA implementation can be
unambiguously benchmarked. We show that our present im-
plementation can readily treat three-dimensional bulk systems
containing over 1000 atoms, with reasonable computational
resources.

The paper is organized as follows. The key equations be-
hind the NAO-based low-scaling RPA algorithm are presented

in Sec. II, which is followed by Sec. III, which contains
a detailed discussion of the actual loop structure adopted
in the low-scaling algorithm and the implementation de-
tails. Section IV presents the major results, consisting of
test calculations that validate the algorithm and implemen-
tation by comparing to the existing k-space-based algorithm
in FHI-aims, and benchmarks of the scaling behavior of the
computational cost with respect to system size. In addition,
we also discuss the importance of incorporating the sparsity of
the Green’s function in the algorithm, which brings significant
further reduction of the computational cost. Finally, we report
a scaling-behavior study for system sizes beyond 1000 atoms
by interfacing LibRPA with another NAO-based DFT code,
ABACUS. The Appendix presents a detailed derivation of the
key equations in Sec. II, and the decay behavior of the Green’s
function in real space for prototypical systems.

II. THEORETICAL FORMULATION

In this section, we will present the key equations behind
the low-scaling algorithm of periodic RPA within the NAO
basis-set framework. The formalism should be applicable to
Gaussian-type or other types of localized atomic orbitals as
well, provided that high-quality auxiliary basis sets (ABSs)
are available and the LRI is sufficiently accurate.

Within the ACFDT framework, the RPA correlation energy
is formally given by [9]

ERPA
c = 1

2π

∫ ∞

0
dω Tr[ln(1 − χ0(iω)v) + χ0(iω)v], (1)

where χ0 represents the KS independent density-response
function on the imaginary frequency, v the bare Coulomb po-
tential, and Tr[AB] = ∫

drdr′A(r, r′)B(r′, r). For a periodic
system, the spatially nonlocal function χ0(r, r′, iω) can be
represented in terms of a set of Bloch-summed atom-centered
auxiliary basis functions (ABFs),

χ0(r, r′, iω) = 1

Nk

∑
μ,ν,q

Pq
μ (r)χ0

μν (q, iω)Pq∗
ν (r′), (2)

where the summation over q goes over the first Brillouin zone
(BZ), and Nk is the number of k points in the first BZ. In
Eq. (2),

Pq
μ (r) =

∑
R

eiq·RP(r − τU − R), (3)

with U denoting the atom on which the ABF Pμ(r) is sitting
and τU the position of atom U within the unit cell. Further
computing the Coulomb matrix in reciprocal space,

Vμν (q) =
∑

R

eiq·RVμν (R)

=
∑

q

eiq·R
∫∫

Pμ(r − τU )Pν (r′ − τV − R)

|r − r′| drdr′,

(4)

the RPA correlation energy can be evaluated using Eq. (1),
where χ0(iω) and v should be interpreted as their respective
matrix forms represented in terms of the ABFs, as given by
Eqs. (2) and (4). And in this case, Tr[AB] should be interpreted
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as Tr[AB] = 1
Nk

∑
μ,ν,q[Aμ,ν (q)Bν,μ(q)], with Nk being the

number of k points in the Brillouin zone. What is described
above is a well-defined formalism that yields reliable results,
under the condition that the employed RI or LRI approxi-
mations are adequately accurate, and the singularity of the
Coulomb matrix at q = 0 is properly treated. This above k-
space-based formalism has been implemented in FHI-aims,
and benchmark calculations have proven its numerical re-
liability. However, the bottleneck step in RPA calculations,
i.e., the evaluation of χ0

μν (q, iω), scales quartically with the
number of basis functions in the unit cell and quadratically
with the number of k points, preventing its application to large
systems.

To address this issue, here we reformulate the approach in
real space, particularly taking advantage of the locality offered
by NAO basis functions. As usual, we start with the real-space
imaginary-time expression of χ0, given by a simple product of

the noninteracting Green’s function G0,

χ0(r, r′, iτ ) = −iG0(r, r′, iτ )G0(r′, r,−iτ ). (5)

Within an AO basis framework, the KS wave functions in k
space are given by

ψnk(r) =
∑

i

∑
R

eik·Rci,n(k)ϕi(r − R − τI ), (6)

where ϕi(r) is a NAO sitting on atom I (with τI denoting its
position within the unit cell), and ci,n(k) are KS eigenvectors.
The noninteracting Green’s function G0(iτ ) in the imaginary-
time domain can be expanded in terms of the NAOs as

G0(r, r′, iτ ) =
∑
i, j

∑
R1,R2

ϕi(r − R1 − τI )

× G0
i, j (R2 − R1, iτ )ϕ j (r′ − R2 − τJ ) (7)

with

G0
i, j (R, iτ ) =

{−i 1
Nk

∑
n,k fnkci,n(k)c∗

j,n(k)e−ik·Re−(εn,k−μ)τ τ � 0,

i 1
Nk

∑
n,k(1 − fnk)ci,n(k)c∗

j,n(k)e−ik·Re−(εn,k−μ)τ τ > 0.
(8)

Here, G0
i, j (R, iτ ) is the matrix form of G0(iτ ) represented in terms of NAOs, μ is the chemical potential, and εn,k and fnk are KS

orbital energies and occupation factors. Here, for simplicity, we assume fnk equals 1 for occupied states and 0 for unoccupied
ones. The situation of fractional occupations is more involved and will be discussed separately.

Plugging Eq. (7) into Eq. (5), one has

χ0(r, r′, iτ ) = −i
∑

i, j,k,l

∑
R1,R2,R3,R4

ϕi(r − R1 − τI )ϕk (r − R3 − τK )G0
i, j (R2 − R1, iτ )

× G0
l,k (R3 − R4,−iτ )ϕ j (r′ − R2 − τJ )ϕl (r′ − R4 − τL ), (9)

where τK and τL denote the positions of the atom K and L, on which the basis function ϕk (r) and ϕl (r) are sitting, respectively.
The key idea here is to derive a more compact representation of χ0(r, r′, iτ ) in terms of the ABFs, i.e.,

χ0(r, r′, iτ ) =
∑

μ∈U ,ν∈V

∑
R1,R2

Pμ(r − R1 − τU )χ0
μ,ν (R2 − R1, iτ )Pν (r′ − R2 − τV ) (10)

with U and V denoting the atoms on which the ABFs Pμ(r) and Pν (r) are sitting, and τU and τV their respective atomic positions
within the unit cell. To this end, we apply the LRI approximation here, which in essence expands the product of two NAOs in
terms of the ABFs sitting on the two atoms on which the two NAOs are centering, i.e.,

ϕi(r − R1 − τI )ϕk (r − R3 − τK ) ≈
∑
μ∈I

Cμ(R1 )
i(R1 ),k(R3 )Pμ(r − R1 − τI ) +

∑
μ∈K

Cμ(R3 )
i(R1 ),k(R3 )Pμ(r − R3 − τK )

=
∑
μ∈I

Cμ(0)
i(0),k(R3−R1 )Pμ(r − R1 − τI ) +

∑
μ∈K

Cμ(0)
i(R1−R3 ),k(0)Pμ(r − R3 − τK ). (11)

