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Nonlinear response of diffusive superconductors to ac electromagnetic fields
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Motivated by the recent experimental progress in studying conventional and unconventional superconductors
in a pump-probe setup, we perform a comprehensive theoretical analysis of the nonlinear response of a diffusive
BCS conventional superconductor to the action of an alternating electromagnetic field using a generalized Usadel
equation. We analyze the response up to the second order of the perturbation in the amplitude of the vector
potential �A, the superconducting order parameter �, and in the third order for the current �j. On the basis of this
approach, we derive general expressions for the retarded (advanced) Green’s functions, as well as the Keldysh
function for an arbitrary number of harmonics of the incident field. Most importantly, we analyze the set of
physical observables in a nonequilibrium superconductor, such as frequency and the temperature dependencies
of the zero harmonic δ(�)0 (Eliashberg effect), the second harmonic δ(�)2�, as well as the third harmonic for
the electric current j(3�) under the action of monochromatic irradiation. For the same set of parameters, we
also analyze the behavior of the reflectivity and the down-conversion intensity of a thin superconducting film,
discussed recently in the context of parametric amplification of superconductivity. We derive these quantities
microscopically and show the connection of the down-conversion intensity to the third-harmonic generation
currents induced by the amplitude mode and the direct action of the electric field on the charge carriers.
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I. INTRODUCTION

The study of nonstationary properties of superconductors
started soon after the formulation of the BCS theory of su-
perconductivity [1] with the calculation of the ac conductance
of superconductors [2,3]. Later, Gor’kov and Eliashberg [4]
investigated nonlinear ac properties on the basis of general-
ized Ginzburg-Landau equations. The ac conductance in a
current-carrying superconductors was studied in Refs. [5–7]
and more recently in Refs. [8–11] using a more microscopic
approach.

For obvious reasons, one of the most interesting problems
is to study the spectrum of collective modes of the phase ϕ and
amplitude mode δ� of the superconducting order parameter
�. In the absence of a microscopic theory, these modes were
discussed by Anderson [12] and independently by Bogoliubov
[13]. In particular, Anderson came to the conclusion that
phase variations in space and time (phase mode) ϕ(t, x) lead
to perturbations of the electric charge and, therefore, they can-
not exist in metals until the frequency ω exceeds the plasma
frequency ωpl, which is much higher than �. Remarkably, this
idea of Anderson’s motivated Higgs in his prediction of a new
type of boson (Higgs boson) in particle physics [14–16].

Contrary to that, the amplitude mode (AM) is electrically
neutral and can be excited in the absence of an additional
interaction, for example the Coulomb interaction. The AM
in BCS superconductors corresponds to perturbations of the
quasiparticle distribution function n(ξp) symmetric with re-
spect to a variable ξp, here ξp = vF (p − pF ). The phase mode
is caused by a branch-imbalance, i.e., by a deviation from
zero of a part of the function n(ξp) asymmetric in variable ξp

[17–19]. The amplitude mode is confusingly called the Higgs
mode, although logically the Higgs mode would correspond

instead to the plasma mode. This fact has also been high-
lighted in several articles [20,21].

Theoretically, the evolution of δ�(t ) after a sudden pertur-
bation (quench) was studied in Ref. [22] in a way similar to
the problem of the electric field E evolution in a collisionless
plasma considered by Landau [23]. Landau showed that an
initial perturbation of the electric field E in plasma oscillates
in time with plasma frequency ωpl and attenuates exponen-
tially even in the absence of collisions. The same problem in a
BCS superconductor leads to a different result. In the absence
of inelastic collisions, homogeneous perturbations of the order
parameter δ�(t ) in superconductors oscillate with a frequency
of 2�, and also decay in time as follows:

δ�(t ) ∼ δ�exc
cos(2�t + θ0)√

2�t
+ δ�(∞), (1)

where δ�(∞)/�0 �= δ�(0), i.e., δ�(t ) approaches not the
initial value δ�(0) but some steady (smaller) value. Here, the
order parameter � is expressed as an integral over momenta
p or energies ε of the distribution function [the condensate
wave function f (ε)]. The decay rate in Eq. (1) stems from the
branch points of singularities in the integral from the function
f (ε), while the exponential attenuation of E in plasma is
due to the pole of the function n(ξp). The temporal behavior
of δ�(t ) stemming from the branch point at ε = 2� was
discussed by different methods for various systems not only
in Refs. [22,24–30] for BCS s-wave superconductors, but also
for neutral fermionic superfluids [31–34] or the BCS-BEC
(Bose-Einstein condensate) crossover regime [35–41], as well
as in proximitized structures [42,43].

The analogy between collisionless superconductors and
plasma turned out to be even deeper; both systems belong
to the class of fully integrable systems (in the absence of

2469-9950/2024/109(2)/024510(17) 024510-1 ©2024 American Physical Society

https://orcid.org/0000-0003-0028-4640
https://orcid.org/0000-0003-0557-8015
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.024510&domain=pdf&date_stamp=2024-01-12
https://doi.org/10.1103/PhysRevB.109.024510


DERENDORF, VOLKOV, AND EREMIN PHYSICAL REVIEW B 109, 024510 (2024)

collisions). In these systems, information about oscillations is
conserved in electrons and is lost in the order parameter δ�(t )
(in superconductors) or in the electric field E (in plasma).
Such a memory may lead to echo effects [44]. The analogy
with plasma was noted already in Refs. [22,45]. In particular,
it was emphasized in Ref. [45] that contrary to δ�(t ) the
condensate wave function f (ε, t ) experiences nondecaying
oscillations. Further development of plasma theory has shown
that undamped plasma waves can also be excited in plasma
if the initial conditions are chosen appropriately [44], and
similar ideas have been further developed for superconductors
[25,26,31,46] and superfluids [33,35–40].

Experimental observation of the δ�(t ) dynamics is a rather
difficult task since inelastic scattering times are short (τin ∼
10−9−10−12 s) and in the linear approximation the ampli-
tude mode does not directly couple with the electromagnetic
field. Historically, the amplitude mode was first revealed in
the Raman scattering in a charge-density-wave supercon-
ductor NbSe2 in 1981 [47,48] (see also recent works and
references therein [49]). In addition, early studies of supercon-
ducting properties under continuous irradiation with subgap
energies using microwaves already showed surprising results
that superconductivity could be observed above the equilib-
rium critical temperature [50–52]. These observations were
explained by Eliashberg, who showed that in the vicinity
of the critical temperature, the effect is mainly related to a
nonequilibrium distribution of quasiparticles induced by the
microwave field [53,54].

Furthermore, recent advances in the technical development
of THz spectroscopy enabled the construction of THz-pump
THz-probe spectroscopy in a conventional s-wave super-
conductor such as NbN and Nb1−xTixN thin films, which
reveal novel experimental observations. For example, tran-
sient gap enhancement, suggesting an additional Eliashberg
effect present at temperatures close to Tc, was observed in
NbN [55,56].

Further studies concerned the observation of the collective
modes followed [57,58]. The idea of this experimental setup
is that a single-cycle (pump) pulse with an energy on the
order of � excites the amplitude mode in the superconducting
condensate nonadiabatically. This leads to an amplitude
oscillation of the order parameter � with the frequency
�h = 2�. These oscillations can be detected with a second,
weaker pulse that comes with a delay δt and probes these
dynamics. The transmitted electric fields can be measured
using electro-optic probing [58]. The probe pulse is applied
with an orthogonal polarization to the pump pulse. Thus, the
pump pulse can be filtered out from the probe pulse using a
wire grid polarizer [59].

While a nonadiabatic quench with a single-cycle pulse on
the picosecond scale is an experimental challenge, one can
consider driving the system periodically with a multicycle
pulse of frequency �. Since the amplitude mode couples to
light in the second order, it is driven at twice the driving
frequency 2�. The driven oscillation can then be measured as
an induced current. Since the electromagnetic vector poten-
tial oscillates with the driving frequency A(t ) ∼ ei�t and the
amplitude mode oscillates with twice the driving frequency
δ�H (t ) ∼ e2i�t , one obtains a total current, which oscillates
with three times the driving frequency j(t ) ∼ e3i�t [46,60].

