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In two-dimensional superconductors with a Rashba-type spin-orbit coupling, it is known that an in-plane mag-
netic field can induce a helical superconducting (SC) state with a phase modulation eiq·r. Here, we theoretically
investigate the stability of a stripe order, a weight-biased superposition state composed of +q and −q modes
taking the form of �+eiq·r + �−e−iq·r with |�+| �= |�−| �= 0, assuming that the spin-singlet pairing channel
is dominant. Based on the Ginzburg-Landau theory, we show that for both s- and d-wave pairing symmetries,
the stripe order can appear in the high-field and low-temperature region inside the helical phase and that the
transition between the helical and stripe phases is of second order. It is noteworthy that for the d-wave pairing,
the stability region of the stripe phase shrinks when the in-plane field is rotated from the nodal direction to the
antinodal direction. It is also found that the nonreciprocity of the critical current, the so-called SC diode effect,
emerges not only in the helical phase but also in the stripe phase, with no clear nonreciprocity anomaly at the
helical-stripe transition due to its second-order nature.

DOI: 10.1103/PhysRevB.109.024516

I. INTRODUCTION

In superconductors and fermionic superfluids, Cooper pairs
with their center-of-mass momenta q’s are usually condensed
into a uniform state of q = 0, as q �= 0 modes and associated
spatial variations generally require additional energy cost.
When the Cooper pair is subject to pair-breaking effects due
to an external magnetic field [1–3] and surface scatterings
[4–9], it can happen that the Cooper-pair condensate chooses
to have a q �= 0 rather than to be uniformly suppressed. A
prime example of such a q �= 0 superconducting (SC) state is
the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state induced
by the Pauli-paramagnetic pair-breaking effect [1–3] where
the SC gap function exhibits a phase modulation eiq·r (FF
state) or an amplitude modulation cos(q · r) (LO state). The
latter can be viewed as a superposition of ±q modes of
equal weight. In this work, we theoretically investigate the
stability of a weight-biased superposition state called a stripe
order [10,11] in two-dimensional noncentrosymmetric su-
perconductors possessing a Rashba-type spin-orbit coupling
(RSOC) where the degeneracy between q and −q is lifted by
a combined effect of the RSOC and an in-plane Zeeman field
[12,13] and, resultantly, a supercurrent becomes nonreciprocal
[14,15], giving rise to a SC diode effect [16–20].

The RSOC of the form αR(k × ẑ) · σ is generic to noncen-
trosymmetric systems lacking mirror symmetry with respect
to a crystalline plane such as the heavy-fermion bulk super-
conductors CePt3Si [21] and CeT Si3 (T = Rh, Ir) [22,23] and
two-dimensional superconductors realized on artificial super-
lattices [24–26], at interfaces between two different materials
[27–29], and in perpendicular electrical gate fields [30,31]. In
a magnetic field H parallel to the mirror plane, a field-induced
in-plane spin polarization is connected to supercurrents via the
RSOC [12,32–38]. Such a magnetoelectric effect can induce
a so-called helical SC state with a phase modulation eiq·r [12],

where in contrast to the conventional FF state, the direction of
q is fixed to be parallel to αR(H × ẑ) due to the RSOC and
thus, q and −q are not equivalent. Noting that the phase gra-
dient yields a SC current, it turns out that the nonequivalence
between q and −q should be reflected as a nonreciprocity
between the supercurrents flowing in the q and −q directions.
Actually, a nonreciprocal SC transport of this kind has been
observed as the SC diode effect [16] which can be understood
as the nonreciprocity of the SC critical current [17–20]. Here,
we emphasize again that the key ingredient for the helical
phase and the associated SC diode effect is the RSOC.

In the case without the RSOC, on the other hand, it is
well known that the Zeeman field or the Pauli-paramagnetic
pair-breaking effect leads to the occurrence of the amplitude
modulated LO state in a high-field and low-temperature region
[3]. Since as mentioned above, the RSOC favors the FF-like
helical state, how robust the LO state is against the RSOC
would be an interesting question. This issue has already been
discussed in three-dimensional Rashba superconductors with
a dominant spin-singlet s-wave pairing interaction [10], al-
though in three dimensions, the orbital pair-breaking effect,
which is not incorporated in Ref. [10], is non-negligible [39].
It has been reported that an intermediate state between the
FF and LO states taking the form of �+eiq·r + �−e−iq·r with
|�+| �= |�−| �= 0 can be stabilized [10]. Since this interme-
diate state breaks the translational symmetry similarly to the
LO state of |�+| = |�−|, it is called the stripe order, being
distinguished from the conventional LO state. In contrast to
the helical phase where only one modulation vector q de-
termines the preferred flow direction of the supercurrent, the
stripe phase involves both q and −q, so that how the SC diode
effect looks like in the stripe phase would be an interesting
question. Furthermore, when we consider a d-wave pairing
instead of the isotropic s-wave one, we notice that another
fundamental question arises.
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FIG. 1. Temperature and magnetic-field phase diagrams of the two-dimensional Rashba superconductors with spin-singlet pairing interac-
tions whose orbital symmetries are (a) s wave, and (b), (c) d wave of dx2−y2 type. In (b) [(c)], the in-plane field is applied parallel to the nodal
[110] direction (the antinodal [100] direction). In the upper and lower panels, δN’s measuring the strength of the RSOC are 0.01 and 0.05,
respectively. The solid lines denote the second-order transitions. In (b), the lower boundary of the stripe phase cannot be determined in the
present GL approach (for details, see Appendix B), and thus, the dashed line is just a guide for eyes.

