
PHYSICAL REVIEW B 109, 024517 (2024)

Orientation-dependent Josephson effect in spin-singlet superconductor/altermagnet/spin-triplet
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We study the Josephson effect in the spin-singlet superconductor/altermagnet/spin-triplet superconductor
junctions using the Green’s function method. The current-phase difference relationships in the junctions strongly
depend on the orientation of altermagnet and the types of the Cooper pairs. For the orientation angle equal to odd
multiples of π/4, the current-phase difference relationships are of the sin 2φ type, which are irrespective of the
pairing wave functions in superconductors. For the other orientation angles, the emergence of the lowest order
current becomes possible and its form, sin φ or cos φ, depends on the pairing wave functions in superconductors.
The φ0 phase and the 0-π transition can be realized in our junctions due to the appearance of the lowest order
current. The selection rules for the lowest order current are presented. The symmetric relations satisfied by
the current-phase difference relationships are analyzed through considering the transformations of the junctions
under the mirror reflection, the time-reversal and the spin-rotation operations. Our results not only provide a
method to detect the intrinsic spin-triplet superconductivity but also possess application values in the design of
the field-free quantum devices.
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I. INTRODUCTION

The third magnetic phase, dubbed altermagnetism [1,2],
has recently attracted great research interest in condensed
matter physics [3–5]. Altermagnet (AM) has the vanishing net
magnetism similar to antiferromagnet due to the alternating
order of the magnetic moments in the direct space. However, it
also possesses the alternating spin-polarized order in the mo-
mentum space, which breaks the time-reversal symmetry just
as ferromagnet does. The unconventional anisotropic d-wave
magnetism can be realized in AM as the magnetic counterpart
of the unconventional anisotropic d-wave superconductor [6].
AM exhibits many novel physical properties and broad appli-
cations in various fields such as spintronics, spin caloritronics
and superconductivity [1,7,8].

Because AM possesses the zero-net macroscopic magneti-
zation, it is of a great benefit in constructing superconducting
heterojunctions. Very recently, the research on the in-
terplay between altermagnetism and superconductivity has
become an important aspect. This includes the coexistence
of altermagnetism and superconductivity and the trans-
port in junctions consisting of AM and superconductor.
Šmejkal et al. [1] and Mazin [9] have analyzed the possi-
ble form of Cooper pairs hosted in the materials with the
altermagnetic order as well as its difference from that in
the ferromagnetic and antiferromagnetic materials. In the
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AM/superconductor junction, the effects of altermagnetism
on the Andreev reflection are clarified [10,11]. It is found
that the charge and spin conductances strongly depend on the
interfacial orientation of AM relative to superconductor. In
the superconductor/AM/superconductor junctions, the decay
length and the oscillation period of supercurrent show quali-
tative difference from the ferromagnetic Josephson junctions
[12]. They strongly depend on the crystallographic orientation
of AM. The Andreev levels in the AM Josephson junctions are
also studied by Beenakker and Vakhtel [13], where the phase
difference φ dependence of the levels is shifted by an off-
set. The authors demonstrate the nonsinusoidal current-phase
difference relationship (CPR) and the 0-π transition in the
junctions based on the nonperturbative approach. Recently,
the topological superconductivity and Majorana corner states
are found in altermagnet with the Rashba spin-orbit coupling
or the heterostructure composed of altermagnet and the two-
dimensional topological insulator [14,15].

However, the interlay of altermagnetism and the un-
conventional spin-triplet superconductivity in the Josephson
junctions has not been considered. Josephson junctions are an
effective tool to detect the paring symmetry in the unconven-
tional superconductor [6,16]. The minimal Josephson model
including the spin-triplet superconductor (TS) is the SS/TS
junction, which plays an important role in the determination of
the order parameter in the candidate materials for TS [17–32].
For example, the experimental measurements of the critical
current in the Au0.5In0.5/Sr2RuO4 junction indicate the odd-
parity pairing symmetry in Sr2RuO4 [17]. The subsequent
theoretical calculations suggest that the chiral p-wave pairing
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or the chiral singlet pairing in Sr2RuO4 can well explain the
experimental finding [18,19]. The experimental observation
of the differences in the magnetic field modulation of the crit-
ical current in the Ru/Sr2RuO4 junction confirms the p-wave
pairing and its time-reversal symmetry breaking in Sr2RuO4

[20]. A large change in supercurrent path also suggests the
chiral p-wave state in the Ru/Sr2RuO4 interface [21] while
another experiment on the topological junction demonstrates
multicomponent order parameters in the bulk Sr2RuO4 [22].
The anomalous temperature dependence of the critical current
and the proximity effect in the Ru/Sr2RuO4 junctions are also
investigated experimentally and theoretically under the pos-
sible pairing symmetries [23–26]. In addition, the inversion
invariant behavior of the critical current under the reduced
dimension is clarified experimentally in the Nb/Sr2RuO4

junction [27] and the theoretical study reveals the helical p-
wave symmetry of Sr2RuO4 [28].

Besides the orbital part, the pairing wave function in TS
also has the spin structure characterized by the d vector [33].
The SS/TS Josephson junctions can provide the information
of the spin structure; for example, the spontaneous spin accu-
mulation due to the mismatch of the spin pairing symmetries
in SS/TS points along the d vector in TS [34]. The spin
current and the spin accumulation in the more general SS/TS
junctions with the k-dependent d vector are also examined
[35]. The presence or absence of the Rabi oscillation in the
supercurrent of the SS/TS junction depends on the spin state
of the junction [36]. The control of the magnetism in the
SS/TS junctions with TS being of the equal spin helical
and the opposite spin chiral states are considered [37]. The
introduction of ferromagnetism in the SS/TS junctions offers
another method to probe both the orbit part and the spin struc-
ture of the pairing wave function in TS [38–43]. The presence
of ferromagnetism in the SS/ferromagnet/TS junctions can
bring rich CPRs, especially the lowest order current absent
in the pure SS/TS junction due to the orthogonality of the
spin pairing states in SS and TS [38,44]. The types of the
lowest order current strongly depend on the pairing symme-
try of TS and the relative orientation between magnetization
and the d vector. Furthermore, the 0-π transition and the φ0

phase can be realized in the SS/ferromagnet/TS junctions by
tuning the magnitude of the exchange field or changing the
direction of magnetization through an external field [42,43],
which can be used for the design of the phase-based qubits
[45–50].