This generation of a third harmonic is a process, which only
occurs inside the superconducting state at T < Tc and should
be resonantly enhanced once 2� activates the amplitude mode
at 2� = �H = 2�.

In Ref. [58], the first successful measurement of the
third-harmonic generation in the conventional s-wave super-
conductor Nb1−xTixN was reported. However, soon after it
was realized that the activation of the amplitude mode is
not the only process measured in the current produced by
the third-harmonic generation. Since the frequency of the
amplitude mode is given at �H = 2�, it coincides with the
onset of the particle-hole generation and with the energy
needed to break the Cooper pairs. In particular, Ref. [61]
has shown that in the clean BCS superconductor, the contri-
bution to the third-harmonic generation current caused by a
direct action of an ac electric field (sometimes called charge
density fluctuations, which is not completely adequate) is
three orders of magnitude larger than that from the amplitude
mode. Subsequent studies analyzed how impurities, realistic
electron-phonon coupling, and strong-coupling features affect
this ratio [62–68]. Obviously, this shows that research on
the detection of the collective modes and their behavior in
nonequilibrium in conventional and unconventional supercon-
ductors due to a driving field is still ongoing. Furthermore,
several works were devoted to the study of possibilities to
detect the amplitude mode from the nonlinear response of su-
perconductor irradiated terahertz electromagnetic fields. One
of these methods is to measure the ac conductance of a
current-carrying superconductor σ (�) [8–10]. In this case, the
electromagnetic field is coupled to the AM, and the ac conduc-
tance σ (�) contains a term related to the excited amplitude
mode (Higgs mode) [8].

If a superconductor is suddenly brought out of equilibrium
and the order parameter δ�(t ) oscillates, as follows from
Eq. (1), the behavior of the system resembles the behavior of
a generator with a resonant frequency of 2�. It is therefore
quite natural to suppose that this system might be used as
a parametric oscillator. The authors of Refs. [69,70], on the
basis of a phenomenological model, analyzed the possibil-
ity of parametric amplification, but microscopic analysis is
still lacking. Most importantly, the idea of parametric am-
plification has been used among others to explain the highly
interesting observation in high-Tc cuprates [71–76], K3C60

[69,77–80], and certain organic superconductors [69,81]. In
particular, the intense far-infrared optical pulses have been
shown to create nonequilibrium coherent states with optical
properties that are consistent with the transient photoinduced
superconductivity phenomenon, yet the nature of this state is
still debated [82–84].

In this manuscript, we calculate within a microscopic
quasiclassical description the response of a superconductor
δ�(t ) in the second order to the action of a monochromatic
irradiation or of many signals with different � following
the experimental setup, presented in Fig. 1. In particular,
we consider the superconducting sample, which is continu-
ously irradiated by the monochromatic THz pulse �ETHZ[� ∼
�(T )]. In the second order of the field intensity |Q�| =
eE�/�, we obtain general formulas for the quasiclassical
Green’s function f (ε, t ). From these we find the variation δ�̄

averaged in time (Eliashberg effect), the variation δ�2� at the
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FIG. 1. Schematic representation of the system under considera-
tion. We consider the superconducting sample, which is continuously
irradiated by the monochromatic THz pulse �ETHZ[� ∼ �(T )]. At the
same time, the probe field is applied with orthogonal polarization
�Eprobe(ω). The reflected electromagnetic field �Erefl is measured either
for the probe field frequency, ω, or at 2� ± ω to reveal the parametric
effects.

doubled frequency of a monochromatic ac field. We also cal-
culate the third harmonic of the current I3� and the response
Ip on the action of an ac field with a frequency �p. Here we
assume that the probe field is applied with orthogonal po-
larization �Eprobe[ω < 2�(T )]. The reflected electromagnetic
field �Erefl is measured either for the probe field frequency,
ω, or at 2� ± ω to reveal the parametric gain (amplification)
conditions and a change in the ac conductance in the presence
of a pump irradiation. Note, unlike the recent work [85], we do
not study a transient behavior of the superconductor irradiated
by ac pulses, and we assume that ac irradiation is continuous
in time.

II. GENERAL EQUATIONS

To model a realistic experimental situation, we con-
sider diffusive superconductors (τelTc � 1). To describe
nonstationary and nonlinear response of an s-wave con-
ventional superconductor, we will use a well-established
theory for matrix quasiclassical Green’s functions ĝ [86–90]
(for review, see also [91–93]). The equation for the re-
tarded gR(A)(t, t ′) function has the form [we dropped the
superindex R(A)]

i(τ̂3∂t ĝ + ∂t ′ ĝτ̂3) + [�̂, ĝ] − iD∂ (ĝ(∂ ĝ)) = 0, (2)

where [�̂, ĝ] = �̂(t )ĝ(t, t ′) − ĝ(t, t ′)�̂(t ′). In the presence of
a gauge-invariant “momentum” Q = ∇χ/2 − (e/c)A, related
to the condensate velocity vS = Q/m, Eq. (2) acquires the
form

i(τ̂3∂t ĝ + ∂t ′ ĝτ̂3) + [�̂, ĝ] = −iD[Q̂ĝQ̂, ĝ]. (3)

Here Q̂ = Qτ̂3 and

[Qτ̂3ĝQτ̂3, ĝ] =
∫

dt1{Q̂(t )ĝ(t, t1)Q̂(t1)ĝ(t1, t ′)

− ĝ(t, t1)Q̂(t1)ĝ(t1, t ′)Q̂(t ′)}. (4)

In the considered spatially uniform case, one can choose
the phase χ equal to zero so that the electric fields E is related
to Q via E = −(1/c)∂t A = ∂t Q/e. We consider the case when
momentum Q(t ) consists of a sum of periodic functions

Q(t ) =
∑

±(ν,μ)

[Qν exp(i�νt ) + Qμ exp(i�μt )] (5)

with arbitrary frequencies �ν,μ. Because Q(t ) is a real
function, we require that Qν,μ = Q−ν,−μ. In particular,
the frequency �ν can be equal to �μ: �ν = �μ = �

(monochromatic irradiation). For the Fourier components
ĝε,ε′ = ∫

dtdt ′ĝ(t, t ′) exp(iεt − iε′t ′), Eq. (3) becomes (see,
for example, [8,19,64])

ετ̂3ĝ − ĝτ̂3ε
′ + [�̂, ĝ]ε,ε′ = −iD[Qτ̂3ĝQτ̂3, ĝ]ε,ε′ . (6)

The right-hand side can be written as

iD[Qτ̂3ĝQτ̂3, ĝ]ε,ε′ = iD
∑
νμ

{Q̂ν ĝε+�ν
Q̂μĝε′

− ĝεQ̂ν ĝε′−�μ
Q̂μ}2πδ(ε− + �ν+μ)

(7)

with ε− = ε − ε′ and �ν+μ ≡ �ν + �μ.
Consider first the unperturbed ground state. The retarded

(advanced) Green’s functions in the ground state have a stan-
dard form,

ĝR(A)
0 = g(ε)τ̂3 + iτ̂2 f (ε)|R(A), (8)

gR(A)
0 (ε) = (ε ± iγ )/ζ R(A), f (ε) = �/ζ R(A), (9)

where

ζ R(A)(ε) =
{

±sgn(ε)
√

(ε ± iγ )2 − �2, |ε| > �,

i
√

�2 − ε2, |ε| < �.
(10)

Here γ is a phenomenological damping coefficient intro-
duced by Dynes et al. [94,95] which is assumed to be small
(γ � �). One can see that ζ A(ε) = ζ R(−ε) and ζ A(ε) =
−[ζ R(ε)]∗. At the next step, we consider the corrections to
�0 and to ĝR(A)

0 due to ac perturbations.

