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Geometric phase driven Josephson junction: Possible experimental scheme
for the search of spin superfluidity
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We use the Gross-Pitaevskii equation to study Josephson tunneling between two weakly coupled Bose-
Einstein condensates, which compose spin-1 bosons. We show that a rotating magnetic field on one side can
produce a phase difference across the junction, resulting in an oscillatory tunneling spin current. Besides
numerical calculation, we derive analytical results in two extreme cases, namely the low- and high-frequency
limits: in the low-frequency limit (magnetic field rotates adiabatically), a non-Abelian geometric phase arises and
leads to the oscillatory spin current. By sharp contrast, the physics is intrinsically different in the high-frequency
limit, where an average Zeeman energy difference leads to an oscillatory spin current. This proposed apparatus
should be promising for the future experimental search of spin superfluidity.
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I. INTRODUCTION

In the past few years, spin superfluidity has attracted a
lot of attention both theoretically and experimentally. Spin
superfluidity (or spin superconductivity, if one would like
to emphasize the response of the carrier’s spin to external
electromagnetic field) is a Bose-Einstein condensation (BEC)
of spin-1 bosons [1]. It may exist in many different systems,
such as ferromagnetic graphene [2], BEC of magnetic atoms
[3–6], 3He superfluidity [7–11], and so on [6,12–24]. Spin
superfluidity is expected to show many exotic new phenom-
ena such as dissipationless spin current [25] and the electric
Meissner effect [26]. Theoretically, a Ginzburg-Landau-type
theory has been proposed for a spin-polarized [25] and a spin-
nonpolarized [27] superfluid, respectively. However, only in
recent years has the signature of a spin-superfluid ground state
been observed in real experiment [28,29] and more experi-
mental signature for spin superfluidity is still required [1].

On the other hand, it is well known that scientists can ma-
nipulate macroscopic numbers of bosons since the observation
of the BEC of cold alkali atoms [30,31]. Amongst numerous
experimental techniques, this manipulation can be realized
via the bosonic Josephson junction (BJJ) [32]. The dynamics
of spinless BJJ has been theoretically studied and many new
phenomena, such as macroscopic quantum self-trapping and
π -phase oscillations, have been predicted [33] and experimen-
tally verified [34]. For a spin-1 BEC system, people have also
studied the transition between three energy states, known as
the internal Josephson effect [3,35,36].

In the zoo of miscellaneous Josephson junctions, it is well
known that a current will be generated if there is a phase
difference between two sides of the junction. For a junction
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of two superconductors weakly linked by a thin insulating
layer, the current is proportional to the sine of this phase
difference [37–39]. For other Josephson junctions, the func-
tional dependence of current on the phase difference can be
more complex [40,41]. On the other hand, from elementary
quantum mechanics, it is also well known that, in the pres-
ence of a rotating magnetic field, a spin will accumulate a
geometric phase (also known as the Berry phase [42]). The
Berry phase effects have been considered in superconducting
systems [43,44]. By applying a spatial magnetic field gradient,
a Berry phase term can be generated in a spinor condensate
system [45]. Moreover, the mesoscopic spin Berry phase ef-
fect can be realized in a coupled two-mode BEC system [45].
In this work, we use the Berry phase to control the particle
current in the BJJ system: if we put the spin superfluid in a
junction, we expect that applying a rotating magnetic field
shall generate some sort of “phase difference” akin to that
of the Josephson effect. Accordingly, a particle current could
be generated and observed experimentally, serving as another
clear signature of spin superfluidity.

The BJJ offers an ideal platform for the realization of a
spinor Josephson effect. Schematically, a BJJ consists of two
traps which act as “containers” for two condensates [34],
which can be modeled by a double-well potential [33] (Fig. 1).
The physics of a BEC system can be well captured by the
Gross-Pitaevskii equation (GPE) [32]. We assume these two
condensates are “weakly coupled,” given that the barrier of
potential is high enough to suppress the tunneling matrix
element.

In the present paper, we extensively discuss the effect of a
rotating magnetic field on a BJJ with spin-1 bosons (at zero
temperature). For simplicity, at first we neglect the mutual
interaction between bosons (which is weak) and the spin-orbit
coupling effect (which is a relativistic correction [46]). In
that case, the GPE simply reduces to a linear, time-dependent
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FIG. 1. Apparatus for BJJ. The colored areas stand for the con-
densate and we use a double-well potential Vext (r) to represent the
trap.