Here we follow the notation adopted in Ref. [53], whereby C̃μ(R1 )
i(R1 ),k(R3 ) denote the two-center expansion coefficients with the

lattice vector in parentheses indicating the unit cell to which the basis function belongs. Furthermore, μ ∈ I (μ ∈ K) in Eq. (11)
signifies that the summation over the ABFs is restricted to those centering at the atom I (K). The second equation of Eq. (11)
follows from the translational symmetry of the periodic system, which requires that Cμ(R1 )

i(R1 ),k(R3 ) = Cμ(0)
i(0),k(R3−R1 ), with 0 here

denoting the unit cell at the origin. This implies that the expansion coefficients only depend on one independent lattice vector.
Now, by equalizing Eq. (9) with Eq. (10), and utilizing Eq. (11), it is somewhat lengthy but otherwise straightforward to show

that the matrix form of χ0(iτ ) in real space is given as follows,

χ0
μ,ν (R, iτ ) = −i

[ ∑
i∈U

∑
k∈K,R1

Cμ(0)
i(0),k(R1 )

(
Mν

i,k (R1, R, iτ ) + Mν∗
i,k (R1, R,−iτ ) + Zν

i,k (R1, R, iτ ) + Zν∗
i,k (R1, R,−iτ )

)]

= −i
∑
i∈U

∑
k∈K,R1

Cμ(0)
i(0),k(R1 )O

ν
i,k (R1, R, iτ ), (12)
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where

Oν
i,k (R1, R, iτ ) = Mν

i,k (R1, R, iτ ) + Mν∗
i,k (R1, R,−iτ )

+ Zν
i,k (R1, R, iτ ) + Zν∗

i,k (R1, R,−iτ )
(13)

and

Mν
i,k (R1, R, iτ ) =

∑
j∈V

Gi, j (R, iτ )Nν
j,k (R1, R, iτ )

Zν
i,k (R1, R, iτ ) =

∑
j∈V

Gj,k (R1 − R,−iτ )X ν
i, j (R, iτ ) (14)

with the intermediate quantities Nν
j,k (R1, R, iτ ) and

X ν
i, j (R, iτ ) defined as

Nν
j,k (R1, R, iτ ) =

∑
l∈L,R2

Cν(0)
j(0),l (R2−R)Gl,k (R1 − R2,−iτ )

X ν
i, j (R, iτ ) =

∑
l∈L,R2

Cν(0)
j(0),l (R2−R)Gi,l (R2, iτ ). (15)

In deriving the above equations, symmetry properties of the
expansion coefficients and index swapping have been used.
Details of the derivations are presented in the Appendix A.
Equations (12)–(15) are the key underlying equations on
which the low-scaling algorithm is based, which will be dis-
cussed in the next section.

So far, we have constructed the response function matrix
in terms of ABFs in the real-space imaginary-time domain.
To compute the RPA correlation energy [Eq. (1)], it is more
convenient to work in the k space and imaginary frequency
domain. To this end, Fourier transforms from the real to re-
ciprocal spaces, and from the imaginary time to imaginary
frequency domains are sequentially performed for the re-
sponse function matrix. Considering the symmetry property of
χ0 in time and frequency, i.e., χ0(r, r′, iω) = χ (r′, r,−iω),
χ0(r, r′, iτ ) = χ0(r′, r,−iτ ), and χ0(R, iτ ) = χ0(−R, iτ ),
the time-to-frequency Fourier transform between the complex
axes is simplified to a cosine transformation including an
additional factor of −i [24,33,35]

χ0
μ,ν (R, iωk ) = −i

N∑
j=1

γ jkχ
0
μ,ν (R, iτ j ) cos(τ jωk ). (16)

Here we adopt the nonuniform imaginary-time {iτ j}Nτ

j=1 and

frequency {iωk}Nω

k=1 minimax grids from CP2K [57], which
have been proven to be accurate [37]. The coefficients γ jk

are determined using L2 minimization [24] during program
run. Once the real-space imaginary-frequency χ0 matrix is ob-
tained from Eq. (16), it is further transformed to the reciprocal
space straightforwardly,

χ0
μ,ν (q, iω) =

∑
R

eiq·Rχ0
μ,ν (R, iω). (17)

To facilitate the computation of RPA correlation energy, we
further introduce an intermediate quantity, i.e., the product of
χ0 and V matrices,

�(k, iω) = χ0(k, iω)V (k). (18)

Least-squares/
Minimax Grid

Cosine transform

Time grid

Frequency grid

FT

INPUT： , , , ,

k-grid , Density Matrix

INPUT： ( )

INPUT:
0 , ( )

(0)

DFA

OUT: 

FIG. 1. Major steps in the computation of the RPA correlation
energy in the present algorithm: (i) Calculate the noninteracting
Green’s function within the NAO basis set based on a preceding
DFA calculation; (ii) contract two Green’s functions to construct
χ 0

μ,ν (R, iτ ) using LRI; (iii) perform the cosine transformation to
obtain χ 0

μ,ν (R, iω) according to Eq. (16); (iv) Fourier transform
(FT) χ 0

μ,ν (R, iω) to χ 0
μ,ν (k, iω); v) calculate �(k, iω) according

to Eq. (18); (vi) calculate ERPA
c via an integration over imaginary

frequencies and summation over BZ [Eq. (19)].

The RPA correlation energy for periodic systems per unit cell
can be finally obtained as

ERPA
c = 1

2π

1

Nk

∑
q

∫ ∞

0
dω Tr{ln[1 − �(q, iω)] + �(q, iω)}

= 1

2π

1

Nk

∑
q

∫ ∞

0
dω ln{det[1 − �(q, iω)]}

+ Tr[�(q, iω)], (19)

where the property Tr[ln(A)] = ln[det(A)] is used.

III. IMPLEMENTATION DETAILS

The major steps of computing ERPA
c within the NAO

basis sets are illustrated in Fig. 1. After a preceding self-
consistent KS calculation with a lower-rung density functional
approximation (DFA), one obtains the KS orbitals and orbital
energies. The ABFs have been generated beforehand, and so
do the LRI coefficients Cμ(0)

i(0), j(R) [Eq. (11)] and the Coulomb
matrix Vμν (k) [Eq. (4)]. These quantities have been available
previously and used in periodic hybrid functional [43,44] and
G0W0 calculations [53]. The implementation in the present
work begins with the evaluation of real-space imaginary-
time independent-particle Green’s function G0(R, iτ ) using
eigenvalues and eigenvectors generated using a NAO-based
DFT code [cf. Eq. (8)]. After calculating and storing the
G0

i j (R, iτ ), the real-space imaginary-time response function
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Algorithm 1. Loop structure of evaluating χ 0
μν (R, iτ ).

〈U (0),V (R)〉 denotes an atomic pair with atom U in the unit cell at
origin and atom V in the unit cell R. The symbol N [U] represents
the set of neighboring atoms of atom U , and K (R1) ∈ N [U (0)]
means that the atom K in unit cell R1 is in the neighborhood of the
atom U in the unit cell at the origin.