Nonetheless, there are still two questions to be solved in
the detection of the pairing wave function of TS and the
applications of the novel phases. The first is that the symmetry
of the order parameter in TS continues to be debated [51].
The existing studies in the junctions containing SS and TS
cannot identify the specific form of the pairing wave function
and even draw contradictory conclusions. Actually, various
of technical means are recently employed to exert constraints
on the identification of the order parameter in TS [52–62].
More effective platforms are still urgently needed to provide
the more convincing evidence for the pairing wave function.
The second is the inevitable influence of an applied field
or ferromagnetism on the intrinsic pairing wave function in
TS since the direction of the d vector can be easily rotated
by a small magnetic field [63]. In the SS/TS junctions, the

detection of the spin-triplet superconductivity needs the mag-
netic flux produced by an external field [17,20,21,23–25,27–
29]. In the SS/ferromagnet/TS junctions [38–43], the stray
field produced by ferromagnet cannot be fully eliminated [3],
which will not only change the d vector but also be destruc-
tive to the design of the qubits based on the novel phases.
Moreover, there are reasons to believe that the existence of
the second question impedes the resolution of the first ques-
tion. How to resolve the two questions at once is an urgent
issue in the condensed matter physics. Altermagnetic crystals
possesses the vanishing magnetization and stray fields but still
break the time-reversal symmetry as ferromagnet does [3],
which pave the way for the identification of the intrinsic order
parameter in TS and provide possibilities for the design of the
field-free qubits based on the novel phases in the junctions
containing SS and TS.

Here, we propose the SS/AM/TS Josephson junctions by
taking altermagnetism instead of ferromagnetism as the spin
active mechanism. The interplay between altermagnetism and
the unconventional spin-triplet superconductivity is systemat-
ically studied. Our junctions possess the zero-net macroscopic
magnetization and zero stray field, which are superior to
the SS/ferromagnet/TS junctions with the inevitable com-
petition between magnetization and superconductivity and
the inevitable influence on the d vector by the stray field.
However, the lowest order current in the SS/ferromagnet/TS
junctions can still be realized in our junctions. Its type is
also strongly dependent on the pairing wave functions in TS,
which include valid information of the intrinsic order param-
eter in TS. Especially, the novel Josephson phase and the
0-π transition achieved in the SS/ferromagnet/TS junctions
by tuning magnetization through an external field [42,43] can
also be realized in our junctions by adjusting the orientation
of AM without any external field. Our junctions provide the
feasible scheme to settle the two above-mentioned questions
simultaneously.

In this paper, we focus on the orientation-dependent CPRs
in the junctions. The CPRs of the SS/AM/TS junctions are
strongly dependent on the crystallographic orientation of AM
and the types of the Cooper pairings. The orientation of AM
can be denoted by the angle α between the crystalline axis
and the interface normal [see Fig. 1(a)]. For the pure dxy-
wave altermagnetism with α = (2n + 1)π/4 with the integer
number n, the CPRs of the SS/AM/TS junctions are of the
sin 2φ type. In this case, the lowest order current is absent,
which is irrespective of the specific form of the Cooper pairing
wave functions in SS and TS. For the altermagnetism with
α �= (2n + 1)π/4, the cos φ type current can emerge for the
s-wave (dx2−y2 -wave) SS/AM/chiral p-wave (px-wave) TS
junctions and the dxy-wave SS/AM/chiral py-wave TS junc-
tions, as shown in Table I. These junctions can host the φ0

phase with finite current at the zero phase difference. On the
other hand, the sin φ type current can appear for the dxy-wave
SS/AM/chiral p-wave TS junctions, and the 0-π transition
can be obtained in the junctions by adjusting the orientation
angle α. In addition, the symmetric relations of the CPRs are
obtained, which are related with the variances of the Hamil-
tonians of SS, AM and TS under the mirror reflection, the
time-reversal and the spin rotation operations. These obtained
results are peculiar to the interaction between AM and TS in
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FIG. 1. (a) The schematic illustration of the SS/AM/TS junc-
tions. The two ellipses in the AM region denote the Fermi surfaces
for different spin of electrons. The blue one is for the down-spin and
the red one is for the up-spin. The orientation of AM is described
by the angle α between the crystalline axis (the major axis of the
blue ellipse) and the normal direction of the interface. (b) The two-
dimensional square lattice on which the SS/AM/TS junctions are
discretized.

the SS/AM/TS junctions, which are helpful in the detection
of the spin-triplet superconductivity.

The rest of the paper is organized as follows. In Sec. II,
we give the model of our junctions and the expression of the
Josephson current. Section III presents the numerical results
of CPRs for different orientation angles in AM and different
paring wave functions in SS and TS. Section IV gives the
selection rules for the lowest order current and the symme-
try analyses of CPRs. Section V concludes this paper. The
detailed expressions for the discretization of the continuum
Hamiltonians are relegated to the Appendix.

II. MODEL AND FORMULATION

The SS/AM/TS Josephson junctions we consider are
schematically shown in Fig. 1(a). The Josephson current flows
parallel to the x axis. The SS/AM and AM/TS interfaces
parallel to the y axis are located at x = 0 and x = L. The
semi-infinite SS and TS are placed in the left region with
x < 0 and the right region with x > L, respectively. For SS
(TS), the Hamiltonian for the continuum model can be written
as [64–66]

HSS(T S) =
∑

k

�+
l (r)kȞss(ts)(k)�l (r)k. (1)

TABLE I. The selection rules for the lowest order current in the
SS/AM/TS junctions. The symbol “−” means the absence of the
corresponding lowest order current and n is an integer number.

SS TS cos φ sin φ

s, dx2−y2 px + ipy, px α �= (2n + 1) π

4 –
s, dx2−y2 py – –
dxy px + ipy – α �= (2n + 1) π

4
dxy py α �= (2n + 1) π

4 –
dxy px – –

Here, the operator �l (r)k = (cl (r),k ↑, cl (r), k ↓, c+
l (r), −k ↑,

c+
l (r),−k↓)T with the subscript l (r) denoting the left SS (the

right TS). The Bogoliubov-de Gennes (BdG) Hamiltonian
Ȟss(ts)(k) is given by

Ȟss(ts)(k) =
(

ĥ(k) �̂ss(ts)(k)

−�̂∗
ss(ts)(−k) −ĥ∗(−k)

)
(2)

in the particle-hole⊗spin space. Here, ĥ(k) = [t0(k2
x + k2

y ) −
μ]σ0 with the two-dimensional wave vector k = (kx, ky )
and the chemical potential μ. For SS, the energy gap ma-
trix �̂ss(k) = �0 fss(k)eiφl iσy with fss(k) = 1 for the s-wave
pairing, fss(k) = (k2

x − k2
y ) for the dx2−y2 -wave pairing and

fss(k) = 2kxky for the dxy-wave pairing. For TS, the energy
gap matrix �(k) = (�σ · d(k))iσy with d(k) = �0eiφr fts(k)ẑ.
Here, the d vector in TS has been assumed to be along the
out-plane direction, which is denoted by the unit vector ẑ. The
orbit part is fts(k) = η1kx + iη2ky with (η1, η2) = (1, 1) for
the chiral p-wave pairing, (η1, η2) = (1, 0) for the px-wave
pairing and (η1, η2) = (0,−i) for the py-wave pairing. We
have used �0 to denote the magnitude of the superconducting
gap and φl (r) to denote the phase of the left SS (the right TS).
σ0 and �σ = (σx, σy, σz ) are the identity matrix and the Pauli
matrices in the spin space. We have taken h̄ = 1 and the same
gap magnitude in SS and TS for simplicity.