Schrödinger equation. Following the treatment for the spinless
case [33], we integrate out the spatial dependence of the
macroscopic wave function, reducing a PDE problem to a
two-mode time-dependent problem. We shall then focus on
two scenarios.

First, we consider the low-frequency limit, in which case
the characteristic energy scale of the system’s period is much
smaller than the energy spacing. So we can address the prob-
lem with the help of the adiabatic theorem. In fact, concepts
from adiabatic evolution, such as the (non-Abelian) Berry
connection and gauge invariance, emerge in the preceding
context. It turns out that a sinusoidal oscillation of the particle
number difference should be expected, which leads to a time-
averaged population imbalance.

Second, we consider the high-frequency limit, in which
case the energy scale of the period is larger than any other
scales appearing in the system. In that case, the time-averaged
evolution of the system appears to be of most importance.
To extract this time-averaged information, we resort to the
Floquet theory, where we obtained the effective Floquet
Hamiltonian by means of the Magnus expansion [47]. It turns
out that there is also an oscillatory current (at least in a time-
averaged sense) and three internal (spin) degrees of freedom
are decoupled.

Strictly speaking, the effect of mutual interaction among
constituent bosons is non-negligible, playing a crucial role in
stabilizing a superfluid phase [48]. In Sec. V. we substantiate
the qualitative robustness of our results in the presence of the
weak self-interaction among cold atoms.

The paper is organized as follows. First, in Sec. II we
present the GPE of the system and show that it can be reduced
to a two-mode Schrödinger equation by applying the varia-
tional ansatz. Then, in Sec. III we discuss the low-frequency
limit and calculate the particle current. In Sec. IV we study
the high-frequency limit via the Floquet theory and discuss
the particle current in that case. Finally, the effect of self-
interaction is discussed in Sec. V. In Appendix A we show
a generalization of the (nondegenerate) adiabatic theorem. In
Appendix B we show that our prediction derived in Sec. III
is gauge invariant (i.e., independent of the choice of instanta-
neous eigenstates). Our results are summarized in Sec. VI.

II. GROSS-PITAEVSKII EQUATION AND THE
CORRESPONDING REDUCED PROBLEM

The apparatus of BJJ is schematically illustrated in Fig. 1.
Since we are considering a system of spin-1 particles, the

macroscopic wave function �(r, t ) is a three-component
spinor. The time-dependent GPE [32] can be generally
written as

ih̄∂t� =
(

− h̄2

2m
∇2 + Vext (r) − gμBs · B(r, t ) + F (�)

)
�.

(1)

The first three terms of the Hamiltonian correspond to ki-
netic, potential, and Zeeman energy, respectively. The last
term F (�) is some quadratic function of � that describes the
self-interaction effect, which would be extensively discussed
in Sec. V. The magnetic field B(r, t ) represents two localized
uniform fields. The field on the left is rotating with θ the polar
angle while the field on the right is static along the z axis with
the same magnitude. Also note that s denotes the spin operator
for spin-1 bosons. As a matter of convention, we will hence-
forth use s to represent three Pauli matrices for spin j = 1:

sx = 1√
2

⎛
⎝ 1

1 1
1

⎞
⎠, sy = 1√

2

⎛
⎝ −i

i −i
i

⎞
⎠,

sz =
⎛
⎝1

0
−1

⎞
⎠ (2)

and use σ to represent the original spin j = 1/2 Pauli
matrices.

Analogous to the case of spinless BJJ, we employ the
widely known two-mode approximation [32,33,49] for �,
which is the linear superposition of two condensates’ macro-
scopic wave functions that can be decomposed as a product of
spatial and spinorial part:

�(r, t ) = �1(t )φ1(r) + �2(t )φ2(r), (3)

where φ1 and φ2 are (c-numbered) ground state wave func-
tions for two separated wells (e.g., ground state wave function
of some localized 3D harmonic potential), while �1 and �2

are spinors representing the internal (spinorial) degree of free-
dom. We assume that they are real functions (a reasonable
assumption for, say, systems with harmonic potentials) nor-
malized to unity and “almost” orthogonal. Here, by “almost
orthogonal” we mean the overlap of φ1 and φ2∫

d3r φ∗
1 (r)φ2(r) =

∫
d3r φ1(r)φ2(r) (4)

is zero for most cases except when they are “sandwiching” the
kinetic and potential energy:

K ≡ −
∫

d3r φ1(r)

(
− h̄2

2m
∇2 + Vext (r)

)
φ2(r)

= −
∫

d3r φ2(r)

(
− h̄2

2m
∇2 + Vext (r)

)
φ1(r). (5)

The matrix element K models the tunneling effect between
two well-separated potentials due to the particle’s kinetic and
potential energy.