1: for all τ do
2: for all R do
3: for all 〈U (0),V (R)〉 do
4: for all L(R2) ∈ N [V (R)] do
5: Calculate X ν

i, j (R1, R, iτ ) [cf. Eq. (15)]

6: end for
7: for all K (R1) ∈ N [U (0)] do
8: for all L(R2) ∈ N [V (R)] do
9: Calculate Nν

j,k (R1, R, iτ ) [cf. Eq. (15)]

10: end for
11: Calculate Mν

i,k (R1, R, iτ ), Zν
i,k (R1, R, iτ ) [cf. Eq. (14)]

12: Calculate Oν
i,k (R1, R, iτ ) [cf. Eq. (13)]

13: Calculate χ0
μ,ν (R, iτ ) += Cμ(0)

i(0),k(R1 )O
ν
i,k (R1, R,iτ ) [cf. Eq. (12)]

14: end for
15: end for
16: end for
17: end for

matrix χ0
μν (R, iτ ) can be evaluated, which is usually the rate-

determining step throughout the whole RPA computation. The
inputs needed for this step are the Green’s function matrix
G0

i j (R, iτ ) and the LRI coefficients Cμ(0)
i(0), j(R). After χ0

μν (R, iτ )
is obtained, it is relatively straightforward to convert it to
χ0

μν (k, iω) via the cosine transform and Fourier transform
successively. The cosine transform benefits from the recently
developed efficient minimax quadrature grids [24,26,36].
With χ0

μν (k, iω), one can multiply it with the Coulomb matrix
Vμ,ν (k) to obtain �μ,ν (k, iω), and finally compute the RPA
correlation energy via Eq. (19).

The essential point of the present work is to reduce the
computational scaling of evaluating χ0

μ,ν (R, iτ ). Algorithm 1
illustrates the loop structure of computing χ0

μ,ν (R, iτ ) based
on Eqs. (12)–(15). The outermost loop goes over all time grid
points {τ j}Nτ

j=1, under which one further goes through all lattice
vectors {R} within the BvK supercell. For each (τ, R) pair, the
whole χ0

μ,ν (R, iτ ) matrix is decomposed into blocks associ-
ated with individual atomic pairs 〈U (0),V (R)〉 on which the
ABFs Pμ and Pν are located, respectively. Computing these
blocks χ0

μ∈U ,ν∈V separately for each atomic pair 〈U (0),V (R)〉
and assembling them up, one obtains the entire χ0

μ,ν matrix.
Obviously, for a given lattice vector R, the number of such
atomic pairs scales as N2

at where Nat is the number of atoms in
a unit cell.

Now, inside the loop over the atomic pair 〈U (0),V (R)〉,
one still needs to go through atom K in the unit cell of R1, and
atom L in the unit cell of R2, in order to compute intermediate
quantities such as Nν

j,k (R1, R, iτ ) and X ν
i, j (R, iτ ) as defined in

Eq. (15), and finally χ0
μ∈U ,ν∈V . The key point here is that the

atom K (R1) has to be the neighboring atom of the atom U (0),
and L(R2) has to be the neighboring atom of V (R). Outside

the neighborhood region, the LRI expansion coefficients will
be zero (or insignificantly small) and the K , L atoms there
will not contribute. For a finite periodic system, the number
of neighboring atoms of a given reference atom is determined
by the spatial range (cutoff radii) of NAO basis functions, and
does not keep increasing with size and complexity of the unit
cell. This means that, in our algorithm, the computational cost
required for a block of response function matrix associated
with an atomic pair 〈U (0),V (R)〉 approaches a constant as
the size of the system (unit cell) grows. Thus the entire com-
putational cost scales as N2

atNRNτ or N2
atNkNτ where NR is the

number of unit cells in the BvK supercell, usually set equal
to Nk, and Nτ is the number of imaginary time grid points.
Note that in practical converged calculations, the size of unit
cells (i.e., Nat) is not independent of NR or Nk; large unit cells
usually mean that one can use fewer k points or even a single
� point in the calculations. Thus, Nat×Nk can be roughly
considered as a constant for a given type of system. Further-
more, Nτ depends on the ratio of the smallest to the largest
single-particle transitions in the system, primarily determined
by the band gap. Thus, the above described algorithm is de
facto quadratic scaling for evaluating the response function
matrix.

In the above analysis of the scaling behavior of
Algorithm 1, the sparsity of the Green’s function matrix
G0

i j (R, iτ ) itself was not taken into account. In fact, G0
i j (R, iτ )

at τ → 0− corresponds to the reduced one-electron density
matrix, which is known to decay exponentially for insulat-
ing systems, and polynomially for metallic systems [58–60],
as the distance |R + τ j − τ i| between the centers of atomic
orbitals i and j gets large. Exploiting this property, one can en-
vision that the number of relevant atomic pairs 〈U (0),V (R)〉
does not grow quadratically with respect to the unit cell size
any longer, but rather linearly. This suggests that a refined
algorithm that accounts for the sparsity of the Green’s func-
tion G0

i j (R, iτ ) will become asymptotically linear scaling. In
practical implementation of this concept, one can introduce
a screening threshold ηG, whereby, if the maximal element
of the Green’s function matrix associated with an atomic pair
〈U (0),V (R)〉 is smaller than ηG, i.e.,

max{|Gi∈U (0), j∈V (R)(R, iτ )|} < ηG, (20)

then this atomic pair will be discarded in the evaluation
of the χ0 matrix. Algorithm 2 illustrates the basic idea
behind this refined scheme, leading to an asymptotically
linear-scaling algorithm for evaluating χ0(R, iτ ). In Sec. IV C
we will demonstrate the effect of filtering out the atomic
pairs with zero or sufficiently small Green’s function matrix
elements.

The above-described algorithm for low-scaling RPA cor-
relation energy calculations has been implemented in a
stand-alone library called LibRPA, which is currently acces-
sible from GitHub [61]. So far, LibRPA has been interfaced
with two NAO-based first-principles code packages, the all-
electron FHI-aims code [45] and the pseudopotential-based
ABACUS code [47]. Interfacing with other DFT codes that em-
ploy NAOs should be straightforward, if the necessary inputs
as shown in Fig. 1 can be provided.
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Algorithm 2. Refined algorithm for evaluating χ0
μν (R, iτ )

whereby the Green’s-function-based screening is incorporated. This
will reduce the number of loops in Algorithm 1 for〈U (0),V (R)〉, as
well as the matrix multiplications inside the loop, to varying degrees.

1: for all τ do
2: for all R do
3: for all 〈U (0),V (R)〉 do
4: for all L(R2) ∈ N [V (R)] do
5: if max{|Gi∈U (0),l∈L(R2 )(R2, iτ )|} > ηG then
6: Calculate X ν

i, j (R1, R, iτ ) [cf. Eq. (15)]

7: end if
8: end for
9: for all K (R1) ∈ N [U (0)] do
10: if max{|Gi∈U (0), j∈V (R)(R, iτ )|} > ηG then
11: for all L(R2) ∈ N [V (R)] do
12: if max{|Gl∈L(R2 ),k∈K (R1 )(R1 − R2,−iτ )|} >ηG then
13: Calculate Nν

j,k (R1, R, iτ ) [cf. Eq. (15)]

14: end if
15: end for
16: Calculate Mν

i,k (R1, R, iτ ) [cf. Eq. (14)]

17: end if
18: if max{|G j∈V (R),k∈K (R1 )(R1 − R, −iτ )|} > ηG then
19: Calculate Zν

i,k (R1, R, iτ ) [cf. Eq. (14)]

20: end if
21: Calculate Oν

i,k (R1, R, iτ ) [cf. Eq. (13)]

22: Calculate χ0
μ,ν (R,iτ ) += Cμ(0)

i(0),k(R1 )O
ν
i,k (R1,R,iτ ) [cf. Eq. (12)]

23: end for
24: end for
25: end for
26: end for

IV. RESULTS

In this section, we set out to benchmark the performance
of the low-scaling RPA algorithm and implementation as
described in previous sections for selected insulating and
semiconducting systems. Both the numerical accuracy and the
efficiency of the implementation will be examined here. Re-
garding the efficiency, we will particularly check the practical

scaling behavior of the computational cost with respect to the
system size.