In d-wave superconductors, there exists a spatial
anisotropy originating from of the SC gap nodes. In the
dx2−y2 case without the RSOC, it has been theoretically
shown that for a cylindrical Fermi surface, the LO state with
q parallel to the nodal [110] direction is stabilized in the
high-field and low-temperature region and that at further
high fields, the FF state with q parallel to the antinodal
[100] direction becomes more stable [40,41]. We note that
the direction of the applied field has nothing to do with the
q direction as the spin and orbital sectors are completely
decoupled in the absence of a spin-orbit coupling. Then,
the question is what happens when the RSOC is introduced.
Since the RSOC favors the phase-modulated helical state
with q ‖ αR(H × ẑ), the field direction relative to the nodal
direction should be important for the stability of the LO-like
stripe phase involving both q and −q. To our knowledge,
this issue has not yet been discussed. In addition, a recent
experiment on the globally noncentrosymmetric tricolor
superlattice of YbRhIn5/CeCoIn5/YbCoIn5 [26] containing
CeCoIn5 whose pairing symmetry in the bulk is dx2−y2

[42–48] has shown that a nonreciprocal SC transport exhibits
an in-plane anisotropy when the in-plane field is rotated
from the nodal ([110]) direction to the antinodal ([100])
direction [49]. In view of such theoretical and experimental
situations, we theoretically investigate the stripe instability in
the two-dimensional Rashba superconductors for the d-wave
pairing and the s-wave one as well for reference, and examine
the SC diode effect in the stripe phase.

Based on the Ginzburg-Landau (GL) analysis, we will
show that for H parallel to the nodal [110] direction, the stripe

phase can be stabilized in a relatively wide range of the high-
field and low-temperature region, while not for H parallel
to the antinodal [100] direction [see Figs. 1(b) and 1(c)]. In
both cases, with increasing δN measuring the strength of the
RSOC (see Sec. II), the stripe phase gets unstable against the
helical phase. It is also found that the nonreciprocity of the
critical SC current, i.e., the intrinsic SC diode effect [17–20],
emerges in the stripe phase as well as in the helical phase
and that the second-order transition between the two phases
does not leave a footprint in the temperature dependence of
the critical-current nonreciprocity.

This paper is organized as follows: In Sec. II, we derive
the GL free-energy functional from the microscopic BCS
Hamiltonian with the RSOC and explain how to examine
the stability of the stripe order and the nonreciprocity of the
critical current. Results on the former and latter issues are
discussed in Secs. III and IV, respectively. We end the paper
with summary and discussions in Sec. V.

II. THEORETICAL FRAMEWORK

In this section, we derive the GL free-energy functional
from the microscopic Hamiltonian, and explain how to exam-
ine the stability of the stripe order and the nonreciprocity of
the critical current.

A. GL free-energy functional

In this work, we consider the two-dimensional Rashba
superconductor with the spin-singlet pairing interaction. In the
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in-plane magnetic field H, the microscopic BCS Hamiltonian
can be written as

H =
∑
k,s,s′

Kss′ (k)ĉ†
k,sĉk,s′ − U

∑
q

B̂†(q)B̂(q),

Kss′ (k) = εkδss′ + σss′ · (α gk − μH),

B̂(q) = 1

2

∑
k,s,s′

(−i σy)ss′ wkĉ−k+ q
2 ,sĉk+ q

2 ,s′ , (1)

where ĉ†
k,s and ĉk,s are the creation and annihilation op-

erators of a quasiparticle with momentum k and spin s,
respectively, and σ = (σx, σy, σz ) with Pauli matrices σi. The
single-particle spectrum is described by Kss′ which includes
the RSOC with strength αR > 0 and the unit vector gk = k̂ ×
ẑ (k̂ = k/kF ) and the Zeeman field μH. The kinetic energy
εk is measured from the Fermi energy EF . In Eq. (1), the
last term represents the spin-singlet pairing interaction with
its orbital symmetry being described by wk which takes the
form of wk = 1 and wk = √

2 cos(2φk ) in the s-wave and
dx2−y2 cases, respectively, where φk is an azimuthal angle in
the kx-ky plane. In this work, the Fermi surface is assumed to
be isotropic or, equivalently, cylindrical, so that in the absence
of the RSOC, the anisotropy of the system enters only via wk.

By introducing the unitary transformation to diagonal-
ize the single-particle Hamiltonian ĉk,s = 1√

2
(−i sin φ′ +

σz cos φ′ + σx )ss′ b̂k,s′ with φ′ = cos−1 (αR gk−μH)x

|αR gk−μH| and the

mean field �(q) = U 〈B̂(q)〉, Eq. (1) can be rewritten in the
mean-field approximation as

HMF = 1

U

∑
q

|�(q)|2 +
∑

a=1,2

(∑
k

ξ a
k b̂†

k,ab̂k,a

+ 1

2

∑
k,q

�(q)e−i(−1)a (φk+ π
2 ) w∗

k b̂†
k+ q

2 ,a
b̂†

−k+ q
2 ,a

+ 1

2

∑
k,q

�∗(q)ei(−1)a (φk+ π
2 ) wk b̂−k+ q

2 ,ab̂k+ q
2 ,a

)
,

where a = 1, 2 denotes the two Fermi surfaces split by the
RSOC, and 〈. . . 〉 denotes the thermal average. Here, we have
used the assumptions μH 	 αR 	 EF and |q| 	 kF , the for-
mer of which yields