It is customary to normalize � such that its norm squared
is the total particle number, instead of unity. We do not adopt
this convention and continue to normalize � to unity, which is
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convenient for implementing the standard treatment of pertur-
bation theory later on. Thus the norm squared of �1 and �2

(N1 ≡ �
†
1�1 and N2 ≡ �

†
2�2) are ratios of particle number on

the left/right to the total number, respectively.
Substituting the ansatz into Eq. (1) and neglecting the non-

linear term, we have

ih̄(φ1∂t�1 + φ2∂t�2) = �1

(
− h̄2

2m
∇2 + Vext (r)

)
φ1

+ �2

(
− h̄2

2m
∇2 + Vext (r)

)
φ2

− φ1gμBs · B(r, t )�1

− φ2gμBs · B(r, t )�2. (6)

Taking the overlap with φ1 and φ2, the problem now reduces
to a two-mode time-dependent problem

ih̄∂t�1 = −gμBs · B1(t )�1 − K�2,

ih̄∂t�2 = −K�1 − gμBs · B2�2,
(7)

where we have employed the fact that φ1 and φ2 are (ap-
proximate) ground state eigenfunctions. By assuming the
double-well potential to be symmetric, one is free to set
their ground state energies to zero. Also notice that the
overlap integration eliminates the spatial dependence of
B(r, t ), reducing it into two localized fields, B1(t ) and
B2. Note that B1(t ) = Bn(t ) and B2 = Bez [with n(t ) =
(sin θ cos �t, sin θ sin �t, cos θ )T a rotating direction vector]
and we can align �1 and �2 to form a six-component object;
therefore, the problem now becomes solving the following
time-dependent problem with a 6 × 6 Hamiltonian:

ih̄∂t

(
�1

�2

)
=

(−gμBBs · n(t ) −K
−K −gμBBsz

)(
�1

�2

)
. (8)

For the convenience of doing numerical calculations, we
adopt the dimensionless time (τ ), tunneling energy (k), and
angular velocity (ω), defined as

τ ≡ gμBB

h̄
t, k ≡ K

gμBB
, ω ≡ h̄

gμBB
�. (9)

However, we will come back to using dimensional parame-
ters when discussing physical implications of our predictions.
Thus the time-dependent problem is now expressed as

i∂τ

(
�1

�2

)
=

(−s · n(τ ) −k
−k −sz

)(
�1

�2

)
, (10)

with n(τ ) = (sin θ cos φ, sin θ sin φ, cos θ )T (φ ≡ ωτ is the
azimuthal angle). Note that the Hilbert space is six dimen-
sional, because it combines three-dimensional spinors on each
side of the BEC.

III. LOW-FREQUENCY LIMIT

A. Adiabatic dynamics

Let us first consider the case of the low-frequency limit
where the frequency ω is sufficiently low. Given that the
system is weakly coupled, one can treat the tunneling term k
as perturbation. Without this perturbation, the eigenvalues of
Hamiltonian are ±1 and 0. When the perturbation is applied,

one should expect the removal of degeneracy and energy split
of order ∼O(k). To summarize, this is a periodic system with
low frequency and an “almost” degenerate spectrum. This
reminds us of the concept of adiabatic evolution.

First, we consider a generic time-dependent system with
Hamiltonian H = H(λ(τ )). Here, λ = λ(τ ) means that the
time dependence of the Hamiltonian is realized through time-
dependent parameters defined in parameter space {λi|i =
1, . . . , N} with N the total number of parameters. Instanta-
neous eigenstates are denoted as |ni[λ = λ(τ )]〉. Just like the
system we are interested in, we assume that the Hamiltonian
can be written as a sum of unperturbed and perturbation parts
and it has an almost degenerate spectrum (in the sense that
the possibly time-dependent energy splits are always much
smaller than the zeroth-order energy spacings).