A. Accuracy of RPA correlation energy

We first examine the numerical accuracy of our low-scaling
algorithm. To this end, we compare the RPA correlation en-
ergies as calculated by LibRPA with those produced by the
conventional k-space implementation in FHI-aims. The con-
ventional implementation is also based on LRI, but the key
operations are performed in k space, without exploiting the
sparsity of the LRI coefficients and the Green’s function. This
leads to a O(N4) scaling for calculating the response function
matrix χ0(k, iω). The algorithm and implementation details
follow closely the periodic G0W0 implementation as described
in Ref. [53]. Production calculations based on such a conven-
tional implementation have been reported in Refs. [21,56].

Table I presents the RPA correlation energies of sev-
eral semiconductors, as obtained using the real-space,
imaginary-time algorithm as implemented in LibRPA,
in comparison with those obtained using the conven-
tional k-space algorithm as implemented in FHI-aims.
The same computational settings (basis sets, k grid, RI,
and frozen-core approximations) are used in both FHI-
aims and LibRPA calculations. Sufficiently many imag-
inary frequency points (and imaginary time points in
case of LibRPA) are used in both types of calculations.
Table I indicates that the LibRPA implementation produces
nearly identical results as the conventional k-space implemen-
tation in FHI-aims. The difference in total RPA correlation
calculations for all tested systems are below 0.1 meV. This
holds for both the FHI-aims-2009 [45] (tight setting) and
the localized variant of the NAO-VCC-nZ [62] (denoted as
loc-NAO-VCC-nZ) basis sets. Compared to the original NAO-
VCC-nZ basis sets, within loc-NAO-VCC-nZ, the so-called
enhanced minimal basis is removed. Furthermore, the ba-
sis functions are tightened and reoptimized, making them
more suitable for periodic, extended materials. Thus, the
real-space, low-scaling algorithm and the reciprocal-space
algorithm yield nearly identical results, demonstrating the
consistency between the real-space and k-space methods. The

TABLE I. RPA correlation energies for several semiconductors as calculated by the real-space low-scaling algorithm as implemented in
LibRPA and by the k-space algorithm as implemented in FHI-aims. The FHI-aims tight NAO basis sets are used for all semiconductors.
For for some of the systems (Si, BN, and MgO), the results obtained using loc-NAO-VCC-3Z basis sets are also presented. A 4×4×4 k
grid is adopted for all calculations. For FHI-aims calculations, a modified Gauss-Legendre frequency quadrature grid with 80 points is used,
and for LibRPA calculations, minimax grids with 18 points for both time and frequency are used. Frozen-core approximation is used for all
calculations.

Basis set FHI-aims (eV) LibRPA (eV) Difference (meV)

Si tight −15.836307 −15.836364 0.0574
loc-NAO-VCC-3Z −18.321370 −18.321399 0.0291

BN tight −27.816262 −27.816345 0.0831
loc-NAO-VCC-3Z −29.428039 −29.428047 0.0085

MgO tight −11.55797 −11.557899 −0.0704
loc-NAO-VCC-3Z −9.991418 −9.991505 0.0877

SiC tight −64.421342 −64.421246 −0.0955
GaAs tight −17.562131 −17.562132 0.0007
ZnO tight −50.186035 −50.18603 −0.0059
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(a) (b)

FIG. 2. Scaling behavior of the computation time as a function of system size (number of atoms in the supercell) for both the real-space
low-scaling algorithm as implemented in LibRPA and the conventional k-space algorithm as implemented in FHI-aims. The test system is C
diamond with increasing unit cell sizes. The loc-NAO-VCC-3Z basis set and a single (�-only) k point is used in the calculations. For FHI-aims
calculations, a modified Gauss-Legendre frequency quadrature grid with 40 points are used, whereas for LibRPA calculations, minimax grids
with 12 points for both time and frequency are used. The vertical axis represents the time measured or converted to the usage of a compute
node with 64 CPU cores (for large systems more than one compute node is needed to run the calculations, and in these cases the reported
timing is rescaled as if the calculations were done on one node). Left: the timings for both evaluating χ0 matrix (solid lines) and the total RPA
calculation χ 0 + ERPA

c (dash-dotted curves) are presented. Right: O(N4)- and O(N2)-scaling curves (dotted lines) are added by fitting to the
data of the conventional and low-scaling algorithms for evaluating the χ0 matrix, respectively.

remarkably high numerical precision also validates the cor-
rectness of the proposed low-scaling RPA algorithm and the
actual implementation carried out in LibRPA.

B. Scaling behavior of the real-space algorithm

With the validity of the algorithm and the correctness of the
implementation being established, we now check the actual
scaling behavior of our implementation with respect to system
size. Specifically, we carried out RPA calculations for carbon
diamond crystals with increasing supercell size. In Fig. 2, the
computational timings of the low-scaling algorithm as imple-
mented in LibRPA (blue curves) and the conventional k-space
algorithm (red curves) as implemented in FHI-aims are pre-
sented as a function of the supercell size (number of atoms).
In the left panel of Fig. 2, both the timings for constructing
the response function matrix χ0 (solid lines), and the total
computation times including, in addition to the construction
of χ0 matrix, the rest of calculations all the way up to the
final evaluation of ERPA

c (dash-dotted lines), are presented.
The settings of the computational parameters are chosen such
that the two series of calculations yield nearly identical RPA
correlation energies for the same system. In the right panel of
Fig. 2, we only presented the timings for evaluating the χ0

matrix, but added the O(N4) and O(N2) fitting curves (dotted)
for the computational times.

As expected, the computational cost for the k-space im-
plementation for evaluating the χ0 matrix shows a roughly
O(N4) scaling behavior with respect to system size N (here
N being the number of atoms in the supercell). In contrast,
the real-space implementation in LibRPA shows a signifi-
cantly reduced scaling behavior, but with a larger prefactor.

The crossing point occurs at system size of about 160 C
atoms, and after that the low-scaling algorithm starts to
gain supremacy. In the benchmark tests presented in Fig. 2,
the Green’s-function-based screening was not turned on,
and thus the computational cost should ideally follow a
O(N2) scaling behavior as described in Algorithm 1. How-
ever, due to the fact that we have to increase the compute
nodes for the larger systems and the complication arising
from parallel efficiency, some of the data points deviate
from the ideal O(N2) behavior. Nevertheless, an overall
O(N2) scaling behavior is observable. For benchmark cal-
culations presented in Fig. 2, systems comprising several
dozen atoms can be computed using a single node. How-
ever, as the system size increases, the memory consumption
becomes a limiting factor, and the demand for additional
nodes grows accordingly. For 300-atom systems, we em-
ployed 24 nodes. Cross-node parallelization necessitates extra
communication time and memory consumption, but our prac-
tical tests indicate that the parallel efficiency remains rather
satisfactory.