III. ACTION OF THE ac FIELDS

In a nonequilibrium or nonstationary case, the system is
described by a matrix ǧ whose elements are the retarded
(advanced), ĝR(A), and the so-called Keldysh matrix function
ĝK . The supermatrix Green’s function ǧ is defined as

ǧ =
{

ĝR, ĝK

0, ĝA

}
, (11)

where ĝR(A) are the retarded (advanced) Green’s functions
and the Keldysh Green’s function ĝK [96]. The latter matrix
Green’s function is expressed in terms of the matrix distribu-
tion function n̂ [89–93],

ĝK = ĝRn̂ − n̂ĝA, (12)

and the matrix ǧ obeys the normalization condition

ǧ · ǧ = 1̌. (13)
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The correction δǧ(ε, ε′) = ǧ(ε, ε′) − ǧ0(ε)2πδ(ε − ε′)
satisfies the linearized Eq. (6), which acquires the form

(ζε ǧε )δǧ − δǧ(ǧε′ζε′ )

=
∑
ν,μ

[Ř�(ε, ε′) + ŘQ(ε, ε′)]2πδ(ε− + �ν+μ), (14)

where the right-hand side contains only the Green’s functions
in the ground state, and the matrix elements of the 4 × 4
matrices ǧε are ĝR(A)

ε = ĝR(A
0 (ε), ĝK

0 = [ĝR
0 (ε) − ĝA

0 (ε)]tε with
tε = tanh(εβ ) and β = (2T )−1. The supermatrix (ζε ǧε ) is
given by

(ζε ǧε ) =
{

ζ R
ε ĝR

ε 0

0 ζ A
ε ĝA

ε

}
. (15)

The matrices Ř�(ε, ε′), ŘQ(ε, ε′) are defined as

Ř�(ε, ε′) = ǧεδ�̌� − δ�̌�ǧε′ , (16)

ŘQ(ε, ε′) = iD{ǧεQ̌ν ǧε+�ν
Q̌μ − Q̌ν ǧε+�ν

Q̌μǧε′ }, (17)

where Q̌ν = Qν τ̌3 with

τ̌i =
(

τ̂i 0

0 τ̂i

)
. (18)

The order parameter �̌(t ) = �(t )iτ̌2 is related to the matrix
ĝK via

�(t ) = λTr
∫

dεdε′

(2π )2
(−iτ̂2)ĝK (ε, ε′) exp(−iε−t ). (19)

Let us consider first the retarded (advanced) function. The
normalization condition, Eq. (13), yields

(ĝεδĝ + δĝĝε′ )R(A) = 0. (20)

Using Eq. (20), we obtain from Eq. (14)

δĝR(A)(ε, ε′) =
∑
ν,μ

{
�̂� + �̂Q

Cε,ε′

}R(A)

2πδ(ε− + �ν+μ), (21)

where �̂ = ĝεR̂ and CR(A)
ε,ε′ = (ζε + ζε′ )R(A). The correction δĝK

to the Keldysh function can be represented as a sum of regular
and anomalous parts [4],

δĝK = δĝreg + δĝan. (22)

The regular part is defined as

δĝreg = δĝRtε′ − tεδĝA, (23)

with the matrices δĝR(A) given by Eq. (21). When study-
ing the response of a superconductor to ac radiation, the
authors of many works used the Matsubara frequency repre-
sentation. The transition to real energies is carried out with
the help of an analytical continuation. In our method, we
do not use the Matsubara representation and the analytic
continuation.

The key point of this approach is to split the Keldysh
Green’s function ĝK into a regular ĝreg and an anomalous
ĝan part [4]. The method of analytical continuation was used,
for example, in a recent paper [64] (see also Kopnin’s book
[93] and references therein), while the former was applied in

Refs. [8,19]. For the anomalous Green’s function δĝan we find
(see the Appendix)

δĝan =
∑
ν,μ

�̂an
� + �̂an

Q

Can
ε,ε′

2πδ(ε− + �ν+μ) (24)

with Can
ε,ε′ = ζ R

ε + ζ A
ε′ . The matrices �̂an

� = ĝRR̂an
� and �̂an

Q =
ĝRR̂an

Q are defined as follows:

�̂an
� = (

ĝR
ε δ�̂�ĝA

ε′ − δ�̂�

)
(tε′ − tε ), (25)

�̂an
Q = iD

[
ĝR

ε Q̂ν ĝR
ε+�ν

Q̂μĝA
ε′ − Q̂ν ĝR

ε+�ν
Q̂μ

](
tε′ − tε+�ν

)
− iD

[
ĝR

ε Q̂ν ĝA
ε+�ν

Q̂μĝA
ε′ − Q̂ν ĝA

ε+�ν
Q̂μ

](
tε − tε+�ν

)
,

(26)

where ε′ = ε + �ν+μ. The matrices gR(A)
ε = gR(A)

0 (ε) are
the Green’s functions in the ground state [see Eqs. (8)
and (9)].

Equations (22)–(25) represent one of the main results of
our derivation. Using these equations together with the self-
consistency equation (19), one can now find the function
δ�̂(t ) in the second order in Qν,μ. The component δ�νμ(t )
at the frequency �ν+μ is equal to

δ�ν+μ(t ) = 1
2 [δ�(�ν+μ) exp(i�ν+μt )

+ δ�(−�ν+μ) exp(−i�ν+μt )]. (27)

As to the regular part δgreg, the integral in Eq. (19) can be
transformed into a sum over Matsubara frequencies [ε → iεn,
εn = πT (2n + 1)] because the retarded (advanced) Green’s
functions δgR(A) are analytical functions in the upper (lower)
half-plane, and the singular points of the regular part δgreg are
determined only by poles of the functions tε = tanh(εβ ) and
tε′ = tanh(ε′β ), i.e., ε′ = iεn + �ν+μ and ε = iεn with εn =
πT (2n + 1). The integral in Eq. (19) from the anomalous part
cannot be reduced to a sum over Matsubara frequencies and
should be calculated explicitly.

IV. MONOCHROMATIC IRRADIATION

In the case of a monochromatic ac field, it is of interest to
calculate the Fourier components of the � variations: δ�0 and
δ�2�. This means that the following terms should be extracted
from the sum over frequencies �ν,μ:

(A) �ν ≡ � = −�μ, so that �ν+μ ≡ �ν + �μ = 0; and
(B) �ν = � = �μ, so that �ν+μ ≡ �ν + �μ = 2�.
Also the zero Fourier component δ�0 describes the

time-averaged change of δ�(t ) under the influence of an elec-
tromagnetic radiation. The component δ�2� is the magnitude
of the second harmonic of the amplitude mode excited by
the irradiation Q(t ) = Q� cos(�t ). It contributes to the third
harmonic of the current.

Consider first the case A: (�ν+μ = 0). In this case, the
most interesting quantity is a time-averaged variation of the
order parameter, 〈δ�(t )〉t = δ�0, which we discuss in detail
below.

A. Eliashberg effect

In particular, Eliashberg showed that a microwave irradia-
tion under certain conditions can enhance the order parameter
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� as well as the critical temperature Tc [53]. This effect as
well as the enhancement of the critical current was studied
in more detail in subsequent works [54,97–100]. Stability
of the nonequilibrium state with an enhanced � = �eq +
δ�0 was investigated in Ref. [101]. Recently, the authors
of Refs. [102,103] analyzed, in particular, the region of the
enhanced � and of the enhanced critical current jc and plot-
ted this region in the plane (T,�). The predicted effect was
observed experimentally, although it was not found to be as
strong as expected (see the review by Klapwijk and Visser
[104] and references therein).

Since in the considered case �ν+μ = 0 we have ε = ε′ and
the regular part is given by Eq. (23) with tε ≡ tanh(εβ ) = tε′ ,

δĝreg = tε (δĝR − δĝA), (28)

where the matrices δĝR(A) are given by Eq. (21) with ε = ε′.
The matrices δĝR(A) can be represented in the form

δĝR(A) = π

ζε

[τ̂3(δg� + δgQ) + iτ̂2(δ f� + δ fQ)]R(A)δ(ε−).