ξ a
k = εk − (−1)a|αR gk − μH|


 εk − (−1)a[αR − (μH × k̂)z] (2)

and va
k = vF [k̂ − (−1)a μH

vF kF
(Ĥ × ẑ)] 
 vF for the quasipar-

ticle velocity. Noting that due to the RSOC-induced energy
shift, the density of states for the Fermi surface 2, N2, is
greater than that for the Fermi surface 1, N1, it turns out
that δN = N2−N1

N2+N1
> 0 indirectly measures the strength of the

RSOC. The averaged quantity N0 = (N1 + N2)/2, on the
other hand, enters as a prefactor in the free energy, so that
it does not affect the SC instability.

Now, we derive the GL free-energy functional. In contrast
to � which is usually small near the SC transition temper-
ature, the center-of-mass momentum of the Cooper pair |q|
can generally take a large value comparable to the inverse
SC coherence length at T = 0, ξ−1

0 , even at the transition
temperature to compensate the pair-breaking effect. Thus, in
this work, we perform a perturbative expansion with respect
only to �, keeping q as it is [50], and numerically determine
q such that the GL free energy be minimized. By expanding
the free energy F = − 1

β
ln tr[ exp(−βHMF)] up to the fourth

order in �, we obtain the GL free-energy density FGL/V =
N0[ f (2)

GL + f (4)
GL ] as

f (2)
GL = 1

V

∫
r
�∗(r) a(2)(�) �(r),

f (4)
GL = 1

V

∫
r

a(4)(�†
1,�2,�

†
3) �∗(s1)�(s2)�∗(s3)�(s4)

∣∣
si=r

with

a(2)(�) = ln
T

Tc
+

∫ ∞

0
dρ〈 fcos(ρ, 0) − |wk|2 fcos(ρ, H) cos(vF · �ρ) + δN |wk|2 fsin(ρ, H) sin(vF · �ρ)〉FS,

a(4)(�†
1,�2,�

†
3) = 1

2

∫ ∞

0

3∏
i=1

dρi

∑
k=A,B

〈|wk|4 fcos(ρ1 + ρ2 + ρ3, H) cos(vF · �†
1 ηk,1 + vF · �2 ηk,2 + vF · �†

3 ηk,3)

− δN |wk|4 fsin(ρ1 + ρ2 + ρ3, H) sin(vF · �†
1 ηk,1 + vF · �2 ηk,2 + vF · �†

3 ηk,3)〉FS, (3)

fcos(X, H) = 2πT

sinh(2πT X )
cos(2(μH × k̂)z X ),

fsin(X, H) = 2πT

sinh(2πT X )
sin(2(μH × k̂)z X ),

ηA = (ρ1, ρ2, ρ3), ηB = (ρ1 + ρ2,−ρ2, ρ2 + ρ3),

where 〈O〉FS = 1
2π

∫ 2π

0 dφkO represents the angle average on
the Fermi surface. For later convenience, the replacement
q → � = −i∇ + 2|e|A or �† = i∇ + 2|e|A has been used
to formally take the gauge field A into account, and the op-

erator �i (�†
i ) in Eq. (3) acts only on si of �(si) [�∗(si)].

For more details, see Refs. [39,51,52] where essentially the
same derivation method has been used in the different context
of SC vortex lattices. In contrast to the usual GL theory
where the free energy is also expanded with respect to �,
here, we have incorporated all the higher-order contributions
without using the expansion in �, as a higher-order contri-
bution is already known to be important for the SC diode
effect [17–19]. We note in passing that essentially the same
theoretical approaches without using the expansion with re-
spect to � are often used to evaluate the Hc2 curve at low
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temperatures [53–56]. We also note that when a(2)(�) is
expanded with respect to � and μH, the leading-order con-
tribution proportional to δN turns out to give the Lifshitz
invariant [13,57], the origin of the magnetoelectric effect in
the Rashba superconductors.

From FGL, one can calculate the SC current j(r) = − δFGL
δA

as

j(r) = −2|e|N0�
∗(r)K(�)�(r),

K(�) =
∫ ∞

0
dρ ρ〈vF |wk|2{ fcos(ρ, H) sin(vF · �ρ)

+ δN fsin(ρ, H) cos(vF · �ρ)}〉FS. (4)

B. Stability of the stripe order

In this work, we examine the stability of the stripe order
taking the form of

�(r) = �+eiq·r + �−e−iq·r. (5)

For �− = 0, it becomes the helical SC state with a phase
modulation similar to the FF state, whereas for |�+| = |�−|,
it becomes the LO state with an amplitude modulation. In
the former and latter SC states, the time-reversal and trans-
lational symmetries are broken, respectively. The stripe order
of our interest is described as a weight-biased superposition,
i.e., |�+| �= |�−| �= 0 and, thus, both the time-reversal and
translational symmetries are broken in the stripe phase.