For AM in the central region with 0 < x < L, the Hamilto-
nian can be written as [3,10,12,13]

HAM =
∑

k

ψ (k)+Ȟam(k)ψ (k), (3)

with the operator ψ (k) = (ck↑, ck↓, c+
−k↑, c+

−k↓)T and the
BdG Hamiltonian

Ȟam(k) =
(

ĥam(k) 0

0 −ĥ∗
am(−k)

)
(4)

in the particle-hole⊗spin space. Here, ĥam(k) = ĥ(k) +
tJ [(k2

x − k2
y ) cos 2α + 2kxky sin 2α]σz with the angle α be-

tween the crystalline axis and the SS/AM (AM/TS) interface
normal. The angle α defines the orientation of AM as shown in
Fig. 1(a). For α = 0, AM is of the dx2−y2 -wave altermagnetism
while for α = π/4, AM is of the dxy-wave altermagnetism [3].

We discretize the above continuum Hamiltonians on a two-
dimensional square lattice as shown in Fig. 1(b). The lattice
constant is taken as a. The discrete Hamiltonian is given by
[50]

H =
∑

i

[�+
i Ȟ0�i + �+

i Ȟx�i+δx + �+
i Ȟy�i+δy

+ �+
i Ȟxy�i+δx+δy + �+

i Ȟxȳ�i+δx−δy + H.c.]. (5)

Here, i = (ix, iy) denotes the position of sites in the lattice
with iy being limited in 1 � iy � Ny as shown in Fig. 1(b).
The width W of the junctions satisfies W = (Ny − 1)a. For
SS (TS), one has ix � 0 (ix � Nx + 1) and the operator �i =
(�l (r)i↑, �l (r)i↓, �+

l (r)i↑, �+
l (r)i↓)T in SS (TS). For AM, one

has 1 � ix � Nx and the operator �i = (ψi↑, ψi↓, ψ+
i↑, ψ+

i↓)T .
The length L of AM (the central region) satisfies L = (Nx −
1)a. The subscripts i + δx and i + δy represent the nearest-
neighbor sites of the ith site along the x direction and the
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y direction, respectively. The subscripts i + δx + δy and i +
δx − δy represent the next-nearest-neighbor sites of the ith
site. The explicit expressions of Ȟ0, Ȟx, Ȟy, Ȟxy and Ȟxȳ, for
SS, TS and AM are presented in Appendix.

The hopping between different regions can be described by
the tunneling Hamiltonian

HT =
∑

1�iy�Ny

[
�+

(0,iy )Ť ψ(1,iy )

+�+
(Nx+1,iy )Ť ψ(Nx,iy ) + H.c.

]
, (6)

with the hoping matrix Ť = diag(t, t,−t∗,−t∗).
The particle number operator for SS can be defined as

N =
∑
ix�0

∑
σ=↑,↓

�+
iσ �iσ . (7)

Using the Green’s function method, the Josephson current can
be given by [50,67–69]

I = e

〈
dN

dt

〉
= − e

2π

∑
1�iy�Ny

∫
dETr[�zŤ G<(E , iy) + H.c.],

(8)

with �z = σz ⊗ 12×2. The lesser Green’s function G<(E , iy) is
the Fourier transform of G<(t, t ; (1, iy ), (0, iy)), which is de-
fined as G<(t, t ′; (1, iy), (0, i′y)) = i〈�+

l (0,i′y )(t
′) ⊗ ψ(1,iy )(t )〉.

Due to the absence of the bias voltage on the SS/AM/TS
junctions, the structure is in the equilibrium. From the
fluctuation-dissipation theorem [70], we obtain

G<(E , iy) = − f (E )[Gr (E , iy) − Ga(E , iy)], (9)

with the Fermi distribution function f (E ). The re-
tard Green’s function Gr (E , iy) can be expressed by
the retard Green’s functions Gr

AM (E , iy, jy) in AM and the free
retard Green’s function gr

SS (E , jy, iy) in SS [50]. The latter two
Green’s functions can be obtained using Ȟ0, Ȟx, Ȟy, Ȟxy, and
Ȟxȳ in Eq. (5).

III. NUMERICAL RESULTS FOR CPRS

In the following numerical calculations, we have taken
t0 = 1 and tJ = 0.5, which can well describe the anisotropy
of altermagnetism. The hopping magnitude t between the SS
(TS) and AM is taken as t = t0 = 1. For the chemical poten-
tial, we take the same value in the three regions, i.e., μ = 2.
For the lattice parameters, a = 1, Nx = 40, and Ny = 40 are
considered. The phase difference is defined as φ = φl − φr .
The unit of the Josephson current is taken as e�0/2π . We
will take �0 = 0.01 and the coherence length ξ = h̄vF /�0

in superconductors can be calculated as about 283a. Since
the length of AM is given by L = (Nx − 1)a � ξ , the short
junctions are considered by us in this paper.

Before presenting the numerical results, we give the first
universal symmetric relation satisfied by all junctions in this
paper, i.e., I (α, φ) = I (π + α, φ), which can be directly de-
rived from the periodicity of altermagnetism presented in
Eq. (3). If one keeps SS and TS unchanged and only rotates
AM by π about z axis, the junctions do not change. The
Josephson current keeps invariant, which gives the universal

FIG. 2. The CPRs for (a) the s-wave SS/AM/chiral p-wave TS
junctions and (b) the s-wave SS/AM/py-wave TS junctions. In (b),
the Josephson currents obey the relation I (α) = I (π/2 − α).

symmetric relation. Next, we show the numerical results and
discussions for CPRs according to the pairing wave functions
in SS. The results for the s-wave SS are shown in Sec. IIIA
and those for the d-wave SS are shown in Sec. IIIB. For the
both situations, three types of pairing wave functions in TS
are considered, which are the chiral p-wave, the px-wave, and
the py-wave states.