Furthermore, from Fig. 2, one can see that for system size
below 300 atoms, the computational cost of evaluating the re-
sponse function matrix dominates. The rest of the calculations
for evaluating the RPA correlation energy, though involving
O(N3) matrix multiplication and Cholesky decomposition (for
computing the determinant of 1 − χ0v), consumes only a
small fraction of the total computation time.

In the above test, only a single k point (i.e., the � point)
is used in the BZ sampling. Such a computational setting is
suitable for describing systems with large supercells and low
symmetries. Next, we check the scaling behavior of the new
algorithm with respect to the number of k points in the BZ,
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FIG. 3. Scaling behavior of the computation times as a func-
tion of number of the k points in the BZ sampling for both the
real-space low-scaling algorithm as implemented in LibRPA and
the conventional k-space algorithm as implemented in FHI-aims.
The test system is C diamond with a fixed conventional unit cell
containing eight atoms. All other computational settings are the same
as Fig. 2.

with a fixed unit cell size. In Fig. 3, the computational times
are presented as a function of the number of k points, for
both the low-scaling algorithm and conventional k-space al-
gorithm. The chosen system in this test calculation is again the
C diamond, albeit with a fixed conventional cell (8 C atoms).
Figure 3 shows that the computational cost of the real-space
algorithm scales linearly with the number of k points, whereas
the conventional k-space algorithm scales quadratically, as
expected. The crossing point occurs in between the 7×7×7
and 8×8×8 k meshes. This suggests that the low-scaling algo-
rithm has an advantage only when very dense k grid is needed.
For practical periodic RPA calculations for simple solids with
small unit cells, the conventional k-space algorithm is still the
preferred method of choice.

C. Green’s-function-based screening

In the benchmark tests of the scaling behavior presented
in Sec. IV B, the sparsity of the Green’s function matrix
Gi j (R, iτ ) is not considered. As such, the low-scaling algo-
rithm in theory scales quadratically with respect to system
size and linearly with respect to the number of k points. If the
sparsity of the Green’s function is further taken into account,
as discussed in Algorithm 2, one should achieve an asymptoti-
cally linear-scaling behavior with respect to the system size. In
this section, we check how much error in the RPA correlation
energy may be incurred if a thresholding parameter of the
Green’s-function matrix elements is introduced. From this in-
vestigation, one may be able to identify a safe parameter value
that can be used in practical calculations, and find out what
additional speedup one can gain if the Green’s-function-based
screening is invoked.

Figure 4 shows the computational time (left y axis) and the
error in the computed RPA correlation energy (right y axis)
as a function of the Green’s-function screening parameter ηG

(introduced in Algorithm 2). The test systems chosen here
are the Ar crystal of 6×6×6 supercell (containing 216 Ar
atoms) and C diamond crystal of 8×8×8 supercell (containing
1024 C atoms) with only a single (�-only) k point. From
Fig. 4, one can see that, for such insulating systems, a screen-
ing parameter of 10−4–10−3 can lead to more than a factor of
two reduction of the computational time, yet the incurred error
is kept at meV/atom level for the actual RPA calculations.
Figure 7 in Appendix B further shows how the computational
times and the incurred errors vary with the screening param-
eter ηG for different supercell size of C diamond system. One
can see that a substantial reduction of the computational times
is achieved for systems containing several hundreds of atoms.
The reduction will be more drastic for even bigger systems.
We thus anticipate that the refined low-scaling algorithm that
incorporates Green’s-function screening will bring significant
additional savings, in particular for wide-gap insulators where
the Green’s function is expected to quickly decay in real
space.

(a) Ar crystal (b) C diamond crystal

FIG. 4. Computation times and errors as a function of the threshold of the Green’s function screening. Left: the test system is a �-only Ar
crystal supercell containing 216 Ar atoms. Right: the test system is a �-only diamond supercell containing 1024 C atoms.
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In Appendix B, the decay behaviors of the Green’s-
function matrix elements Gi j (R, iτ ) for two selected systems,
the Ar crystal and the C diamond crystal, are presented.
Figure 6 shows that the Green’s function matrix elements de-
cay rather fast as a function of the distance d = |R + τJ − τI |
between the atomic centers. The largest amplitude occurs at
time τ = 0, corresponding to the density matrix of the system.
For Ar, max{Gi j (R, iτ = 0)} becomes vanishingly small for
d � 10 Å; for C diamond, the decaying of max{Gi j (R, iτ =
0)} is less fast, but its magnitude also becomes rather small
for d > 20 Å.

Moreover, for finite τ , the amplitude of the imaginary-
time Green’s function decays rather fast as τ increases, and
becomes tiny for the entire distance range when τ > 10
a.u, as can be seen from Fig. 6. Thus, the overall decay
behavior of the Green’s function in real space is governed
by the τ = 0 case, i.e., the density matrix. Consequently,
we can expect a linear-scaling behavior of the construction
of the χ0 matrix, within an atomic orbital representation
and LRI approximation. The situation is rather similar to
the linear-scaling algorithm developed for the construction
of the Hartree-Fock exchange matrix in terms of NAO basis
sets [42,44]. This above line of reasoning applies perfectly
to insulating systems, where the density matrix, and more
generally the imaginary-time Green’s function, is warranted
to decay exponentially in real space [58–60]. For metallic
systems, the situation is more complicated since the density
matrix (and Green’s function) decays much slower in real
space. We expect that a linear-scaling behavior can eventually
be achieved, but may occur only at very large systems, not in
the regime of 103 atoms that are tested in the present work.

D. Interface with ABACUS

As a stand-alone library, LibRPA can also be interfaced
with other NAO-based DFT codes besides FHI-aims, provided

that the LRI infrastructure is available. ABACUS [46,47] is a
DFT software that employs NAOs as its primary basis set
choice and norm-conserving pseudopotentials for describing
core-valence interactions. In particular, the LRI has been
implemented in ABACUS, which enabled efficient hybrid func-
tional calculations [43,44,63]. As indicated in Fig. 1, once
the LRI expansion coefficients Cμ(0)

i(0),k(R) and the Coulomb
matrix Vμν (k) are available, interfacing an NAO-based DFT
code with LibRPA is straightforward. Figure 5 demonstrates
the scaling behavior of the computation time of LibRPA in-
terfaced with ABACUS with respect to system size. The test
systems consist of Si diamond structures of increasing super-
cell sizes and only a single k point is used. The double-ζ plus
polarization (DZP) NAO basis set (2s2p1d for Si) is used
in the calculations, whereby the compact basis size allows
us to go to system size of over 1000 atoms in the supercell.
We demonstrate both the computation time for evaluating
χ0 matrix and the total time for the RPA correlation energy
calculation, with and without turning on the Green’s-function-
based screening. Two observations are noteworthy: First, the
Green’s-function-based screening starts to have an effect for
system sizes larger than 200 atoms, and can significantly
reduce the computational cost for evaluating χ0; in fact, for
system size between 800 and 1400 atoms, the computational
cost indeed shows a linear, or even sublinear scaling with
system size, when the Green’s-function-based screening is
invoked. Second, for system size larger than 800 atoms, the
computation of the RPA correlation energy after obtaining
the χ0 matrix, which involves O(N3) steps, starts to play a
significant role and will eventually dominate the calculations
for even larger systems. Thus, for very large systems, one will
also need to develop more efficient lower-scaling algorithms
for executing χ0V , and for computing the determinant of
1 − χ0V . However, this goes beyond the scope of the present
paper and will be pursued in future work.