By substituting Eq. (5) into FGL, we obtain the free-energy
density fGL = f (2)

GL + f (4)
GL as

fGL = α(q)|�+|2 + β(q)|�+|4 + α(−q)|�−|2

+ β(−q)|�−|4 + γ (q,−q)|�+|2|�−|2 (6)

with the coefficients

α(q) = a(2)(q), β(q) = a(4)(q, q, q),

γ (q,−q) = a(4)(q, q,−q) + a(4)(q,−q,−q)

+ a(4)(−q, q, q) + a(4)(−q,−q, q), (7)

where in Eq. (7), the coefficient a(2)(�) defined in
Eq. (3) has been replaced with a(2)(q) [a(2)(−q)] for the
�+ (�−) component, as we have �n�(r) = qn�+eiq·r +
(−q)n�−e−iq·r. Similar manipulations have been performed
for a(4)(�†

1,�2,�
†
3), where the relation [�†]n�∗(r) =

qn�∗
+e−iq·r + (−q)n�∗

−eiq·r has additionally been used. In
Eq. (6), the first line describes the free energy for the helical
state of �− = 0, fGL,H, from which an optimal modulation
q = Q is determined such that fGL,H is minimized and, then,
the gap amplitude is given by |�+|2 = − 1

2
α(Q)
β(Q) . The onset of

the superconductivity or the Hc2 curve is determined by the
condition α(Q) = 0. In the presence of the RSOC (δN �= 0),
α(−Q) is always positive at α(Q) = 0, so that the stripe order
involving both Q and −Q is not realized at least just below the
Hc2 curve. The stripe phase, if it exists, is always preempted
by the helical phase.

We examine the stability of the stripe state against the
helical state in essentially the same procedure as that used in
the three-dimensional s-wave case [10]. First, we determine

the modulation Q and the SC gap |�+| for the helical state.
Noting that the second line in Eq. (6) can be rewritten as
αeff (−q)|�−|2 + β(−q)|�−|4 with

αeff (−q) = α(−q) + γ (q,−q)|�+|2, (8)

it turns out that αeff (−q) effectively works as a net quadratic
term for �− and the condition αeff (−Q) = 0 determines the
onset of the stripe order with �− �= 0. Whether the transition
into the stripe phase is of second order or not can be identified
from the sign of the |�−|4 term β(−Q).

Inside the stripe phase, the modulation q does not have
to be the same as Q determined for the helical state. Nev-
ertheless, as will be shown in Sec. III, the transition from
the helical phase into the stripe phase is of second order, so
that the modulations in the two phases would not differ so
much near the transition. Thus, in this work, the modulation
Q obtained for the helical state tentatively assumed over the
phase diagram is used as the modulation for the stripe phase.

Here, we comment on the functional form introduced in
Eq. (5). Although we have implicitly assumed that in the stripe
phase, the additional mode other than the helical mode Q is
−Q, we have numerically checked that even if a general form
of �(r) = �+eiQ·r + �−e−iq′ ·r is considered, the SC state
with −q′ = −Q becomes energetically favorable similarly to
the associated three-dimensional s-wave case [10] (for details,
see Appendix A), so that this assumption is reasonable.

C. Nonreciprocity of the critical current

The critical supercurrents in the stripe and helical phases
can be obtained in the same manner as that widely used
elsewhere [17–19,58,59]. We first extend Eq. (5) into the
current-flowing SC state of the form

�(r) = [�+eiQ·r + �−e−iQ·r]eiqex·r, (9)

where an external current is applied along the qex direction.
By substituting Eq. (9) into Eq. (4), we obtain the SC current
averaged over the space j = 1

V

∫
r j(r) as

j = −2|e|N0[K(Q+)|�+|2 + K(−Q−)|�−|2] (10)

with Q± = Q ± qex. Note that |�+| and |�−| are also de-
pendent on Q±. In the helical phase, |�+|2 = − 1

2
α(Q+ )
β(Q+ ) and

|�−|2 = 0, whereas in the stripe phase, �+ and �− are deter-
mined from the coupled GL equations ∂ fGL

∂�+
= 0 and ∂ fGL

∂�−
= 0

as

|�+|2 = −1

D
[2α(Q+)β(−Q−) − α(−Q−)γ (Q+,−Q−)],

|�−|2 = −1

D
[2α(−Q−)β(Q+) − α(Q+)γ (Q+,−Q−)],

D = 4β(Q+)β(−Q−) − [γ (Q+,−Q−)]2. (11)

In this work, we consider the situation where the external
current is applied along the ±Q directions perpendicular to
the external field H, and introduce the notations qex = qex Q̂
and j = j Q̂. Then, the maximum value of the supercurrent j
as a function of qex corresponds to the SC critical current. In
the centrosymmetric case where qex and −qex are equivalent
to each other, the relation j(qex) = − j(−qex) trivially holds,
so that the critical currents in mutually opposite directions,
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FIG. 2. Field dependence of the helical modulation Q̃ (black
curves) and the coefficient of the |�+|4 term β̃(Q) = β(Q)T 2

c (cyan
curves) along the Hc2 curve in the cases of (a) s-wave pairing,
(b) d-wave pairing with H ‖ node, and (c) d-wave pairing with H ‖
antinode for δN = 0.05. The associated phase diagrams are shown in
the lower panels of Figs. 1(a), 1(b), and 1(c), respectively.

i.e., the positive maximum and negative minimum of j, j+,
and j−, are equivalent, satisfying | j+| = | j−|. In the present
noncentrosymmetric case with the RSOC, however, qex and
−qex are not equivalent and thus j(qex) = − j(−qex) is not
satisfied any more. This means that | j+| �= | j−|, namely, the
SC critical current becomes nonreciprocal. The ratio

R = | j+| − | j−|
| j+| + | j−| (12)

measures this nonreciprocity of the critical supercurrent.