A. s-wave SS/AM/TS junctions

First, we present the results for the s-wave SS/AM/TS
junctions. Figure 2(a) shows the orientation-dependent CPRs
for the chiral p-wave TS. The CPRs strongly depend on the
orientation angle α of AM. Generally, the Josephson current
can be expressed as the sum of the Fourier series, i.e., I (φ) =∑

n�1[an sin nφ + bn cos nφ], where an and bn are the expan-
sion coefficients and n is an integer number. For α = π/4, the
CPR is of the sin 2φ type and the lowest order current sin φ

and cos φ are absent as shown in Fig. 2(a). However, when
the orientation angle α deviates from α = π/4, the cos φ type
current will happen and the current is nonzero at the phase
difference φ = 0 [see Fig. 2(a)]. This means that the φ0 phase
is formed in the s-wave SS/AM/chiral p-wave TS junctions.
Since the current is still vanishing at φ = π/2 and φ = 3π/2
[see Fig. 2(a)], the Josephson current does not include the
sin φ term. This indicates that the junction can hold a φ0 phase
with φ0 = π/2 or 3π/2. We do not give the numerical results
for the lager orientation angle α of AM because the CPRs
for the s-wave SS/AM/chiral p-wave TS junction satisfy the
following symmetric relations:

I (α, φ) = I (π/2 + α, π + φ), (10)

I (α, φ) = −I (π − α, π − φ). (11)

The combination of Eqs. (10) and (11) leads to another rela-
tion I (α, φ) = −I (π/2 − α, 2π − φ), which is demonstrated
by the CPRs in Fig. 2(a). In addition, from Fig. 2(a), one can
also see that the CPRs satisfy the relation

I (α, φ) = −I (α, π − φ). (12)

This symmetric relation makes that the forward and reverse
supercurrents have the same behavior although the junction is
left-right inversion asymmetric. These symmetric relations of
CPRs in Eqs. (10)–(12) are closely related with the transfor-
mations of the continuum Hamiltonians for SS, AM, and TS
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FIG. 3. The CPRs for (a) the dxy-wave SS/AM/chiral p-wave TS
junctions and (b) the dxy-wave SS/AM/py-wave TS junctions.

under some operations, which will be discussed in detail in
Sec. IV.

For the s-wave SS/AM/px-wave TS junctions, the char-
acters and the symmetric relations of CPRs are same with
those in Fig. 2(a) for the s-wave SS/AM/chiral p-wave TS
junctions, which are not presented here.

Figure 2(b) shows the CPRs for the s-wave SS/AM/py-
wave TS junctions. In this situation, all CPRs for different
orientation angles α are of the sin 2φ type, although the ori-
entation of AM can change the critical value of the Josephson
current. The CPRs for the py-wave TS junctions satisfy the
following relations:

I (α, φ) = I (π/2 + α, π + φ), (13)

I (α, φ) = −I (π − α, 2π − φ), (14)

I (α, φ) = −I (α, π − φ) = I (α, π + φ). (15)

The combination of Eqs. (13) and (14) brings another relation,
which is I (α, φ) = −I (π/2 − α, π − φ). Then by further
combining with Eq. (15), we have I (α, φ) = I (π/2 − α, φ)
for the py-wave TS junctions, which can be seen from the
CPRs in Fig. 2(b).

B. d-wave SS/AM/TS junctions

In this subsection, we focus on the dxy-wave SS/AM/TS
junctions. Figure 3(a) shows the CPRs of the dxy-wave
SS/AM/chiral p-wave TS junctions for different orientation
angles α of AM. For α = π/4, the CPR is of the sin 2φ

type with the absence of the lowest order currents sin φ and
cos φ, which is the same with the s-wave SS case as shown in
Fig. 2. But, distinct from the s-wave SS situation, the deviation
of the orientation angle from α = π/4 for the dxy-wave SS
causes the emergence of the sin φ type current as shown in
Fig. 3(a). The zero current at φ = 0 indicates that the cos φ

type current is impossible to exist. Furthermore, the current
at the interval φ ∈ (0, π ) for α > π/4 is positive, while it
is negative for α < π/4. The former corresponds to the 0
phase of the junctions and the latter corresponds to the π

phase of the junctions. In other words, the change of the
orientation angle α of AM can realize the 0-π transition in
the dxy-wave SS/AM/chiral p-wave TS junctions. The CPRs
for the dxy-wave SS/AM/chiral p-wave TS junctions respect
the symmetric relations in Eqs. (13) and (14) for the s-wave
SS/AM/py-wave TS junctions. In addition, it has the relation

I (α, φ) = −I (α, 2π − φ) [see Fig. 3(a)], as in the conven-
tional SS/normal conductor/SS junction [71].

For the dxy-wave SS/AM/px-wave TS junctions, the low-
est order current does not exist and the CPRs are only of the
sin 2φ form similar to the results for the s-wave SS/AM/py-
wave TS junctions in Fig. 2(b). Furthermore, the CPRs also
obey the symmetric relations given in Eqs. (13) and (14). For
these reasons, we do not show the numerical results for the
dxy-wave SS/AM/px-wave TS junctions.

The CPRs for the dxy-wave SS/AM/py-wave TS are shown
in Fig. 3(b). Different from the results for the chiral p-wave
TS in Fig. 3(a), the cos φ type current appears in the py-wave
TS junctions when α �= π/4. There is no sin φ type current
since the current is zero at φ = π/2 and φ = 3π/2. This
indicates that the φ0 phase with φ0 = π/2 or 3π/2 can
be formed in the dxy-wave SS/AM/py-wave TS junctions.
The CPRs for the junctions obey the symmetric relations
in Eqs. (10)–(12) for the s-wave SS/AM/chiral p-wave TS
junctions.

As for the dx2−y2 -wave SS/AM/TS junctions, the CPRs
exhibit the similarities with those for the s-wave SS/AM/TS
junctions. The cos φ type current can happen for the chiral
p-wave TS and the px-wave TS except for α = π/4, as in
Fig. 2(a). The φ0 phase can be realized in these junctions. For
the dx2−y2 -wave SS/AM/py-wave TS junctions, the Josephson
current is of the sin 2φ type, as in s-wave SS/AM/py-wave TS
junctions [see Fig. 2(b)]. The junctions for the dx2−y2 -wave
SS respect the same symmetric relations with the s-wave SS,
which are presented in Eqs. (10)–(15). Finally, we can get
the second universal relation I (α, φ) = I (π/2 + α, π + φ)
presented in Eqs. (10) and (13), which is satisfied by all
SS/AM/TS junctions in this paper.