(a) (b)

FIG. 5. Scaling behavior the computation times with respect to system size for LibRPA interfaced with ABACUS. The test systems are Si
diamond with increasing supercell size. A single k point and the NAO DZP basis set are used is the calculations. Lef: the timings for both
evaluating χ 0 matrix (solid lines) and the total RPA calculation χ0 + ERPA

c (dash-dotted curves) with (blue curves) and without (red curves)
switching on the Green’s-function-based screening. Right: O(N )- and O(N2)-scaling curves (dotted lines) are added by fitting the data of the
low-scaling algorithms for evaluating the χ 0 matrix with and without Green’s-function-based screening, respectively.
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V. SUMMARY

The application of the RPA method to complex materials
has been hampered by its quickly increasing computational
cost. The rate-determining step for RPA correlation energy
calculations in conventional algorithm is the evaluation of the
response function matrix χ0. In this work, we present a low-
scaling algorithm for evaluating the χ0 matrix, by combining
the real-space, imaginary-time representation of χ0, the strict
locality of NAO basis functions, as well as the localized res-
olution of identity. The algorithm has a formal O(N2) scaling
by only taking into account of the sparsity of the LRI expan-
sion coefficients, and becomes linear if the decay behavior of
the Green’s function in real space is further utilized. Bench-
mark calculations for systems of increasing sizes confirmed
the scaling behavior of the proposed algorithm, and bench-
mark against the conventional k-space algorithm confirms the
validity and high numerical precision of the present algo-
rithm. We particularly show that the Green’s-function-based
screening, which has been so far largely overlooked, can bring
significant additional savings for system sizes of over a few
hundred atoms. We also observe that the O(N3)-scaling steps

in RPA calculations after the χ0 matrix is obtained, whose
computational cost is negligible in conventional algorithm,
starts to dominate for system sizes over 1000 atoms. Further
work is needed to develop low-scaling algorithms for the
O(N3) steps. Our work sets a new standard for large-scale
periodic RPA calculations using atomic orbitals. The low-
scaling algorithm we developed and the insights we gained in
the present work not only push the limit for RPA calculations,
but are also helpful for extending the reach of other correlated
methods to unprecedented size of periodic systems.
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APPENDIX A: SPACE-TIME RPA WITHIN NAO

Equations (12)–(15) in the main text are the key equations behind our low-scaling RPA algorithm designed for local atomic
basis set framework. These equations are presented in Sec. II without derivation. Due to their importance for the entire algorithm,
we derive these equations here for completeness. The starting points are Eqs. (9) and (11) in the main text. Plugging Eq. (11)
into Eq. (9), one obtains

χ0(r, r′, iτ ) = − i
∑

i, j,k,l

∑
R1,R2,R3,R4

⎛
⎝∑

μ∈I

Cμ(0)
i(0),k(R3−R1 )Pμ(r − R1 − τI ) +

∑
μ∈K

Cμ(0)
i(R1−R3 ),k(0)Pμ(r − R3 − τK )

⎞
⎠

× Gi, j (R2 − R1, iτ )Gl,k (R3 − R4,−iτ )

×
(∑

ν∈J

Cν(0)
j(0),l (R4−R2 )Pν (r′ − R2 − τJ ) +

∑
ν∈L

Cν(0)
j(R2−R4 ),l (0)Pν (r′ − R4 − τL )

)

= χ0(A)(r, r′, iτ ) + χ0(B)(r, r′, iτ ) + χ0(C)(r, r′, iτ ) + χ0(D)(r, r′, iτ ), (A1)

where the full response function naturally splits into four terms, arising from the special structure due to LRI. These four terms
correspond to four different ways of placing the ABFs on the four atoms I , J , K , and L, within the LRI approximation. Below
we discuss these four terms separately. In Eq. (A1), the first term deals with the situation in which the ABF μ, ν sit on the atom
I , J (denoted as μ ∈ I and ν ∈ J), respectively. This term is given by

χ0(A)(r, r′, iτ ) = −i
∑

i, j,k,l

∑
R1,R2,R3,R4

∑
μ∈I

Cμ(0)
i(0),k(R3−R1 )Pμ(r − R1 − τI )Gi, j (R2 − R1, iτ )

× Gl,k (R3 − R4,−iτ )
∑
ν∈J

Cν(0)
j(0),l (R4−R2 )Pν (r′ − R2 − τJ )

= −i
∑

μ,ν,R1,R2

Pμ(r − R1 − τI )
∑

i∈U , j∈V

∑
k,R3

Cμ(0)
i(0),k(R3−R1 )Gi, j (R2 − R1, iτ )

×
∑
l,R4

[
Cν(0)

j(0),l (R4−R2 )Gl,k (R3 − R4,−iτ )
]
Pν (r′ − R2 − τJ )

=
∑

μ,ν,R1,R2

Pμ(r − R1 − τU )χ0(A)
μ,ν (R2 − R1, iτ )Pν (r′ − R2 − τV ), (A2)

where

χ0(A)
μ,ν (R2 − R1, iτ ) = −i

∑
i∈U , j∈V

∑
k,R3

∑
l,R4

Cμ(0)
i(0),k(R3−R1 )Gi, j (R2 − R1, iτ )Cν(0)

j(0),l (R4−R2 )Gl,k (R3 − R4,−iτ ). (A3)

035103-10



SUBQUADRATIC-SCALING REAL-SPACE RANDOM PHASE … PHYSICAL REVIEW B 109, 035103 (2024)

Recall that U and V denote the atoms where the ABFs μ, ν are centering, and τU and τV are their respective atomic positions
in the unit cell. In the above derivation, we have used the fact that, in the present situation, the atom U = I , and V = J (and
hence τU = τI , and τU = τJ ). We have also used the property that, in the computation of χ0(A)(r, r′, iτ ), first looping over
the AOs i, j and requiring μ ∈ I and ν ∈ J is equivalent to first looping over the ABFs μ, ν, and requiring the AOs i ∈ U and
j ∈ V . Making use of the translational symmetry, we can, without losing generality, set R = R2 − R1 and R1 = 0. Finally we
obtain

χ0(A)
μ,ν (R, iτ ) = −i

∑
i∈U , j∈V

∑
k,R3

∑
l,R4

Cμ(0)
i(0),k(R3 )Gl,k (R3 − R4,−iτ )Cν(0)

j(0),l (R4−R)Gi, j (R, iτ ). (A4)

Next, we deal with the second term that corresponds to the situation in which μ ∈ I and ν ∈ L (i.e., I = U and L = V).
Specifically,