D. Normalization of physical quantities

In the numerical calculations, we use the following dimen-
sionless parameters:

h = μH/Tc, t = T/Tc. (13)

With this normalization, the Pauli limiting field corresponds to
h = 1.25. Also, the SC gap amplitudes |�±|, the modulation
Q = |Q|, and the SC current j are normalized as

|�̃±| = |�±|/Tc, Q̃ = Qξ0, j̃ = j/ j0, (14)

where ξ0 = vF /(2πTc) is the SC coherence length at T =
0 and j0 = 2|e|vF N0Tc. In the following results shown in
Figs. 2, 3, and 9, the coefficient of the GL quartic term β(±Q)
is nondimensionalized as β̃(±Q) = β(±Q)T 2

c . Concerning
the GL quadratic terms α(Q) and αeff (−Q), they are dimen-
sionless from the beginning.

III. STABILITY OF THE STRIPE ORDER

Figure 1 shows the temperature and magnetic field phase
diagrams in the two-dimensional superconductors with the
weak RSOC of δN = 0.01 (upper panels) and the moderate
RSOC of δN = 0.05 (lower panels). Although our interest
is mainly in the d-wave case shown in Figs. 1(b) and 1(c),
we show the result for the s-wave case in Fig. 1(a) for com-
pleteness. In all the cases shown in Fig. 1, the helical SC
state with its modulation Q ‖ (Ĥ × ẑ) is realized just below
the Hc2 curve. It is also numerically found that for the δN
values used here, the direction of Q remains unchanged at
temperatures lower than but not so far from the Hc2 transition
where the GL theory should work well. Figure 2 shows the
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FIG. 3. Temperature dependence of various physical quantities
at h = 2.6 in the cases of (a) s-wave pairing, (b) d-wave pairing with
H ‖ node, and (c) d-wave pairing with H ‖ anti-node for δN = 0.05.
The associated phase diagrams are shown in the lower panels of
Fig. 1. In the top panels, black and red curves denote the gap ampli-
tudes for the +Q and −Q modes, |�̃+| and |�̃−|, respectively. For
comparison, corresponding results for the helical state are also shown
by gray dashed curves. In the bottom panels, black, red, and cyan
curves denote the modulation Q̃ and the coefficients of the |�−|2 and
|�−|4 terms, αeff (−Q) and β̃(−Q) = β(−Q)T 2

c , respectively.

field dependence of the helical modulation Q̃ (black curves)
and the coefficient of the |�+|4 term β(Q) (cyan curves) along
the Hc2 curve. One can see that around h = 1.6 slightly above
the Pauli limiting field of h = 1.25, Q̃ exhibits a steep increase
and, at the same time, β(Q) tends to become small. Although
the latter tendency is remarkable in the d-wave case with H ‖
node shown in Fig. 2(b), β(Q) is always positive, so that the
transition between the helical SC and normal phases is of
second order. We note in passing that in Fig. 2(b), due to the
sharp drop in β(Q) near h = 1.6, the present GL expansion
becomes invalid at further low temperatures (for details, see
Appendix B).

In the reference case of s-wave shown in Fig. 1(a), one
can see that the stripe order is realized in the high-field
and low-temperature region. The stripe region for δN = 0.05
is almost quantitatively the same as that in the associated
three-dimensional system [10] in spite of the difference in the
dimensionality. The top panels in Fig. 3 show the temperature
dependence of the gap amplitudes for the ±Q modes �±
obtained at h = 2.6 for δN = 0.05. One can see from Fig. 3(a)
that with decreasing temperature, �+ first develops and then
�− starts developing at the helical-stripe transition which is
determined by the condition αeff (−Q) = 0 and turns out to be
of second order as β(−Q) > 0 (see the lower panel). Since
the RSOC prefers a single-Q helical state, the stripe order
involving both Q and −Q gets unstable with increasing the
RSOC [compare the upper and lower panels in Fig. 1(a)]. In
the associated three-dimensional system, it has been reported
that for δN = 0.25, the stripe phase cannot exit any more [10].

In contrast to the s-wave case where the SC gap is isotropic
and thus the stability of the stripe order does not depend
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on the field direction, the stripe ordering in the dx2−y2 case
strongly depends on the field direction due to the existence
of the line node running along the [110] and [110] directions.
As exemplified by the lower panels of Figs. 3(b) and 3(c),
αeff (−Q) at the fixed field strength of h = 2.6 becomes neg-
ative at low temperatures for H ‖ node, whereas it remains
positive for H ‖ antinode, each suggesting the presence and
absence of the stripe phase of �− �= 0. The results of this
kind at different field strengths are summarized in Fig. 1.
As readily seen in Figs. 1(b) and 1(c), although the stripe
phase can be stable in the high-field and low-temperature
region for both the two field configurations, its stability region
is significantly suppressed in the H ‖ antinode case. Such a
difference between the H ‖ node and H ‖ antinode cases be-
comes more remarkable for stronger RSOC. This field-angle
dependence can easily be understood from the FFLO insta-
bility in the absence of the RSOC where the LO state with
the modulation parallel to the nodal direction is widely stable.
Since the RSOC favors the helical modulation perpendicular
to the field, the directions of the LO and helical modulations
become compatible for the H ‖ node, while not for the H ‖
antinode, which results in the angle-dependent stability of the
stripe phase.