IV. SELECTION RULES AND SYMMETRY ANALYSES

A. Selection rules

The lowest order current is the indispensable component
for the formation of the φ0 phase and the 0-π transition. In
Table I, we summarize the selection rules for the sin φ and
cos φ type currents in the SS/AM/TS junctions based on the
numerical results and the discussions in Sec. III. It is found
that α �= π/4 in AM is the necessary condition for the emer-
gence of the lowest order current besides the specific pairing
wave functions in SS and TS. Taking the universal relations
I (α, φ) = I (π + α, φ) and I (α, φ) = I (π/2 + α, π + φ) into
account, the condition can be generalized to α �= (2n + 1)π/4
with n being an integer number. In other words, the orientation
angle α of AM cannot be equal to the odd multiples of π/4 in
order to obtain the lowest order current. On the other hand, the
presence and absence of the lowest order current and its type
are strongly dependent on the pairing wave functions in TS as
shown in Table I, which provide an effective method to detect
the intrinsic order parameter of TS without the influences of
the stray field and the external field. Actually, the selection
rules here in our junctions are very similar to those for the
SS/ferromagnet/TS junctions in Ref. [43]. It is interesting to
compare the mechanisms for the selection rules in the two
kinds of junctions.
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If we substitute a ferromagnet for AM in our junctions, the
necessary condition for the lowest order current will become
θm �= π/2 with θm being the polar angle of the magnetization
in ferromagnet. Note that the polar angle θm here in our co-
ordinate system is just the azimuthal angle in the coordinate
system of Ref. [43]. In other words, the magnetization in fer-
romagnet must have the component parallel to the out-plane
direction in order to obtain the lowest order current. In this
paper, the d vector in TS has been assumed to be along the
out-plane direction. The in-plane magnetization is perpendic-
ular to the d vector, which is detrimental for the formation
of the lowest order current. This is because TS will be of the
equal-spin pairing state with the in-plane spin equal to ±1 if
the direction of the in-plane magnetization is chosen as the
spin quantization axis. In this situation, the wave function of
Cooper pairs |S = 0, S‖ = 0〉 in SS and that |S = 1, S‖ = ±1〉
in TS are orthogonal since SS is of the opposite spin pairing
state with the total spin equal to 0. As a result, the tunneling
of a single Cooper pair from the left SS to the right TS is
forbidden. The coherent tunneling of two Cooper pairs is per-
mitted, which only leads to the sin 2φ type current. However,
the out-plane magnetization parallel to the d vector is helpful
to form the lowest order current. In this situation, TS will be
of the opposite spin pairing state |S = 1, Sz = 0〉 =

√
2

2 (|S =
1, S‖ = 1〉 + |S = 1, S‖ = −1〉) with the out-plane spin equal
to 0. The tunneling of a single Cooper pair |S = 0, Sz = 0〉
from the left SS to the right TS with the states |S = 1, Sz = 0〉
is possible. Therefore, the rotation of the magnetization can
tune the CPRs through changing the out-plane component of
the magnetization in ferromagnet. This is the mechanism for
the selection rules in the SS/ferromagnet/TS junctions.

In order to understand the mechanism for the SS/AM/TS
junctions in this paper, we can treat AM as a ferromag-
netic system having an effective magnetization Meff with
its direction being fixed along the z axis. As shown in
Eq. (3), the effective magnetization can be expressed as
Meff(k) = tJ [(k2

x − k2
y ) cos 2α + 2kxky sin 2α]ẑ. The magneti-

zation only has the out-plane component parallel to the d
vector. However, this does not mean that the lowest order
current is always present in our junctions. Different from
the isotropic magnetization in ferromagnet, the magnetiza-
tion in AM has an anisotropic orbital part, which is [(k2

x −
k2

y ) cos 2α + 2kxky sin 2α]. This difference resembles the dis-
tinction between the s-wave SS and the d-wave SS. The
pairing in the former is isotropic while the pairing in the
latter is anisotropic. The orbital part in AM provides a degree
of freedom for AM to tune the magnitude of the out-plane
magnetization. This degree of freedom is just the orienta-
tion angle α in AM. For ease of understanding, we take the
one-dimensional transport with the incident angle θ = 0 as
an example to discuss the effects of the orientation angle
α. In this situation, one has (kx, ky)/

√
k2

x + k2
y = (1, 0) and

the orbital part becomes cos 2α. For α = 0, the out-plane
magnetization in AM reaches its maximum value, which cor-
responds to the polar angle θm = 0 of the ferromagnet case.
The appearance of the lowest order current is possible. When
one alters the orientation angle from α = 0 to α = π/4, the
out-plane magnetization is decreased and finally disappears.
The lowest order current for α = π/4 cannot be expected. The

orientation angle α = π/4 in AM corresponds to the polar
angle θm = π/2 of the ferromagnet case. However, θm = π/2
does not change the ferromagnetic property of ferromagnet,
which just leads to the vanishing of the out-plane component
of magnetization not magnetization itself. In contrast, α =
π/4 changes AM from the state with the finite effective mag-
netization to the state with the vanishing effective magnetiza-
tion. For α = π/4, AM behaves like a normal metal without
any spin polarization since the orbital part cos 2α is equal to 0.
In this case, the spin quantization axis can be selected arbitrar-
ily. If we chose the in-plane direction, which is perpendicular
to the d vector in TS as the spin quantization axis, TS will
be of the equal-spin pairing state with the in-plane spin equal
to ±1. The wave function of Cooper pairs |S = 0, S‖ = 0〉 in
SS and that |S = 1, S‖ = ±1〉 in TS becomes orthogonal. The
lowest order current is impossible to occur. This is the mech-
anism for the selection rules in the SS/AM/TS junctions.