(29)

Here the coefficients A and B are [for clarity, indices R(A) are
omitted]

δg� = δ�Bε,ε , δ f� = δ�A(+)
ε,ε , (30)

δgQ = iDQ2(A(−)
ε,ε gε+� − Bε,ε fε+�), (31)

δ fQ = −iDQ2(A(+)
ε,ε fε+� + Bε,εgε+�). (32)

The coefficients A(±) and B are defined as

A(±)
ε,ε′ = 1 ± (gεgε′ + fε fε′ ), (33)

Bε,ε′ = gε fε′ + fεgε′ , (34)

Cε,ε′ = ζε + ζε′ , (35)

with ε = ε′ in this particular case. The anomalous function
δĝan is given by Eq. (24) with �̂an

� = 0 and δ f an
Q (ε, ε′) equal to

δ f an
Q (ε, ε′) = − iDQ2(tε+� − tε )

×
(

f R
ε+� − f A

ε+�

)
Aan(+)

ε,ε + (
gR

ε+� − gA
ε+�

)
Ban

ε,ε

Can
ε,ε

,

(36)

with Aan(±)
ε,ε′ = 1 ± (gR

ε gA
ε′ + f R

ε f A
ε′ ), Ban

ε,ε′ = gR
ε f A

ε′ + f R
ε gA

ε′ ,
Can

ε,ε′ = ζ R
ε + ζ A

ε′ , and ε′ = ε.
Let us now find the variation of �. In the considered case,

the self-consistency equation given by Eq. (19) is

δ�(t ) = −iλ
∫

d ε̄

2π

∫
dε−
2π

Trτ̂2{δĝreg + δĝan} exp(iε−t ).

(37)

For the δ�(t ) averaged over time, we obtain

δ� = −iλ
∫

dε

2π
Trτ̂2{δĝreg + δĝan}|ε−=0. (38)
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0.0

FIG. 2. Calculated time-averaged gap correction δ�0 using
Eq. (39) for γ = 0.02�0. Note, we set the polarization operator given
by the factor of the left-hand side to 1, as it is solely positive and
real. The area in red represents the area of stimulated (enhanced)
superconductivity. Furthermore, the crossover boundary from light
blue to dark blue in the figure mimics the superconducting gap tem-
perature dependence. In particular, if one applies a pump-field with
frequency � above 2�, direct pair-breaking processes are promoted
resulting in a strong suppression of the gap. Thus, the positive region
shows a time-independent increase in the order parameter, while the
light and dark blue areas show a decrease/suppression of the order
parameter.

This equation can be written in the form (see the Appendix)

4T δ�0�
2
∑

n

1

ζ 3
n

= − DQ2

[
T �Re

∑
n

ω(2ω + i�)

ζ 3
ωζω+i�

+
∫

dε

2π
δ f an

Q

]
. (39)

In Fig. 2 we plot the dependence of δ�0 (in the normalized
form δ�0/DQ2) as a function of � and T for γ = 0.02�0,
and �0 is the value of the equilibrium gap at T = 0. Note
δ�0/DQ2 does not depend on the probe-field frequency as
the probe and the pump fields are assumed to be orthog-
onal to each other. Further, we set the factor in front of
δ�0 on the left-hand side of Eq. (39) to 1 as it is always
positive and therefore has no influence on the area of en-
hancement. We also show the region in the (T,�) plane,
where δ�0 is positive, i.e., one finds a stimulation of super-
conductivity, especially in the vicinity of the superconducting
transition temperature. Furthermore, smaller γ enlarges the
region of stimulated superconductivity. One finds also a
strong suppression of superconducting gap for � > 2�(T ).
The results are consistent with those obtained previously in
Refs. [102,103].

B. Second harmonic of δ�

Let us now consider the case B and set ε′ = ε + 2�. The
variation of � can be represented as follows:

δ�2� = δ�
reg
Q (2�) + δ�an

Q (2�)

Preg
� (2�) + Pan

� (2�)
. (40)
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FIG. 3. Calculated frequency dependence of the amplitude (a) and the phase (b) of the gap oscillation δ�2�. Panels (c) and (d) show a
corresponding temperature dependence of the gap oscillation δ�2�. We observe a peak accompanied by a phase shift at the resonance condition
� = �(T ), which is highlighted by the dashed lines. The inset in (d) shows the equilibrium gap �(T ) as a function of the temperature.

Here,

Pan
� (2�) = −2 sinh(2�β )

∫
dε

2π
rε

Aan(+)
ε,ε+2�

Can
ε,ε+2�

, (41)

Preg
� (2�) = 4T Re

∑
n

(
A(+)

n,n+i2�

Cn,n+i2�

− 1

ζn

)
, (42)

where ζn = √
ε2

n + �2 and the subindex n in A(±)
n , Bn, and

Cn denotes that the functions are expressed in terms of the
Matsubara frequencies ε = iεn = iπT (2n + 1). The terms in
the numerator are

δ�
reg
Q = 2T DQ2Re

∑
n�0

fn+i�A(+)
n,n+i2� + gn+i�Bn,n+i2�

ζn + ζn+i2�

(43)

and

δ�an
Q = − iDQ2 sinh(2�β )

∫
dε

2π

rε

Can
ε−,ε+

× (
Aan(+)

ε−,ε+ [F (+) − F (−) tanh(εβ ) tanh(�β )]

+ Ban
ε−,ε+[G(+) − G(−) tanh(εβ ) tanh(�β )]

)
. (44)

The temperature factor r(ε,�) is defined as

rε = [cosh(ε+β ) cosh(ε−β )]−1, (45)

where ε± = ε ± �. The functions F (±), G(±) are given by

F (±) = f R
ε ± f A

ε , G(±) = gR
ε ± gA

ε . (46)

At low frequencies, � ⇒ 0, we obtain δ�an
Q ⇒ 0, and δ�

reg
Q

has the same form as in a static case,

δ�
reg
Q

Preg
�

= −DQ2

∑
n�0

ε2
n

ζ 4
n∑

n�0
�
ζ 3

n

. (47)

In Fig. 3 we plot the frequency dependence of the normalized
variation of the second harmonic of �, δ�̃2� ≡ δ�2�/DQ2

for γ = 0.02�0. As expected, the amplitude mode gives a
resonant contribution around the corresponding value of �(T )
with a characteristic phase shift of π/2. For the frequency-
resolved second harmonic of δ�2�, we find a second peak
at � → 0 for higher temperatures. This peak stems from the
vanishing anomalous part of the polarization operator Pan

� at
these temperatures in the presence of disorder and a pump
as shown in the Appendix. These peaks are never divergent
as the regular part of both δ� and the polarization operator
are finite below Tc. Similar behavior was found previously
in Ref. [64].

V. THE CURRENT INDUCED BY AN ac FIELD

To investigate the induced current, we consider an ac elec-
tric field incident on a superconducting film of thickness 2d .
The field consists of probe Eω and pump E� field components:
E (t ) = Eω cos(ωt ) + E� cos(�t ). This field excites alternat-
ing currents j(t ) of various harmonics. In the third order in
the amplitude E , the induced current consists of harmonics
with frequencies ω, and 2� ± ω.
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The current j(t ) is determined by

j(t ) = i
σ0

4e
Tr

[
τ̂3

∫
dτ {ĝ([Q̂,ĝ] exp(i�τ )

+ [q̂,ĝ] exp(iωτ ))}K
3

]
, (48)

where Q̂ = Qτ̂3, the momentum Q is the gauge-invariant
quantity related to the phase of the superconductor χ , and the
vector potential A: Q = ∇χ − (e/c)A. In the case of χ = 0,
the vector potential A relates to the electric field as

EQ(t ) = i�

e
Q, Eq(t ) = iω

e
q, (49)

where ω and � is a probe (signal) and a pump frequency.
These frequencies may in general coincide: ω = �.