In both cases of H ‖ node and H ‖ antinode, we have con-
firmed that the transition between the helical and stripe phases
is of second order [for example, see the sign of β(−Q) in
Fig. 3(b)], except the low-field phase boundary for H ‖ node
[see the dashed line in Fig. 1(b)]. Near this low-field boundary,
the present GL approach taking account of the terms up to the
fourth order in the SC gap does not work well (for details, see
Appendix B). Nevertheless, considering that in the absence of
the RSOC, the low-field boundary is of second order [41], it
is likely to be of second order as well in the presence of the
moderate RSOC.

IV. SUPERCONDUCTING DIODE EFFECT

In the previous section, we show that the stripe order of the
form �+eiQ·r + �−e−iQ·r with |�+| > |�−| �= 0 can appear
via the second-order transition from the higher-temperature
helical state of the form �+eiQ·r. For the d-wave pairing,
the stripe ordering gets suppressed when the in-plane field is
rotated from the nodal direction to the antinodal direction. In
this section, we will discuss the nonreciprocity of the critical
current called the intrinsic SC diode effect [17–20], putting
particular emphasis on how the −Q mode additionally emerg-
ing in the stripe phase affects the nonreciprocity.

We shall start from the s-wave case. Figure 4(a) shows
the temperature dependence of the nonreciprocity R in the
s-wave case with δN = 0.05 and h = 2.6, the same param-
eter set as that in Fig. 3(a). In Fig. 4(a), in addition to the
main result represented by the solid black curve, we show,
for comparison, the result obtained under the constraint of
�− = 0 for which only the helical state is allowed (the gray
dashed curve). One can see that R is nonzero not only in the
helical phase, but also in the stripe phase and that a signature
of the second-order transition into the stripe phase cannot be
found in R. At further low temperatures, the nonreciprocity
R in the stripe phase becomes slightly smaller than the one
for the helical state [compare the black solid and gray dashed
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FIG. 4. The nonreciprocity of the critical current obtained at
h = 2.6 in the s-wave case with δN = 0.05, where the system pa-
rameters are the same as those in Fig. 3(a). (a) The temperature
dependence of the nonreciprocity R and (b) [(c)] the q̃ex dependence
of the current j̃ (upper panel) and the gap amplitudes |�̃+| and |�̃−|
(black and red curves in the lower panel) at t = 0.27 (t = 0.21).
For comparison, corresponding results for the helical state are also
shown by gray dashed curves. In the upper panels of (b) and (c),
the negative part of j̃ is folded back (see pink curves), and the
peak-height difference is indicated by blue dotted lines.

curves in Fig. 4(a)]. To understand these behaviors of R, we
shall look into the details of the supercurrent j̃ as a function
of q̃ex corresponding to the external current.

Figures 4(b) and 4(c) show the q̃ex dependence of j̃ (up-
per panels) and the gap amplitudes |�̃±| (lower panels) at
t = 0.27 and 0.21, respectively, where in the upper panels,
the negative part of j̃ is folded back (see the pink curve) such
that the nonreciprocity, which corresponds to the peak-height
difference indicated by blue dotted lines, can easily be con-
firmed. In Figs. 4(b) and 4(c), the notation of the gray dashed
curve is the same as that in Fig. 4(a): it represents the result
obtained by assuming that only the helical phase is realized.
One can see from Fig. 4(b) that just below the helical-stripe
transition, the −Q component �̃−, which is very small due to
the second-order nature of the transition, is rapidly suppressed
by q̃ex (see the lower panel) and does not affect the peak
heights of j̃ or, equivalently, the critical currents (see the upper
panel). Therefore, the nonreciprocity R in the stripe phase just
below the transition is the same as that for the helical phase,
and does not show any clear anomaly at the transition. Further
below the transition, on the other hand, as shown in Fig. 4(c),
|�̃−| is relatively robust against q̃ex, so that it can affect the
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FIG. 5. The critical-current nonreciprocity obtained at h = 2.6
in the d-wave case with H ‖ node and δN = 0.05, where the system
parameters are the same as those in Fig. 3(b). (a) The temperature
dependence of R and (b) [(c)] the q̃ex dependence of j̃ and |�̃±| at
t = 0.23 (t = 0.2). The color and symbol notations are the same as
those in Fig. 4.

critical current. The peak hight of the positive part of j̃ is
slightly suppressed in the stripe phase [compare the red solid
and gray dashed curves in Fig. 4(c)] and, correspondingly, the
nonreciprocity R takes a smaller value [see Fig. 4(a)].

We next discuss the d-wave case. Figure 5 shows the result
on the nonreciprocity in the d-wave case with H ‖ node,
where the notations are the same as those in the s-wave case
of Fig. 4. One can see from Fig. 5(a) that the critical-current
nonreciprocity emerges in the stripe phase without showing
an anomaly at the helical-stripe transition. The reason for the
absence of the signature of the transition is the same as that in
the s-wave case: just below the transition, the −Q component
�̃− is fragile against the external current q̃ex [see Fig. 5(b)].
At further low temperatures, there is a difference between the
s- and d-wave cases. In Fig. 5(c), although it is common that
�̃− is relatively robust against q̃ex, the positive peak of j̃ is not
suppressed but rather enhanced by the contribution from �̃−,
which results in a slight increase in R [compare the black solid
and gray dashed curves in Fig. 5(a)]. In experiments, however,
such a slight deviation from the helical value could not be
captured since, as will be discussed below, even in the helical
phase, the temperature dependence of R is not so simple.