Now, we try to give a more comprehensive discussions
about the selection rules by constructing the free energy
F of the SS/AM/TS junctions. First, we introduce S(k) =
�0 fss(k)�0 fts(k)ẑ, which includes the information of the in-
terface spin for the junctions between SS and TS [43]. For the
two dimensional transport, the incident electrons possess dif-
ferent values of ky. We define the average of S(k) as 〈S(k)〉 =∫ k0

−k0
S(k)dky/

∫ k0

−k0
dky. We can also define 〈Meff(k)〉 as the

average of the effective magnetization in AM in a similar way.
After a simple calculation, one can find 〈Meff(k)〉 ∝ cos 2αẑ.
The interaction between the interface spin and the effective
magnetization will contribute to the free energy and the lowest
order current of the SS/AM/TS junctions. We speculate that
the free energy possesses the following form [43]:

F ∝Re[〈S(k)〉 · 〈Meff(k)〉] sin φ

+ Im[〈S(k)〉 · 〈Meff(k)〉] cos φ. (16)

As the derivative of the free energy with respect to φ, the
Josephson current can be accordingly written as

I ∝Re[〈S(k)〉 · 〈Meff(k)〉] cos φ

+ Im[〈S(k)〉 · 〈Meff(k)〉] sin φ. (17)

Taking 〈Meff(k)〉 ∝ cos 2αẑ into account, the Josephson cur-
rent can be further expressed as I ∝ (Re[〈S(k)〉] cos φ +
Im[〈S(k)〉] sin φ) cos 2α. From this expression, we can find
the lowest order current is vanishing when α = (2n + 1)π/4,
which is independent on the paring wave functions of su-
perconductors involved in 〈S(k)〉. For α �= (2n + 1)π/4, the
type of the lowest order current is determined by the specific
pairing wave functions in SS and TS. For the s-wave and the
dx2−y2 -wave SSs, if TS is of the chiral p-wave or px-wave
pairing, 〈S(k)〉 is a real number and only the cos φ type current
can be obtained. If TS is of the py-wave pairing, 〈S(k)〉 = 0
and there is no the lowest order current in the junctions. For
the dxy-wave SS, if TS is of the chiral p-wave pairing, 〈S(k)〉
is a pure imaginary number and only the sin φ type current
can be obtained. If TS is of the py-wave pairing, 〈S(k)〉 is a
real number and only the cos φ type current can be obtained.
If TS is of the px-wave pairing, 〈S(k)〉 = 0 and there is no the
lowest order current in the junctions. These discussions are
well consistent with the numerical results of CPRs in Figs. 2
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and 3 and the selection rules summarized in Table I. The
free energy in Eq. (16) reflects the peculiar interplay between
altermagnetism and the spin-triplet superconductivity, which
provide the physical basis for the detection of the intrinsic
order parameter of TS.

B. Symmetry analyses

Now, we derive the symmetric relations from the mirror
reflection operation about the xz plane Mxz, the time-reversal
operation T and the spin rotation operation about the y axis
Ry(π ). The effects of the operations on the annihilation oper-
ators cks with the spin s can be given by [50,72,73]

Mxzc(kx,ky )sM−1
xz = sc(kx,−ky )s̄, (18)

T cksT −1 = sc−ks̄, (19)

Ry(π )cksRy(π )−1 = s̄cks̄. (20)

Now, we consider the transformations of the Hamiltonian
in each region under the above operations. For the spin rota-
tion about the y axis, we have

Ry(π )HSS (φl )Ry(π )−1 = HSS (φl ) (21)

for SS,

Ry(π )HAM (α)Ry(π )−1 = HAM (π/2 + α) (22)

for AM, and

Ry(π )HT S (φr )Ry(π )−1 = HT S (π + φr ) (23)

for TS. As a unitary operation, the spin rotation will not
change the current. As a result, we can get I (α, φ) = I (π/2 +
α, π + φ) from Eqs. (21)–(23), which is the second universal
symmetric relation as presented in Eqs. (10) and (13) satisfied
by all junctions.

We define the joint operation X = T Mxz using the mirror
reflection Mxz and the time-reversal operation T in Eqs. (18)
and (19). Under the joint operation, we have

XHSS(T S)(φl (r) )X−1 = HSS(T S)(−φl (r) ), (24)

for the s-wave SS, the dx2−y2 -wave SS, and the py-wave TS,
while

XHSS(T S)(φl (r) )X−1 = HSS(T S)(π − φl (r) ) (25)

for the dxy-wave SS, the chiral p-wave TS, and the px-wave
TS. The same operation can also give

XHAM (α)X−1 = HAM (π − α) (26)

for AM. The mirror reflection will not change the current
but the time reversal operation can inverse the current. As
a result, we obtain the relation I (α, φ) = −I (π − α, π − φ)
for the s(or dx2−y2 )-wave SS/AM/chiral p-wave TS junc-
tions, s(or dx2−y2 )-wave SS/AM/px-wave TS junctions, and

the dxy-wave SS/AM/py-wave TS junctions while the relation
I (α, φ) = −I (π − α, 2π − φ) holds for the s(or dx2−y2 )-wave
SS/AM/py-wave TS junctions, the dxy-wave SS/AM/chiral
p-wave TS junctions, and the dxy-wave SS/AM/px-wave TS
junctions. The two relations are just the ones presented in
Eqs. (11) and (14), respectively.

Furthermore, we consider the joint operation Y = T Ry.
Under this joint operation, the Hamiltonian HAM in the AM
region is invariant, but the Hamiltonians HSS and HT S will
change according to the following relations:

YHSS (φl )Y−1 = HSS (−φl ) (27)

for the s-wave SS, the dx2−y2 -wave SS, and the dxy-wave SS;
and

YHT S (φr )Y−1 = HT S (π − φr ) (28)

for the px-wave TS and the py-wave TS. Therefore, we have
the relation I (α, φ) = −I (α, π − φ) for the s-wave (or dx2−y2 -
wave, dxy-wave) SS/AM/px-wave (or py-wave) TS junction,
as shown in Eq. (15) and in Figs. 2(b) and 3(b).

Finally, we give a short discussion about the experimental
realization of our results. The orientation-dependent physical
effects have been studied in many systems. One typical exam-
ple is the transport in the d-wave superconductor junctions.
For example, the tunneling conductance [74], the Josephson
effects [64,75], and the diode effect [76] for the different
crystallographic orientation angles of the d-wave supercon-
ductor have been clarified in theory. In these junctions, the
continuous regulation of the orientation angle may be dif-
ficult in experiment. However, the transport quantities for
several specific orientation angles can be measured experi-
mentally. The conductances for different orientation angles
of the d-wave superconductor have been detected in the
normal metal/superconductor junctions [77–79]. The Joseph-
son effect in the s-wave superconductor/insulator/d-wave
superconductor junctions are also investigated for differ-
ent well-defined geometries [80]. In this paper, we have
obtained the selection rules and the symmetric relations of
CPRs in the SS/AM/TS junctions, which give the explicit val-
ues of the orientation angle for the π phase and the φ0 phase. It
is believed that the two phases can be experimentally realized
under the specific orientation angle. On the other hand, the
measurements of the Josephson current for several orientation
angles are also enough to detect the intrinsic pairing wave
function in TS.