We decompose all functions to the power of Q considering
the quantity DQ2/�(T ) as a small parameter. In the lowest
order, we obtain a linear response to the action of two signals
with � and ω. It equals

j1(t ) = i
σ0

4e

∫
dε

2π

[
Q exp(i�t ){ĝε−�〈ĝε〉}K

0

+ q exp(iωt ){ĝε−ω〈ĝε〉}K
0

]
. (50)

Here 〈ĝ〉 = τ̂3ĝτ̂3, {· · · }0 = (1/2)Tr{· · · }, ĝR
ε−ω ≡ ĝR

0 (ε − ω),
etc. The current j1q(t ) ∼ q exp(iωt ) can be represented as

j1q(t ) = i
σ0

4e
q exp(iωt )

[
J reg

1 + Jan
1

]
, (51)

with

J reg
1 =

∫
dε

2π

{
ĝR

ε

〈
ĝR

ε+ω

〉
tε+ω − ĝA

ε

〈
ĝA

ε+ω

〉
tε

}
0, (52)

Jan
1 = −

∫
dε

2π

{
ĝR

ε

〈
ĝA

ε+ω

〉}
0(tε+ω − tε ). (53)

The next correction to the first ω harmonic in the presence of
a pump is

δ j(t ) = i
σ0

4e
q

∫
dτ exp(iωτ ){δĝ(t, τ )〈ĝ0(τ − t )〉

+ 〈ĝ0(t − τ )〉δĝ(τ, t )}K
0 . (54)

In the Fourier representation, the current acquires the form

δ jω(t ) = i
σ0

4e
qω

∑
ω,ν,μ

exp ((iω + �ν+μ)t )

×
∫

dε

2π
{δĝε,ε+�ν+μ

〈ĝε+ω+�ν+μ
〉

+ 〈ĝε−ω〉δĝε+�ν+μ
}K

0 . (55)

Here δĝε contains the terms of the order of Q2, and the
summation is performed for ±ω, �ν = ±�μ = ±�.
Therefore, the current δ jω(t ) contains harmonics
δ jω,�∞δ jω,0(Q2) exp(iωt ), δ jω,3(Q2) exp (i(2� ± ω)t ). The
first harmonic corresponds to �ν = −�μ = �, whereas
the third harmonic corresponds to �ν = �μ = �. In
obtaining this equation, we used the relation δĝε,ε′ =
δĝε2πδ(ε′ − ε ± �ν+μ).

The correction δĝε,ε′ consists of all second-order combi-
nations of Q and q and we took into account that Q ⊥ q

and |q| � |Q|, which leaves only the term ∝ Q2. First, we
consider the correction to the conductance caused by the
Eliashberg effect (EE).

A. Correction to the current due to EE

In this case, the frequency �ν+μ = �ν + �μ = 0 and the
correction δĝε,ε′ can be written as follows:

δĝε,ε′ = (DQ2)δĝε2πδ(ε − ε′) + (−�). (56)

Then, the integral Eq. (54) acquires the form

jEE(t ) = i
σ0

4e
qω exp(iωt )JEE, (57)

with

JEE =
∫

dε

2π

{
δĝR

ε

〈
ĝK

ε+ω

〉 + δĝK
ε

〈
ĝA

ε+ω

〉 + 〈
ĝR

ε−ω

〉
δĝK

ε

+ 〈
ĝK

ε−ω

〉
δĝA

ε

}
0. (58)

The Keldysh component δĝK
ε is defined as

δĝK
ε = δĝreg

ε + δĝan
ε , (59)

δĝreg
ε = tε

(
δĝR

ε − δĝA
ε

)
. (60)

The integral JEE consists now of three terms,

JEE = J reg + JAN + Jan. (61)

The regular part is

J reg =
∫

dε

2π

{
δĝR

ε [〈ĝε+ω〉tε+ω + 〈ĝε−ω〉tε]R

− δĝA
ε [〈ĝε+ω〉tε + 〈ĝε−ω〉tε−ω]A

}
0. (62)

The anomalous terms JAN and Jan are equal to

JAN = −
∫

dε

2π

{
δĝR

ε

〈
ĝA

ε+ω

〉
(tε+ω − tε )

+ δĝA
ε

〈
ĝR

ε−ω

〉
(tε − tε−ω )

}
0, (63)

Jan =
∫

dε

2π

{
δĝan

ε

〈
ĝR

ε−ω + ĝA
ε+ω

〉}
0. (64)

Here, the δĝR(A)
ε matrix is

δĝR(A)
ε = 1

2ζ
R(A)
ε

{τ̂3(δg� + δgQ) + iτ̂2(δ f� + δ fQ)}R(A).

(65)

The anomalous function δĝan
ε is

δĝan
ε = iDQ2 tε+� − tε(

ζ R
ε + ζ A

ε

){
Nan

3 τ̂3 − iτ̂2Nan
2

}
, (66)

where Nan
2,3 are

Nan
3 = G(−)

ε+�Aan(−)
ε,ε − F (−)

ε+�Ban
ε,ε, (67)

Nan
2 = F (−)

ε+�Aan(+)
ε,ε + G(−)

ε+�Ban
ε,ε . (68)

From the current, we can derive the correction to the complex
conductivity

δσ (ω,�) = σ0

4ω
JEE(ω,�), (69)
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FIG. 4. Calculated photoexcited conductivity σ (ω,�). The real part (a) of the conductivity σ1(ω) and the imaginary part (b) σ2(ω) are
shown as a function of the probe frequency ω. The dashed (solid) curves represent the photoexcited (equilibrium) conductivity. The calculations
were done for DQ2 = 0.005�(T ). The pump frequency is fixed at � = 2�(T ).

while the equilibrium conductivity is given by

σ (1)(ω) = σ0

4ω

[
J reg

1 + Jan
1

]
. (70)

In Fig. 4 we show the total conductivity σ (ω,�) =
σ (1)(ω) + δσ (ω,�) (real and imaginary part) as a function
of the probe frequency, ω, in comparison to its equilibrium
behavior, σ (1)(ω), for several temperatures and a pump fre-
quency of � = 2�(T ). The used parameters are γ = 0.02�0

and DQ2 = 0.005�(T ). DQ2 is chosen to be temperature-
dependent as we need to satisfy DQ2 � �(T ), i.e., that we are
far from the critical current for all temperatures. Observe that
within the linear response and low temperatures T = 0.2Tc the
optical conductivity is gapped approximately to 2�(T ) and
its evolution with temperature follows the standard behavior,
dictated by the thermal excitation of quasiparticles in equi-
librium superconductor in the presence of disorder; see, for
example, Ref. [105]. The effect of the pump at low tempera-
ture (T = 0.2Tc) can be viewed as the effect of the “effective
temperature” as σ1(ω) become gapless and increases at lower
ω due to the pair-breaking effect of the pump pulse and the
resulting formation of the quasiparticles in a similar fash-
ion as the increasing temperature would do. The situation,
however, changes for higher temperatures and especially for
T = 0.85Tc where one observes the Eliashberg effect in which
σ1(ω) shows much stronger gap features than in the equilib-
rium. We observe a decrease of the spectral weight of the
σ1(ω) in the sub 2�(T ) region, i.e., a decrease of the in-gap
states for T = 0.85Tc. Further, we also observe a slight shift
of kink of the conductivity, which is located at ω = 2�(T ),
to a higher frequency. As we assumed, DQ2 � �(T ) and
therefore the correction δ�0(T ) is also small compared to
�(T ); see Eq. (40), which corresponds to the shift of the
gap edge. We observe the same trend to a lower effective
temperature in the imaginary part of the conductivity σ2(ω) as
well, which is most evident in the region ω � 2�(T ). Further,
the enhancement of the conductivity at low ω in the presence
of a pump is related to that obtained earlier in the case of
a Josephson junction [19] and of a uniform superconductor
[106].

In Fig. 5 we show the behavior of σ (ω,�) at a low tem-
perature of T = 0.1Tc as a function of the probe (a) and the
pump frequency (b) for γ = 0.02�0 and DQ2 = 0.1�(T ).