χ0(B)(r, r′, iτ ) = −i
∑

i, j,k,l

∑
R1,R2,R3,R4

∑
μ∈I

Cμ(0)
i(0),k(R3−R1 )Pμ(r − R1 − τI )Gi, j (R2 − R1, iτ )

× Gl,k (R3 − R4,−iτ )
∑
ν∈L

Cν(0)
j(R2−R4 ),l (0)Pν (r′ − R4 − τL )

R2↔R4= −i
∑

i, j,k,l

∑
R1,R2,R3,R4

∑
μ∈I

Cμ(0)
i(0),k(R3−R)1

Pμ(r − R1 − τI )Gi, j (R4 − R1, iτ )

× Gl,k (R3 − R2,−iτ )
∑
ν∈L

Cν(0)
j(R4−R2 ),l (0)Pν (r′ − R2 − τL )

= −i
∑

μ,ν,R1,R2

Pμ(r − R1 − τU )
∑

i∈U ,l∈V

∑
k,R3

Cμ(0)
i(0),k(R3−R1 )Gi, j (R4 − R1, iτ )

×
∑
j,R4

Cν(0)
j(R4−R2 ),l (0)Gl,k (R3 − R2,−iτ )Pν (r′ − R2 − τV )

=
∑

μ,ν,R1,R2

Pμ(r − R1 − τU )χ0(B)
μ,ν (R2 − R1, iτ )Pν (r′ − R2 − τV ), (A5)

where

χ0(B)
μ,ν (R2 − R1, iτ ) = −i

∑
i∈U ,l∈V

∑
k,R3

∑
j,R4

Cμ(0)
i(0),k(R3−R1 )Gi, j (R4 − R1, iτ )Cν(0)

j(R4−R2 ),l (0)Gl,k (R3 − R2,−iτ ) (A6)

or

χ0(B)
μ,ν (R, iτ ) = −i

∑
i∈U ,l∈V

∑
k,R3

∑
j,R4

Cμ(0)
i(0),k(R3 )Gl,k (R3 − R,−iτ )Cν(0)

j(R4−R),l (0)Gi, j (R4, iτ ). (A7)

In the derivation of Eq. (A5), we again used the property that, in the present case, looping over the AOs i, l and requiring μ ∈ I
and ν ∈ L is equivalent to first looping over the ABFs μ, ν and requiring i ∈ U and l ∈ V .

Next comes the third term, corresponding to the situation where μ ∈ K and ν ∈ J (i.e., K = U and J = V),

χ0(C)(r, r′, iτ ) = −i
∑

i, j,k,l

∑
R1,R2,R3,R4

∑
μ∈K

Cμ(0)
i(R1−R3 ),k(0)Pμ(r − R3 − τK )Gi, j (R2 − R1, iτ )

× Gl,k (R3 − R4,−iτ )
∑
ν∈J

Cν(0)
j(0),l (R4−R2 )Pν (r′ − R2 − τJ )

R1↔R3= −i
∑

i, j,k,l

∑
R1,R2,R3,R4

∑
μ∈K

Cμ(0)
i(R3−R1 ),k(0)Pμ(r − R1 − τK )Gi, j (R2 − R3, iτ )

× Gl,k (R1 − R4,−iτ )
∑
ν∈J

Cν(0)
j(0),l (R4−R2 )Pν (r′ − R2 − τJ )

= −i
∑

μ,ν,R1,R2

Pμ(r − R1 − τU )
∑

k∈U , j∈V

∑
i,R3

∑
l,R2

Cμ(0)
i(R3−R1 ),k(0)Gi, j (R2 − R3, iτ )

× Cν(0)
j(0),l (R4−R2 )Gl,k (R1 − R4,−iτ )Pν (r′ − R2 − τV )

=
∑

μ,ν,R1,R2

Pμ(r − R1 − τU )χ0(C)
μ,ν (R2 − R1, iτ )Pν (r′ − R2 − τV ), (A8)
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where

χ0(C)
μ,ν (R2 − R1, iτ ) = −i

∑
k∈U , j∈V

∑
i,R3

∑
l,R4

Cμ(0)
i(R3−R1 ),k(0)Gi, j (R2 − R3, iτ )Cν(0)

j(0),l (R4−R2 )Gl,k (R1 − R4,−iτ ), (A9)

or

χ0(C)
μ,ν (R, iτ ) = −i

∑
k∈U , j∈V

∑
i,R3

∑
l,R4

Cμ(0)
i(R3 ),k(0)Gi, j (R − R3, iτ )Cν(0)

j(0),l (R4−R)Gl,k (−R4,−iτ ). (A10)

Finally we deal with the fourth term, which corresponds to the situation where μ ∈ K and ν ∈ L (i.e., K = U and L = V),

χ0(D)(r, r′, iτ ) = −i
∑

i, j,k,l

∑
R1,R2,R3,R4

∑
μ∈K

Cμ(0)
i(R1−R3 ),k(0)Pμ(r − R3 − τK )Gi, j (R2 − R1, iτ )

× Gl,k (R3 − R4,−iτ )
∑
ν∈L

Cν(0)
j(R2−R4 ),l (0)Pν (r′ − R4 − τK )

R1↔R3,R2↔R4= −i
∑

i, j,k,l

∑
R1,R2,R3,R4

∑
μ∈K

Cμ(0)
i(R3−R1 ),k(0)Pμ(r − R1 − τK )Gi, j (R4 − R3, iτ )

× Gl,k (R1 − R2,−iτ )
∑
ν∈L

Cν(0)
j(R4−R2 ),l (0)Pν (r′ − R2 − τL )

= −i
∑

μ,ν,R1,R2

Pμ(r − R1 − τU )
∑

k∈U ,l∈V

∑
i,R3

∑
j,R4

Cμ(0)
i(R3−R1 ),k(0)Gi, j (R4 − R3, iτ )

× Cν(0)
j(R4−R2 ),l (0)Gl,k (R1 − R2,−iτ )Pν (r′ − R2 − τU )

=
∑

μ,ν,R1,R2

Pμ(r − R1 − τU )χ0(D)
μ,ν (R2 − R1, iτ )Pν (r′ − R2 − τV ), (A11)

where

χ0(D)
μ,ν (R2 − R1, iτ ) = −i

∑
k∈U ,l∈V

∑
i,R3

∑
j,R4

Cμ(0)
i(R3−R1 ),k(0)Gi, j (R4 − R3, iτ )Cν(0)

j(R4−R2 ),l (0)Gl,k (R1 − R2,−iτ ), (A12)

or

χ0(D)
μ,ν (R, iτ ) = −i

∑
k∈U ,l∈V

∑
i,R3

∑
j,R4

Cμ(0)
i(R3 ),k(0)Gi, j (R4 − R3, iτ )Cν(0)

j(R4−R),l (0)Gl,k (−R,−iτ ). (A13)

Summing up Eqs. (A4), (A7), (A10), and (A13), we obtain,

χ0
μ,ν (R, iτ ) = χ0(A)

μ,ν (R, iτ ) + χ0(B)
μ,ν (R, iτ ) + χ0(C)

μ,ν (R, iτ ) + χ0(D)
μ,ν (R, iτ )