Figure 6(a) shows the temperature dependence of R for
H ‖ antinode, where only the helical phase is realized over
the temperature range of this figure. The nonreciprocity R
exhibits a nonmonotonic temperature dependence. Note that
�̃− remains zero even after q̃ex is introduced [see Figs. 6(b)
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FIG. 6. The critical-current nonreciprocity obtained at h = 2.6 in
the d-wave case with H ‖ antinode and δN = 0.05, where the system
parameters are the same as those in Fig. 3(c). (a) The temperature
dependence of R and (b) [(c)] the q̃ex dependence of j̃ and |�̃±| at
t = 0.35 (t = 0.27). The color and symbol notations are the same as
those in Fig. 4.

and 6(c)] and, thus, this behavior is purely of helical origin.
In addition, the value of R for H ‖ antinode is much smaller
than R for H ‖ node and takes negative sign at the lowest tem-
perature, reflecting the fact that, as will be explained below, R
changes its sign at lower fields.

Figure 7 shows the temperature and magnetic-field depen-
dence of R for the same parameter set as that for Fig. 1,
where the reddish and bluish colors represent positive and
negative values of R, respectively, and the stability region of
the stripe phase in Fig. 1 is indicated by translucent gray. In
Fig. 7(b), data blanks near h = 1.6 are due to the invalidity
of the GL approach used here (see Sec. II and Appendix B).
As already reported elsewhere [17,20], the nonreciprocity R
tends to change its sign near the field (in the present case,
h ∼ 1.6) at which the helical modulation Q rapidly develops
(see Fig. 2). In the d-wave case with the moderate RSOC of
δN = 0.05, however, the sign change is suppressed when the
magnetic field is applied along the nodal direction [compare
the lower panels of Figs. 7(b) and 7(c)]. Although the sign of R
seems to depend on the details of specific systems such as the
Fermi-surface shape controlled by electron fillings [17,20],
the above result obtained for the isotropic cylindrical Fermi
surface should capture the essential part of roles of the gap
anisotropy. Concerning the main focus of this work, i.e., how
the nonreciprocity looks like in the stripe phase, it continu-
ously changes on cooling across the transition from the helical
phase into the stripe phase, and any characteristic feature such
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as a sign change in R cannot be found at the transition, being
irrespective of the orbital pairing symmetry, the strength of the
RSOC, and the field direction.

V. SUMMARY AND DISCUSSION

In this work, we have theoretically investigated the stability
of the stripe order, a LO-like state described as a super-
position of the +Q and −Q modes of different weight, in
two-dimensional superconductors with the Rashba spin-orbit
coupling (RSOC) and an in-plane magnetic field where the
helical SC state with only the +Q mode is widely stabilized.
Based on the GL analysis, we show that the stripe phase
can be stabilized in the high-field and low-temperature region
for both the s- and d-wave pairing symmetries, as originally
pointed out for the three-dimensional s-wave case [10]. Inter-
estingly, in the d-wave case, the stability region of the stripe
phase shrinks when the in-plane field is merely rotated from
the nodal direction to the antinodal direction. It is also found
that the nonreciprocity of the critical current, the so-called SC
diode effect, emerges not only in the helical phase, but also
in the stripe phase. The transition between the helical and
stripe phases does not leave a footprint in the temperature
dependence of the critical-current nonreciprocity due to the
second-order nature of the transition.

In experiments on film superconductors, it is usually diffi-
cult to perform bulk measurements such as the specific heat,
so that transport measurements have widely been used to
study SC states. Although a signature of the stripe phase
has not been observed so far in relevant two-dimensional
Rashba systems [16,26–31], this might be simply because
the RSOC is too strong for the stripe order to survive or
because, as discussed above, the critical current is insensitive
to the second-order transition into the stripe phase. Also, a

current-driven dynamics of vortices could contribute to the
SC transport. First, in two dimensions, thermally activated
Kosterlitz-Thouless vortices with their axis parallel to the
out-of-plane direction can appear, but they are active basi-
cally at higher temperatures near the SC transition [60] and,
thus, should be irrelevant to the low-temperature transport.
Second, in real experimental systems with finite thickness
in the out-of-plane direction, the in-plane field may yield
SC vortices extending along the in-plane field direction and
a current-driven out-of-plane motion of these vortices could
be relevant. If the vortex motion is affected by the stripe
modulation perpendicular to the vortex line, we may have a
chance to detect a signature of the stripe order in the vortex
dynamics.