One could clearly see that the effect of the pump arises for
� � �(T ) and is the most prominent one for � ∼ 2�(T ).
Note that we plot the curves in Figs. 4 and 5 for particular
magnitudes of ratio p = DQ2/�, which is assumed to be
small. But all the functions (corrections of the Green’s func-
tions and variation of �) are proportional to this parameter.
Therefore, an increase of p means stretching the graphs along
the y-axis.

B. Amplitude of the third harmonic

Here, we consider an amplitude of the third harmonic of
the form jTH(t )∞ jTH exp (i(2� ± ω)). In this case, the fre-
quency �ν+μ = �ν + �μ = 2� and the correction δĝε,ε′ can
be written as follows:

δĝε,ε′ = (DQ2)δĝε2πδ(ε− + 2�). (71)

The current in Eq. (54) is given by

jTH(t ) = i
σ

4e
qω exp (i(2� ± ω)t )JTH, (72)

with JTH equal to

JTH = J̃ reg + J̃AN + J̃an. (73)

The currents J̃ reg, J̃AN, and J̃an are defined as follows:

J̃ reg =
∫

dε

2π

{
δĝR

ε [〈ĝε̃〉tε̃ + 〈ĝε−ω〉tε+2�]R

− δĝA
ε [〈ĝε̃〉tε + 〈ĝε−ω〉tε−ω]A

}
0, (74)

J̃AN = −
∫

dε

2π

{
δĝR

ε

〈
ĝA

ε̃

〉
(tε̃ − tε+2�)

+ δĝA
ε

〈
ĝR

ε−ω

〉
(tε − tε−ω )

}
0, (75)

J̃an =
∫

dε

2π

{
δĝan

ε

〈
ĝR

ε−ω + ĝA
ε̃

〉}
0, (76)

where ε̃ = 2� ± ω and the matrix δĝR(A)
ε is given by

δĝR(A)
ε = 1

ζ
R(A)
ε + ζ

R(A)
ε+2�

{
δ�̂2� − ĝεδ�̂2�ĝε+2�

+ iDQ2[〈ĝε+�〉 − ĝε〈ĝε+�〉ĝε+2�]
}R(A)

. (77)
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FIG. 5. Calculated real part of the photoexcited complex conductivity, σ (ω,�). In (a) σ1(ω,�) is shown as a function of the probe
frequency ω for various pump frequencies �. In (b) the real part of the conductivity σ1(ω,�) is shown as a function of the pump frequency �

for various fixed probe frequencies ω. The calculation were done for DQ2 = 0.1�(T ) at T = 0.1Tc.

The anomalous function δĝan
ε is

δĝan
ε = 1

ζ R
ε + ζ A

ε+2�

{[
δ�̂2� − ĝR

ε δ�̂2�ĝA
ε+2�

]
(tε − tε+2�)

+ iDQ2
[〈

ĝR
ε+�

〉 − ĝR
ε

〈
ĝR

ε+�

〉
ĝA

ε+2�

]
(tε+� − tε+2�)

+ iDQ2
[〈

ĝA
ε+�

〉 − ĝR
ε

〈
ĝA

ε+�

〉
ĝA

ε+2�

]
(tε − tε+�)

}
. (78)

In Fig. 6 we plot the temperature dependence of the third-
harmonic current contribution normalized to j0 = σDQ3e−1

and γ = 0.02�0 and ω = �. For this, we also separate the

amplitude (Higgs) mode contribution jH and the contribution
of the direct action of the electric field jAAA by separating
δĝ = δĝQ + δĝ� in Eqs. (74)–(76). δĝ� ∝ δ�̂ describes the
correction to the current arising from the correction to �,
while δĝQ describes the direct coupling of the light to the
condensate. This separation was already introduced earlier,
when we defined δĝ in Eqs. (21) and (24).

As discussed in the Introduction, one of the most in-
teresting questions is whether the amplitude (Higgs) mode
contribution dominates over the contribution due to the direct
action of an ac electric field in the diffusive superconduc-
tors. Indeed, we find that the amplitude mode contribution

FIG. 6. Calculated temperature dependence of the THG currents. Parts (a) and (b) show the amplitude and phase of jAAA. Parts (c) and
(d) show the amplitude and phase of the Higgs contribution jH . We observe that the Higgs contribution dominates the THG current and that
both contributions possess a peak and a phase shift at the resonance condition � = �(T ) highlighted by the dashed lines.
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dominates over the direct action of the electric field, and this
is especially prominent if one looks at the phase shift of
the argument of the THG current, consistent with previous
calculations by various groups.

VI. REFLECTION AND TRANSMISSION
COEFFICIENTS OF AN ac FIELD

We consider an electromagnetic wave incident on a
superconducting film with thickness 2d . The reflection (trans-
mission) coefficient is determined from Maxwell’s equations

∇ × H = 4π

c
j + ε

c
∂t E, (79)

∇ × E = −1

c
∂t H. (80)

For a wave of a form E∞ exp(iωt − ikz), these equations can
be written as

k × H = 1

c
(4π iσω − εω)E, (81)

k × E = ω

c
H, (82)

or

k × (k × E) = 1

c2
(4π iσωω − εω2)E. (83)

The dispersion relation ω(k) follows directly from
Eq. (83),

(ckS )2 = −4π iσ (ω)ω + εω2, S film, (84)

(ckV )2 = εω2, vacuum. (85)

Writing down the Maxwell equations for components of E
and H , we find

∂zH = 1

c
[4πσ (ω) + iω]E ≡ εωE , (86)

∂zE = iω

c
H. (87)

Thus, we obtain for the solution E (z, t ) ≡ E (z) exp(iωt ) and H (z, t ) ≡ H (z) exp(iωt ) with

E (z) =
{

Ein exp (−ikV (z + d )) + Er exp (ikV (z + d )), z < −d,

Etr exp (−ikV (z − d )), z > d,
(88)

and

H (z) = √
ε0

{
−Ein exp (−ikV (z + d )) + Er exp (ikV (z + d )), z < −d,

−Etr exp (−ikV (z − d )), z > d.
(89)

Inside the S film, we have

E (z) = C cosh(ikSz) + S sinh(ikSz) |z| < d, (90)

H (t, z) = √
ε�[C sinh(ikSz) + S cosh(ikSz)], |z| < d.

(91)

The matching conditions [E ]±d = 0 and [H]±d = 0 yield

Er + Etr = Ein

√
ε0 − √

εω tanh(iθS )√
ε0 + √

εω tanh(iθS )
, (92)

Er − Etr = −Ein

√
εω − √

ε0 tanh(iθS )√
εω + √

ε0 tanh(iθS )
, (93)

where θS = kSd , kSc = ω
√

εω, and εω = 4πσ (ω)/iω + εS0.
As a result, we obtain the reflected and transmitted waves

Er = Ein
tanh(iθS )(ε0 − εω )

D , (94)

Etr = Ein
√

εωε0
1

cosh2(iθS )D
, (95)

where D = [
√

εω + √
ε0 tanh(iθS )][

√
ε0 + √

εω tanh(iθS )].
The reflected wave phase change φr is given by

tan (φr ) = Im{tanh (iθS )(ε0 − εω )/D}
Re{tanh (iθS )(ε0 − εω )/D} , (96)

which can also be measured in experiments. In the limit of a
thick S film (|θS| � 1), we obtain D = [

√
ε0 + √

εω]2 and

Er = Ein

√
ε0 − √

εω√
ε0 + √

εω

, (97)

Etr = Ein

√
ε0εω

cosh2(iθS )[
√

ε0 + √
εω]2

. (98)

As expected, Eq. (98) shows that the amplitude of the trans-
mitted wave is exponentially small: Etr∞Ein exp(−2d/dskin),
where dskin = c/

√
4π iσ (ω)ω is the skin depth.