V. CONCLUSIONS

In contrast to ferromagnet, altermagnet provides a dif-
ferent degree of freedom, which is its orientation. For the
SS/AM/TS junctions, the change of the orientation angle of
AM can activate the lowest order current and alter the CPRs
in the junctions. The φ0 phase and the 0-π transition can be
realized, which are the basic components for the design of
field-free quantum devices. The selection rules for the lowest
order current are presented, which give the necessary orien-
tation angle of AM and the specific pairing wave functions
in SS and TS for the formation of the lowest order current.
The mechanisms for the selection rules in the SS/AM/TS
junctions and the SS/ferromagnet/TS junctions and their

024517-7



QIANG CHENG AND QING-FENG SUN PHYSICAL REVIEW B 109, 024517 (2024)

difference are clarified. We also investigated the symmetric
relations obeyed by the CPRs in the SS/AM/TS junctions and
their close connections with the mirror reflection, the time-
reversal and the spin rotation operations. Our results exhibit
the peculiar transport signal for the SS/AM/TS junctions
and the interplay between altermagnetism and the spin-triplet
superconductivity, which offer the practical feasibility of the
detection of the Cooper pair wave function in TS.
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APPENDIX

The discrete Hamiltonian in Eq. (5) can be obtained from
the continuum Hamiltonians in Eqs. (1) and (3) by discretizing
them on the two-dimensional lattice. Now, we present the
explicit expressions of Ȟ0, Ȟx, Ȟy, Ȟxy, and Ȟxȳ in Eq.(5) for
SS, TS, and AM.

For the s-wave SS,

Ȟ0 =
( ( 4t0

a2 − μ
)
σ0 �0eiφl iσy

−�0e−iφl iσy
( − 4t0

a2 + μ
)
σ0

)
, (A1)

Ȟx = Ȟy =
(− t0

a2 σ0 0

0 t0
a2 σ0

)
, (A2)

and Ȟxy = Ȟxȳ = 0.

For the dx2−y2 -wave SS,

Ȟ0 =
(( 4t0

a2 − μ
)
σ0 0

0
( − 4t0

a2 + μ
)
σ0

)
, (A3)

Ȟx(y) =
( − t0

a2 σ0 −(+)�0
a2 eiφl iσy

+(−)�0
a2 e−iφl iσy

t0
a2 σ0

)
, (A4)

and Ȟxy = Ȟxȳ = 0.
For the dxy-wave SS, the matrix Ȟ0 is the same with that in

Eq. (A3). The matrix Ȟx(y) is the same with that in Eq. (A2).
The matrix Ȟxy(xȳ) is expressed as

Ȟxy(xȳ) =
(

0 −(+) �0
2a2 eiφl iσy

+(−) �0
2a2 e−iφl iσy 0

)
. (A5)

For TS, the matrix Ȟ0 is the same with that in Eq. (A3).
The matrices Ȟx and Ȟy are given by

Ȟx =
( − t0

a2 σ0
−iη1

2a �0eiφr σx

− iη1

2a �0e−iφr σx
t0
a2 σ0

)
, (A6)

and

Ȟy =
( − t0

a2 σ0
η2

2a�0eiφr σx

− η2

2a�0e−iφr σx
t0
a2 σ0

)
, (A7)

respectively.
For AM, the matrix Ȟ0 is the same with that in Eq. (A3).

The matrix Ȟx(y) = diag(hx(y)1, hx(y)2 ) with hx(y)1 = − t0
a2 σ0 −

(+) tJ cos 2α
a2 σz and hx(y)2 = t0

a2 σ0 + (−) tJ cos 2α
a2 σz. The matrix

Ȟxy(xȳ) can be expressed as

Ȟxy(xȳ) =
(−(+) tJ sin 2α

2a2 σz 0

0 +(−) tJ sin 2α
2a2 σz

)
. (A8)

From the above matrices, the retard Green’s function
Gr

AM (E , iy, jy) in AM and the free retard Green’s function
gr

SS (E , jy, iy) in SS can be obtained. Then, the lesser Green’s
function in Eq. (9) and the Josephson current in Eq. (8) can be
calculated.
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[18] I. Žutić and I. Mazin, Phys. Rev. Lett. 95, 217004 (2005).
[19] Y. Asano, Y. Tanaka, M. Sigrist, and S. Kashiwaya, Phys. Rev.

B 71, 214501 (2005).
[20] F. Kidwingira, J. D. Strand, D. J. van Harlingen, and Y. Maeno,

Science 314, 1267 (2006).

024517-8

https://doi.org/10.1103/PhysRevX.12.031042
https://doi.org/10.1103/PhysRevX.12.040002
https://doi.org/10.1103/PhysRevX.12.040501
https://doi.org/10.1103/PhysRevB.107.L100418
https://doi.org/10.1103/PhysRevB.106.094432
https://doi.org/10.1103/RevModPhys.72.969
https://doi.org/10.1103/PhysRevX.12.011028
https://doi.org/10.1103/PhysRevLett.130.216701
https://arxiv.org/abs/2203.05000
https://doi.org/10.1103/PhysRevB.108.054511
https://doi.org/10.1103/PhysRevB.108.L060508
https://doi.org/10.1103/PhysRevLett.131.076003
https://doi.org/10.1103/PhysRevB.108.075425
https://doi.org/10.1103/PhysRevB.108.184505
https://doi.org/10.1103/PhysRevB.108.205410
https://doi.org/10.1103/RevModPhys.67.515
https://doi.org/10.1126/science.1103881
https://doi.org/10.1103/PhysRevLett.95.217004
https://doi.org/10.1103/PhysRevB.71.214501
https://doi.org/10.1126/science.1133239


ORIENTATION-DEPENDENT JOSEPHSON EFFECT IN … PHYSICAL REVIEW B 109, 024517 (2024)

[21] Y. Nago, R. Ishiguro, T. Sakurai, M. Yakabe, T. Nakamura, S.
Yonezawa, S. Kashiwaya, H. Takayanagi, and Y. Maeno, Phys.
Rev. B 94, 054501 (2016).

[22] M. S. Anwar, R. Ishiguro, T. Nakamura, M. Yakabe, S.
Yonezawa, H. Takayanagi, and Y. Maeno, Phys. Rev. B 95,
224509 (2017).

[23] R. Jin, Y. Zadorozhny, Y. Liu, D. G. Schlom, Y. Mori, and Y.
Maeno, Phys. Rev. B 59, 4433 (1999).

[24] H. Kaneyasu, S. B. Etter, T. Sakai, and M. Sigrist, Phys. Rev. B
92, 134515 (2015).

[25] S. B. Etter, H. Kaneyasu, M. Ossadnik, and M. Sigrist, Phys.
Rev. B 90, 024515 (2014).