= −i

[ ∑
i∈U , j∈V

∑
k,R3

∑
l,R4

Cμ(0)
i(0),k(R3 )Gl,k (R3 − R4,−iτ )Cν(0)

j(0),l (R4−R)Gi, j (R, iτ )

+
∑

i∈U ,l∈V

∑
k,R3

∑
j,R4

Cμ(0)
i(0),k(R3 )Gl,k (R3 − R,−iτ )Cν(0)

j(R4−R),l (0)Gi, j (R4, iτ )

+
∑

k∈U , j∈V

∑
i,R3

∑
l,R4

Cμ(0)
i(R3 ),k(0)Gi, j (R − R3, iτ )Cν(0)

j(0),l (R2−R)Gl,k (−R4,−iτ )

+
∑

k∈U ,l∈V

∑
i,R3

∑
j,R4

Cμ(0)
i(R3 ),k(0)Gi, j (R4 − R3, iτ )Cν(0)

j(R4−R),l (0)Gl,k (−R,−iτ )

]
. (A14)

To facilitate its computation and in particular the design of the loop structure in the low-scaling algorithm, we swap the
dummy indices in the summation. Specifically, we perform the following exchanges for orbital indices: j ↔ l for the second
term, i ↔ k for the third term, i ↔ k, j ↔ l for the fourth term. And for all terms, further making the following replacement for
the lattice vectors: R3 → R1, and R4 → R2, we have

χ0
μ,ν (R, iτ ) = −i

[ ∑
i∈U , j∈V

∑
k,R1

∑
l,R2

Cμ(0)
i(0),k(R1 )Gl,k (R1 − R2,−iτ )Cν(0)

j(0),l (R2−R)Gi, j (R, iτ )

+
∑

i∈U , j∈V

∑
k,R1

∑
l,R2

Cμ(0)
i(0),k(R1 )Gj,k (R1 − R,−iτ )Cν(0)

l (R2−R), j(0)Gi,l (R2, iτ )
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+
∑

i∈U , j∈V

∑
k,R1

∑
l,R2

Cμ(0)
k(R1 ),i(0)Gk, j (R − R1, iτ )Cν(0)

j(0),l (R2−R)Gl,i(−R2,−iτ )

+
∑

i∈U , j∈V

∑
k,R1

∑
l,R2

Cμ(0)
k(R1 ),i(0)Gk,l (R2 − R1, iτ )Cν(0)

l (R2−R), j(0)Gj,i(−R,−iτ )

]

= −i

[ ∑
i∈U , j∈V

∑
k,R1

∑
l,R2

Cμ(0)
i(0),k(R1 )

(
Gl,k (R1 − R2,−iτ )Cν(0)

j(0),l (R2−R)Gi, j (R, iτ )

+ Gj,k (R1 − R,−iτ )Cν(0)
l (R2−R), j(0)Gi,l (R2, iτ ) + G∗

j,k (R1 − R, iτ )Cν(0)
j(0),l (R2−R)Gi,l (R2,−iτ )

+ G∗
l,k (R1 − R2, iτ )Cν(0)

l (R2−R), j(0)G
∗
i, j (R,−iτ )

)]
, (A15)

where we have utilized the symmetry properties for the Green’s function, i.e., Gi, j (R, iτ ) = G∗
j,i(−R, iτ ), and for the expansion

coefficients, i.e., Cμ(0)
i(0),k(R1 ). Close inspection of the four terms in Eq. (A15) suggests that the first and fourth terms can be grouped

together, and so do the second and third terms. Namely,

χ0
μ,ν (R, iτ ) = −i

[ ∑
i∈U

∑
k,R1

Cμ(0)
i(0),k(R1 )

(∑
j∈V

Gi, j (R, iτ )
∑
l,R2

Cν(0)
j(0),l (R2−R)Gl,k (R1 − R2,−iτ )

+
∑
j∈V

G∗
i, j (R,−iτ )

∑
l,R2

Cν(0)
j(0),l (R2−R)G

∗
l,k (R1 − R2, iτ ) +

∑
j∈V

Gj,k (R1 − R,−iτ )
∑
l,R2

Cν(0)
j(0),l (R2−R)Gi,l (R2, iτ )

+
∑
j∈V

G∗
j,k (R1 − R, iτ )

∑
l,R2

Cν(0)
j(0),l (R2−R)G

∗
i,l (R2,−iτ )

)]

= −i

[ ∑
i∈U

∑
k,R1

Cμ(0)
i(0),k(R1 )

(
Mν

i,k (R1, R, iτ ) + Mν∗
i,k (R1, R,−iτ ) + Zν

i,k (R1, R, iτ ) + Zν∗
i,k (R1, R,−iτ )

)]
, (A16)

where

Mν
i,k (R1, R, iτ ) =

∑
j∈V

Gi, j (R, iτ )Nν
j,k (R1, R, iτ )

Nν
j,k (R1, R, iτ ) =

∑
l,R2

Cν(0)
j(0),l (R2−R)Gl,k (R1 − R2,−iτ )

and

Zν
i,k (R1, R, iτ ) =

∑
j∈V

Gj,k (R1 − R,−iτ )X ν
i, j (R, iτ )

X ν
i, j (R, iτ ) =

∑
l,R2

Cν(0)
j(0),l (R2−R)Gi,l (R2, iτ ).

Hence, Eqs. (12)–(15) in the main text are derived.

FIG. 6. The maximal matrix elements of Green’s function as a function of the distance between the atomic centers for Ar crystal (left) and
diamond (right). The calculations were done with ABACUS using NAO DZP basis set and 6×6×6 k-point mesh.
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(a) Time (b) Error

FIG. 7. Reduction of the computational times and induced errors as a function of the Green’s-function-based thresholding parameter ηG.
The test system consists of �-only diamond supercells with increasing numbers of C atoms. The numbers in the legend indicate the number of
carbon atoms in the supercell.

APPENDIX B: DECAY BEHAVIOR OF THE GREEN’S
FUNCTION IN REAL SPACE

In Sec. IV C, we showed that significant further computa-
tional savings can be achieved if the Green’s-function-based
screening is incorporated. The scaling behavior of the re-
fined real-space algorithm depends on the decay behavior
of the Green’s function in real space. In Fig. 6, we present
the absolute values of the maximal matrix elements of the
imaginary-time Green’s function Gi j (R, iτ ) as a function of
the distance between the atomic centers for the Ar crystal
(left panel) and C diamond crystal (right panel), respec-
tively. Namely, what is plotted are maxi∈I, j∈J |Gi j (R, iτ )| as

a function of d = |R + τJ − τI | at three different time points,
i.e., τ = 0.075442, 7.216105, 40.102291 a.u. for Ar and τ =
0.026284, 7.208731, 93.791459 a.u. for C diamond. Figure 6
indicates that one needs much larger supercell size for C than
for Ar to achieve a similar effect of Green-function-based
screening.

In Fig. 7, the reduction of the computation times [Fig. 7(a)]
and the incurred error [Fig. 7(b)] as a function of the
Green’s-function-based screening parameter ηG are plotted.
The calculations were done for �-only C supercells of in-
creasing size, containing n = 2, 16, 128, 432, 1024 atoms,
respectively. The results for different supercell size are indi-
cated by different lines in Fig. 7.
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