For a thin S film (|θs| � 1) we plot the reflectivity R(ω) =
|Er |2
|Ein|2 as a function of normalized frequency for various

temperatures in Fig. 7 for γ = 0.02�0, DQ2 = 0.005�(T ),
σ0 = 2 × 1016 s−1, and d = 12 nm. Observe clear signatures
of the Eliashberg effect for temperatures close to the
superconducting transition temperature for both � = �(T )
and � = 2�(T ).

Next we look into the effects of parametric amplifica-
tion. For that we assumed that the EM-field inside the thin
S-film should be either a uniform or a slowly varying func-
tion. Thus, we take the average of the electric field inside
the film:〈

ES
ω

〉 = Ein tan (θs)

2θs

(
1 +

√
εV − √

εω tanh (iθs)√
εV + √

εω tanh (iθs)

)
. (99)

Most importantly, we can now link the incoming electric field
Ein(ω) with the outgoing field Er (2� − ω) = Etr(2� − ω) =

024510-10



NONLINEAR RESPONSE OF DIFFUSIVE … PHYSICAL REVIEW B 109, 024510 (2024)

FIG. 7. The reflectivity R(ω) = |Er |2
|Ein |2 via Eq. (94). The solid lines represent the case of the equilibrium, while the dashed lines are obtained

by taking the correction δσ (ω,�) into account when determining εω. The pump-frequency is fixed at � = 2�(T ) for (a) and � = �(T ) for
(b). Further, DQ2 = 0.005�(T ), γ = 0.02�0, σ0 = 2 × 1016 s−1, and a film thickness of d = 12 nm. For a pump of � = 2�(T ), we observe
that the high-temperature reflectivity curve is getting enhanced under irradiation, while this is not the case for the lower-temperature curves.
Lastly, we observe that for a lower pump-frequency � = �(T ) we see a small area of reflectivity enhancement for the lower-temperature curve
of T = 0.6Tc, which is due to the redistribution of particles inside the gap and not to the Eliashberg effect.

E2�−ω via the THG current

j(2� − ω) = �ac(2� − ω)

iω

〈
ES

ω

〉 = σ (1)(2� − ω)E2�−ω.

(100)

Using the definition from Eq. (99) for the field Eω inside of
the S film, we define the down-conversion intensity

R12(2� − ω) =
∣∣∣∣ �ac(2� − ω)

iωσ (1)(2� − ω)

∣∣∣∣
2

×
∣∣∣∣ tan (θs)

2θs

(
1 +

√
εV − √

εω tanh (iθs)√
εV + √

εω tanh (iθs)

)∣∣∣∣
2

,

(101)

FIG. 8. The down-conversion intensity R12(2� − ω), i.e.,
| �E2�−ω |2

| �Eω |2 , as a function of the probe-frequency ω. The pump-frequency

is fixed at � = �(T ) and DQ2 = 0.005�(T ). Further, γ = 0.02�0,
σ0 = 2 × 1016 s−1, and a film thickness of d = 12 nm. The highest
intensity is achieved for ω → 0, while it vanishes at the points
ω = 2�. For frequencies of �(T ) � ω � 2�(T ), the curves
visually overlay.

which is similar to Ref. [70], with the important difference that
all quantities entering its definition are now determined fully
microscopically. In particular, the function �ac is directly
given by the THG current j(2� − ω) and σ (1) is the linear
response of the complex conductivity.

The down-conversion intensity R12(2� − ω) for � =
�(T ) is shown in Fig. 8 as a function of the probe frequency ω

for the same parameters as for the reflectivity. It is noted that
in contrast to R(ω), we do not include the conductivity correc-
tion δσ (ω,�) in the definition of εω in Eq. (101). Similar to
the phenomenological analysis presented in Ref. [70], we ob-
serve that the down-conversion intensity decreases rapidly in
the region of ω < 2�(T ) and that it vanishes at ω = 2�(T ).
Note that in Ref. [70] this quantity was related to the ampli-
tude of the emitted idler mode, normalized by the amplitude
of the incident signal beam and connected to the parametric
amplification of superconductivity due to the Higgs mode.

In our case, we can indeed confirm that the behavior of
the down-conversion intensity is expected due to the third-
harmonic generation currents and excitation of the Higgs
mode and the direct action of the electric field on the charge
carriers in the superconducting state.

VII. CONCLUSIONS

To conclude, we have developed a theory of nonlinear
effects arising in diffusive superconductors under the action of
an ac electromagnetic fields E (t ). These effects are described
in terms of quasiclassical matrix Green’s functions ĝ, which
consist of the retarded (advanced), ĝR(A), and Keldysh Green’s
functions [93]. We use a method of the representation of
the Keldysh function ĝK as the sum of a regular, ĝreg, and
“anomalous,” ĝan, parts [4]. This trick allows one to avoid the
method of analytical continuation [93]. Using this representa-
tion, we derive general expressions for ĝR(A) and ĝan. On the
basis of this formalism, we obtain the variation of the order
parameter δ� caused by the ac field up to the second order
in the magnitude of E (t ). In particular, we analyze the zero
Fourier harmonic of δ�0 (the Eliashberg effect [53]) and the
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second Fourier harmonic δ�2. Furthermore, we calculated the
ac currents I (�) induced by external electromagnetic fields.
Analyzing the third-harmonic generating current, we indeed
confirm that in the diffusive superconductors it is mostly
dominated by the amplitude (“Higgs”) mode and not by the
direction action of the ac electric field. This is in contrast to
the clean case.

Finally, we also analyze microscopically the down-
conversion intensity, R12, of the thin superconducting sample,
the characteristic behavior of which was argued to be re-
lated to the parametric amplification of superconductivity.
Although studying parametric amplification goes beyond the
present theoretical analysis, we indeed see that a very similar
behavior of R12 is expected due to the coupling to the am-
plitude mode and the direct action of the electric field in the
third-harmonic generation currents. We obtained also a strong
enhancement of a photoexcited ac conductance, which occurs
at low frequencies and low temperatures. This issue deserves
separate consideration.

Note that our formalism for calculation of the nonlinear
currents can be used to analyze the data on transient transport
in pumped conventional and unconventional superconductors.
Furthermore, given the recent interest in the study of the
dynamics of multiband high-Tc superconductors [107–109],
it would be useful to generalize this approach to the case of
these superconductors.
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APPENDIX

1. Anomalous Green’s function

The Keldysh component of Eq. (14) can be written as

N̂εδĝK − δĝK N̂ε′ = −R̂K (ε, ε′), (A1)

where N̂ε = ετ̂3 + �iτ̂2, R̂K (ε, ε′) = {[δ�̂, ĝ] + iD[Qτ̂3ĝ
Qτ̂3, ĝ]}K . The normalization condition for the Keldysh
component is

δ{ĝRĝK + ĝK ĝA}ε,ε′ = 0 (A2)

or

δĝRĝK
ε′ + ĝR

ε δĝK + δĝK ĝA
ε′ + ĝK

ε δĝA = 0. (A3)

Here ĝK
ε = (ĝR

ε − ĝA
ε )tε is the Keldysh Green’s function in

equilibrium. The variation of the Keldysh function δĝK is
represented as a sum of a regular part and the anomalous part
δĝan [see Eq. (22)]

δĝK = δĝRtε′ − tεδĝA + δĝan. (A4)

Taking into account Eq. (A4), we can write Eq. (A3) as

0 = (
δĝRĝR

ε′ + ĝR
ε δĝR

)
tε′ − tε

(
δĝAĝA

ε′ + ĝA
ε δĝA

)
+ ĝR

ε δĝan + δĝanĝA
ε′ . (A5)

The first two terms are equal to zero due to the variation of
the normalization conditions for the matrices ĝR(A),

(δĝĝε′ + ĝεδĝ)R(A) = 0. (A6)

Thus, we come to the equation for δĝan,

ĝR
ε δĝan + δĝanĝA

ε′ = 0. (A7)

Then, we multiply Eq. (14) for δĝR(A) by tε′ (tε) and subtract
(add) from (to) Eq. (A1). Taking into account the definition of
the matrix N̂R(A)

ε = (ζε ĝε )R(A), we obtain

(ζε ĝ)Rδĝan − δĝan(ζε′ ĝε′ )A

= −{R̂K (ε, ε′) − R̂R(ε, ε′)tε′ + tεR̂A(ε, ε′)}. (A8)

The matrix R̂K (ε, ε′) contains only the Green’s function in
equilibrium when ĝK

ε = (ĝR
ε − ĝA

ε )tε . Using the normalization
condition, Eq. (A7), we find for the anomalous function δĝan

δĝan = −ĝR
ε

{R̂K (ε, ε′) − R̂R(ε, ε′)tε′ + tεR̂A(ε, ε′)}
ζ R
ε + ζ A

ε′
. (A9)

Substituting the known Green’s functions into Eq. (A9), we
come to Eqs. (24) and (25).