Even in the presence of the vortex dynamics, the non-
reciprocity of the critical current should more or less exist.
In contrast to the isotropic s-wave case, in the anisotropic
d-wave case, the sign of the nonreciprocity is dependent on
the in-plane field direction relative to the nodal direction (see
Fig. 7). A recent transport measurement on the tricolor super-
lattice of YbRhIn5/CeCoIn5/YbCoIn5, the two-dimensional
Rashba surperconductor with the dx2−y2 pairing symmetry has
shown that the field dependence of the nonreciprocity exhibits
an anomaly for H ‖ [100], while not for H ‖ [110] [49],
which might be a manifestation of the field-angle-dependent
sign change in the critical-current nonreciprocity originat-
ing from the d-wave anisotropy. Although the Fermi-surface
shape, which is assumed, for simplicity, to be cylindrical
in this work, could quantitatively affect the results and thus
should carefully be considered in our future work, we believe
that our result obtained for the simplified model captures
the essential part of the stripe ordering and the associ-
ated nonreciprocal phenomena in two-dimensional Rashba
superconductors.
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in the d-wave case with δN = 0.05, where the in-plane field is
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ACKNOWLEDGMENTS

We are grateful to Y. Matsuda, Y. Kasahara, and A.
Daido for useful discussions. This work is partially sup-
ported by JSPS KAKENHI Grants No. JP21K03469 and No.
JP23H00257.

APPENDIX A: ABOUT THE FUNCTIONAL
FORM OF THE STRIPE ORDER

In Sec. II B, we consider the stripe order of the form
�+eiQ·r + �−e−iQ·r with the helical modulation Q. In gen-
eral, however, other combinations �+eiQ·r + �−e−iq′ ·r with
q′ �= Q are also possible. Here, we numerically confirm that
q′ = Q is realized.

Figure 8 shows typical examples of the q′ dependence of
αeff (−q′) just below the transition into the stripe phase with
q′ = Q, where δ denotes the relative angle between q′ and Q
(see the inset of Fig. 8). Noting that αeff (−q′) = 0 determines
the stripe instability, it turns out that a q′ mode minimizing
αeff (−q′) is realized. As one can see from Fig. 8, αeff (−q′)
takes the minimum value at δ = 0 and |q′| = Q, i.e., q′ = Q,
justifying the fundamental assumption for the stripe order,
Eq. (5).

For completeness, we comment on one minor point. By
comparing the high-field and low-field data (compare the bot-
tom panels in Fig. 8), one notices that in the low-field case, the
optimal |q′| value is slightly smaller than Q at least within our

d-wave, H|| node δN = 0.05, h = 1.6 
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FIG. 9. The GL coefficients for the helical state, α(q) (red
curves) and β̃(q) = β(q)T 2

c (cyan curves), as a function of the
center-of-mass momentum of the Cooper pair q̃ at (a) t = 0.57,
(b) t = 0.55, and (c) t = 0.52 in the d-wave case with δN = 0.05 and
h = 1.6, where the in-plane field is applied in the nodal direction.

calculation accuracy. This tendency is common to all the three
cases of s-wave pairing, d-wave pairing with H ‖ node, and
d-wave pairing with H ‖ antinode. Such a very tiny deviation
occurs in the low-field region below h = 2.0 around which
the GL quartic term β̃(Q) takes smaller values (see Fig. 2).
In the associated work [10] where a full calculation without
using the GL expansion with respect to �+ is performed
in the three-dimensional s-wave case, q′ = Q seems to be
numerically confirmed. Considering these two, the deviation
might be due to the truncation of the GL expansion, being
closely related to the issue discussed in Appendix B.

APPENDIX B: APPLICABILITY RANGE
OF THE GL EXPANSION

In general, the GL expansion up to the fourth order is
justified when the coefficient of the quartic term is positive. As
one can see from Fig. 2(b), the coefficient of the |�+|4 term
β(Q) at the SC transition temperature defined by α(Q) = 0
tends to approach zero near h = 1.6, suggesting that the GL
expansion may possibly become invalid around this field and
temperature. Figure 9 shows the q(= |q|) dependence of α(q)
and β(q) at various temperatures for h = 1.6. One can see
from Fig. 9(a) that at t = 0.57 just below the Hc2 transition,
β(q) is always positive for q satisfying α(q) < 0, so that
the optimal modulation q = Q minimizing the condensation
energy can definitely be identified. With decreasing tempera-
ture, β(q) near q ∼ 0 gradually decreases, eventually taking
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a negative sign at t = 0.52. In Fig. 9(c), one notices that
β(q) can be negative in the ordered state of α(q) < 0 (see the
colored window), so that neither the optimal modulation nor
the gap amplitude can be determined. Due to the invalidity of
the GL expansion, we cannot discuss the SC properties near
h = 1.6 in the d-wave case with H ‖ node and, thus, we draw
a putative low-field boundary of the stripe phase with a dashed
line in Fig. 1(b) and leave the invalid region blank in Fig. 7(b).

Inside the stripe phase where we have the two compo-
nents �+ and �−, a condition to guarantee the validity of
the GL expansion is D > 0, where D is defined in Eq. (11).
Note that if D < 0 in Eq. (11), |�+|2 and/or |�−|2 can

become negative, namely, the solution of the GL equations can
be unphysical. In the terms of the original GL free energy
(6), the negative D means that when the quartic terms in
�+ and/or �− are diagonalized, one eigenvalue becomes
negative, i.e., one of the diagonalized quartic terms has a
negative coefficient and, thus, a local minimum does not
exist. In this paper, we restrict ourselves to the parame-
ter space where D > 0 is satisfied, and the results obtained
within the parameter space are shown. In principle, the above
problems could be resolved by taking higher-order contribu-
tions into account, but this issue is beyond the scope of this
work.
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