[26] Y. A. Ying, Y. Xin, B. W. Clouser, E. Hao, N. E. Staley, R. J.
Myers, L. F. Allard, D. Fobes, T. Liu, Z. Q. Mao, and Y. Liu,
Phys. Rev. Lett. 103, 247004 (2009).

[27] K. Saitoh, S. Kashiwaya, H. Kashiwaya, Y. Mawatari, Y.
Asano, Y. Tanaka, and Y. Maeno, Phys. Rev. B 92, 100504(R)
(2015).

[28] S. Kashiwaya, K. Saitoh, H. Kashiwaya, M. Koyanagi, M. Sato,
K. Yada, Y. Tanaka, and Y. Maeno, Phys. Rev. B 100, 094530
(2019).

[29] Y. Liu, New J. Phys. 12, 075001 (2010).
[30] L. A. B. Olde Olthof, L. G. Johnsen, J. W. A. Robinson, and J.

Linder, Phys. Rev. Lett. 127, 267001 (2021).
[31] R. Jin, Y. Liu, Z. Q. Mao, and Y. Maeno, Europhys. Lett. 51,

341 (2000).
[32] Y. Asano, Y. Tanaka, M. Sigrist, and S. Kashiwaya, Phys. Rev.

B 67, 184505 (2003).
[33] R. Balian and N. R. Werthamer, Phys. Rev. 131, 1553 (1963).
[34] K. Sengupta and V. M. Yakovenko, Phys. Rev. Lett. 101,

187003 (2008).
[35] C.-K. Lu and S. Yip, Phys. Rev. B 80, 024504 (2009).
[36] L. Elster, M. Houzet, and J. S. Meyer, Phys. Rev. B 93, 104519

(2016).
[37] A. Romano, P. Gentile, C. Noce, I. Vekhter, and M. Cuoco,

Phys. Rev. B 93, 014510 (2016).
[38] A. Millis, D. Rainer, and J. A. Sauls, Phys. Rev. B 38, 4504

(1988).
[39] Y. Tanaka and S. Kashiwaya, J. Phys. Soc. Jpn. 68, 3485

(1999).
[40] Y. Tanaka and S. Kashiwaya, J. Phys. Soc. Jpn. 69, 1152

(2000).
[41] B. Sothmann and R. P. Tiwari, Phys. Rev. B 92, 014504 (2015).
[42] T. Yokoyama, Y. Tanaka, and A. A. Golubov, Phys. Rev. B 75,

094514 (2007).
[43] P. M. R. Brydon, W. Chen, Y. Asano, and D. Manske, Phys.

Rev. B 88, 054509 (2013).
[44] J. A. Pals, W. van Haeringen, and M. H. van Maaren, Phys. Rev.

B 15, 2592 (1977).
[45] L. B. Ioffe, V. B. Geshkenbein, M. V. Feigel’man, A. L.

Fauchére, and G. Blatter, Nature (London) 398, 679 (1999).
[46] T. Yamashita, K. Tanikawa, S. Takahashi, and S. Maekawa,

Phys. Rev. Lett. 95, 097001 (2005).
[47] A. Buzdin, Phys. Rev. Lett. 101, 107005 (2008).
[48] D. B. Szombati, S. Nadj-Perge, D. Car, S. R. Plissard, E.

P. A. M. Bakkers, and L. P. Kouwenhoven, Nat. Phys. 12, 568
(2016).

[49] Q. Cheng and Q.-F. Sun, Phys. Rev. B 99, 184507 (2019).
[50] Q. Cheng, Q. Yan, and Q.-F. Sun, Phys. Rev. B 104, 134514

(2021).

[51] A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657
(2003).

[52] E. Mueller, Y. Iguchi, C. Watson, C. W. Hicks, Y. Maeno, and
K. A. Moler, Phys. Rev. B 108, 144501 (2023).

[53] A. Pustogow, Y. Luo, A. Chronister, Y.-S. Su, D. A. Sokolov,
F. Jerzembeck, A. P. Mackenzie, C. W. Hicks, N. Kikugawa, S.
Raghu et al., Nature (London) 574, 72 (2019).

[54] R. Khasanov, A. Ramires, V. Grinenko, I. Shipulin, N.
Kikugawa, D. A. Sokolov, J. A. Krieger, T. J. Hicken, Y. Maeno,
H. Luetkens, and Z. Guguchia, Phys. Rev. Lett. 131, 236001
(2023).

[55] A. N. Petsch, M. Zhu, M. Enderle, Z. Q. Mao, Y. Maeno,
I. I. Mazin, and S. M. Hayden, Phys. Rev. Lett. 125, 217004
(2020).

[56] V. Grinenko, S. Ghosh, R. Sarkar, J.-C. Orain, A. Nikitin, M.
Elender, D. Das, Z. Guguchia, F. Brückner, M. E. Barber et al.,
Nat. Phys. 17, 748 (2021).

[57] E. Hasinger, P. Bourgeois-Hope, H. Taniguchi, S. René de
Cotret, G. Grissonnanche, M. S. Anwar, Y. Maeno, N.
Doiron-Leyraud, and L. Taillefer, Phys. Rev. X 7, 011032
(2017).

[58] F. Jerzembeck, H. S. Røising, A. Steppke, H. Rosner, D. A.
Sokolv, N. Kikugawa, T. Scaffidi, S. H. Simon, A. P.
Mackenzie, and C. W. Hicks, Nat. Commun. 13, 4596 (2022).

[59] S. Ghosh, A. Shekhter, F. Jerzembeck, N. Kikugawa, S. A.
Sokolov, M. Brando, A. P. Mackenzie, C. W. Hicks, and B. J.
Ramshaw, Nat. Phys. 17, 199 (2021).

[60] S. Benhabib, C. Lupien, I. Paul, L. Berges, M. Dion, M.
Nardone, A. Zitouni, Z. Q. Mao, Y. Maeno, A. Georges et al.,
Nat. Phys. 17, 194 (2021).

[61] V. Grinenko, D. Das, R. Gupta, B. Zinkl, N. Kikugawa,
Y. Maeno, C. W. Hicks, H.-H. Klauss, M. Sigrist, and R.
Khasanov, Nat. Commun. 12, 3920 (2021).

[62] V. Grinenko, R. Sarkar, S. Ghosh, D. Das, Z. Guguchia, H.
Luetkens, I. Shipulin, A. Ramires, N. Kikugawa, Y. Maeno,
K. Ishida, C. W. Hicks, and H.-H. Klauss, Phys. Rev. B 107,
024508 (2023).

[63] J. F. Annett, B. L. Gyöffy, G. Litak, and K. I. Wysokiński, Phys.
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