2. Useful functions

We list the definition of useful functions to avoid cluttering
in the definition of δĝε,ε′ ,

NR(A)
3 = (A(−)

ε gε+� − Bε fε+�)R(A), (A10)

NR(A)
2 = (A(+)

ε fε+� + Bεgε+�)R(A). (A11)

The functions Nan
2,3, G(−)

ε̃ , and F (−)
ε̃ are defined as follows:

Nan
3 = G(−)

ε̃ A(−)
ε + F (−)

ε̃ B, (A12)

Nan
2 = F (−)

ε̃ A(+)
ε + G(−)

ε̃ B, (A13)

G(−)
ε+� = gR

ε+� − gA
ε+�, F (−)

ε+� = f R
ε+� − f A

ε+�. (A14)

The functions A, B, and C are

(A±
ε )R = [

1 ± (
g2

ε + f 2
ε

)]R
, (A15)

BR
ε = 2(gε fε )R, (A16)

CR
ε = 2ζ R

ε . (A17)

Anomalous functions Aan
ε , Ban

ε ,Can
ε are

(A±
ε )an = 1 ± (

gR
ε gA

ε + f R
ε f A

ε

)
, (A18)

Ban
ε = gR

ε f A
ε + gA

ε f R
ε , (A19)

Can
ε = ζ R

ε + ζ A
ε . (A20)

Here we provide further expressions, which are useful in
obtaining the final expressions for the Eliashberg effect and
the third-harmonic generation currents in the main text.

For the δ�(t ) averaged in time, we have

δ� = −λi
∫

dε

2π
Trτ̂2{δĝreg + ĝan}|ε−=0. (A21)
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Taking into account the identity

δ� = λδ�

∫
dε

2π

[
1

ζ R
ε

− 1

ζ A
ε

]
tε (A22)

and subtracting Eqs. (A21) and (A22), we obtain

0 =
∑
ν,μ

∫
dε

2π

[
Tr{iτ̂2(δĝreg + ĝan)} +

(
1

ζ R
ε

− 1

ζ A
ε

)
tεδ�

]
,

(A23)

where ζ R(A)
ε =

√
(ε ± iγ )2 + �2. This equation can be writ-

ten in the form

4T δ�0�
2
∑

n

1

ζ 3
n

= −i(DQ2)
∫

dε

2π

δ f reg
Q + δ f an

Q

2ζε

, (A24)

where ζn = √
ε2

n + �2, εn = πT (2n + 1). We used Eq. (30)
with f� = 1 + g2

n + f 2
n , g2

n = (εn/ζn)2 = 1 − f 2
n .

The regular part at the right is

∫
dε

2π

δ f reg
Q

2ζε

=
∫

dε

2π

[(
A+ fε+� + Bgε+�

2ζε

)R

− (· · · )A

]
tε

=
∫

dε

2π

[(
gε (gε fε+� + fεgε+�)

ζε

)R

−(· · · )A

]
tε

= �

∫
dε

2π

[(
ε(2ε + �)

ζ 3
ε ζε+�

)R

− (· · · )A

]
tε .

(A25)

We express the integral in terms of Matsubara frequencies

∫
dε

2π

δ f reg
Q

2ζε

= �

∫
dε

2π

[(
ε(2ε + �)

ζ 3
ε ζε+�

)R

− (· · · )A

]
(A26)

= −4iT 2�Re
∑

n

ω(2ω + i�)

ζ 3
ωζω+i�

. (A27)

We took into account the term with −�. Therefore,
Eq. (34) yields

4T δ�0�
2
∑

n

1

ζ 3
n

= − 8T �DQ2Re
∑

n

ω(2ω + i�)

ζ 3
ωζω+i�

− iDQ2
∫

dε

2π

δ f an
Q

2ζε

. (A28)

3. Polarization operator

To understand the origin of the low-frequency peak in the
δ�2� we plot total polarization operator P(2�) = Preg

� (2�) +
Pan

� (2�) in Fig. 9 for γ = 0.02�0 at various temperatures.
We observe the emergence of a minimum for all three tem-
peratures at the resonance frequency � = �(T ). Therefore,
the low-energy peaks at � → 0 in the second-harmonic cor-
rection δ�2� are a consequence of the abrupt vanishing of
Pan(2�) at higher temperatures.

FIG. 9. The polarization operator P(2�) = Preg
� (2�) + Pan

� (2�)
as function of �. The solid (dashed) line is the real (imaginary)
part of the polarization operator. We observe a minimum at the
resonance frequency � = �(T ) for all temperatures, while for high
temperatures we see a distinct second minimum for the limit � → 0.

4. Third harmonic

The response to an external ac field with the frequency �in

is

I (t ) = σ exp (i(2� + �in )t )Qin

∫
dε

2π
J (ε), (A29)

where

J =
∫

dε

2π

[
δĝ〈ĝε+2�+ω〉 + 〈ĝε−ω〉δĝK

0

]
=

∫
dε

2π

{
δĝR

[〈
ĝR

ε+2�+ω − ĝA
ε+2�+ω

〉
tε+2�+ω

+ [δĝRtε′ − tεδĝA]
〈
ĝA

ε+2�+ω

〉〈
ĝR

ε−ω

〉
[δĝRtε′ − tεδĝA]

+ 〈
ĝR

ε−ω − ĝA
ε−ω

〉
tε−ωδĝA

] + δĝan
[〈

ĝR
ε+2�+ω + ĝA

ε−ω

}
0.

(A30)

5. Coefficients in the current (EE and third harmonic)

If �in = �, the total current is

I3�(t ) = σQ exp(3i�t )
∫

dε

2π
{〈ĝε−�〉 · δĝ + δĝ · 〈ĝε+3�〉}K

0 ,

(A31)

where δĝ = δĝ(ε, ε + 2�). Here the matrix δĝan
∓ ≡

δĝan(ε̃−, ε̃+) is defined as

ĝan
� = −rε

sinh(2�β )

2

δ�2�

Can∓

(
gan

�τ̂3 + f an
� iτ̂2

)
, (A32)

ĝan
Q = −rε

sinh(2�β )

2

iDQ2

Can∓

(
gan

Q τ̂3 + f an
Q iτ̂2

)
. (A33)

Thus, for Jan we find

Jan = {(
gR

ε̃−2� + ĝA
ε̃+2�

)(
gan

� + gan
Q

)
+ (

f R
ε̃−2� + f A

ε̃+2�

)(
f an
� + f an

Q

)}
. (A34)

The coefficients gan
�,Q and f an

�,Q are defined as

gan
� = B, f an

� = A+, (A35)
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gan
Q = [G+A− − F+B − tεt�(G−A− − F−B)], (A36)

f an
Q = [F+A+ + G+B − tεt�(F−A+ + G−B)]. (A37)

The coefficients A, B,C are equal to

A± = 1 ± (gR
−gA

+ + f R
− f A

+ ), (A38)

B = gR
− f A

+ + f R
−gA

+. (A39)

The functions G±, F± are defined as

G± = gR
ε ± gA

ε , F± = f R
ε ± f A

ε . (A40)
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