Suppose we start with one of the instantaneous eigenstates

|ψμ(τ = 0)〉 ≡ |nμ[λ(τ = 0)]〉, (11)

with |nμ〉 an eigenstate belonging to some subspace spanned
by eigenstates that share the same zeroth-order energy. Note
that, in the following discussions in this subsection, we will
use Greek indices (μ, ν, etc.) to denote eigenstates from this
particular subspace and will use Latin indices (a, b, c, etc.) to
denote those from other subspaces. Then, generally speaking,
the state of the system at time τ can be expanded in terms of
instantaneous eigenstates at that time

|ψμ(τ )〉 =
∑

ν

Uμν (τ )|nν (λ(τ ))〉 +
∑

a

Uμa(τ )|na(λ(τ ))〉.
(12)

However, a generalization of (nondegenerate) adiabatic
theorem implies that coefficients of |na〉’s (namely Uμa’s) can
be significantly suppressed. This can be achieved once the
inverse of characteristic time scale of the Hamiltonian (e.g.,
the frequency of a periodic Hamiltonian) is smaller when
compared with the zeroth-order energy spacing. An outline
of the proof is presented in Appendix A.

Therefore, the expansion just becomes

|ψμ(τ )〉 =
∑

ν

Uμν (τ )|nν (λ(τ ))〉, (13)

where one can readily show that Uμν is a unitary matrix.
Clearly, this means that we can neglect the contribution from
states with different zeroth-order energies in our case. Substi-
tuting Eq. (13) into the Schrödinger equation (with h̄ = 1), we
have

i|ψ̇μ〉 = i
∑

ν

(U̇μν |nν〉 + Uμν |ṅν〉)

= H |ψμ〉 =
∑

ν

UμνEν |nν〉. (14)

Rearranging and taking overlap with 〈nν |, we have

U̇μν = −iUμνEν + i
∑

ρ

Uμρ (Ai)ρνλ̇
i, (15)

where

(Ai )μν ≡ i〈nν |∂i|nμ〉 (16)

is the non-Abelian Berry connection.
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Since all the |nμ〉 share the same zeroth-order energy, one
is free to implement a shift of zero point, canceling its contri-
bution. Thus the differential equation for Uμν becomes

U̇μν = −iUμνE (1)
ν + i

∑
ρ

Uμρ (Ai )ρνλ̇
i. (17)

B. Instantaneous eigenstates
and the time evolution

To calculate the time-dependent evolution matrix Uμν , we
need to derive the instantaneous eigenstates via perturbation
theory. First, we define

χn+ =

⎛
⎜⎝

1
2 (1 + cos θ )e−iφ

1√
2

sin θ
1
2 (1 − cos θ )eiφ

⎞
⎟⎠, χn0 =

⎛
⎜⎝− 1√

2
sin θ e−iφ

cos θ
1√
2

sin θ eiφ

⎞
⎟⎠,

χn− =

⎛
⎜⎝

1
2 (1 − cos θ )e−iφ

− 1√
2

sin θ
1
2 (1 + cos θ )eiφ

⎞
⎟⎠, (18)

which are eigenspinors of s · n corresponding to eigenvalue
+1, 0, and −1, respectively. We may also write spinors like
χzs(s = 0,±1), which represent spinors in Eq. (18) with
n → ez.

The unperturbed and perturbation Hamiltonians are

H0 ≡
(−s · n(τ )

−sz

)
, V ≡

( −k
−k

)
. (19)

We require that k 
 1 [k is defined in Eq. (9)] so that V is a
perturbation. Besides, we set ω 
 1 so that the (generalized)
adiabatic theorem is valid.

Following the standard treatment of time-independent per-
turbation theory, one acquires the zeroth-order “good states”
and the corresponding first-order energy correction

�
(0)
+1 =

⎛
⎜⎝

−1√
2
χn+

e−iφ√
2
χz+

⎞
⎟⎠, E (1)

+ = 1

2
k(1 + cos θ ) ≡ |z|,

�
(0)
+2 =

⎛
⎜⎝

1√
2
χn+

e−iφ√
2
χz+

⎞
⎟⎠, E (1)

− = −1

2
k(1 + cos θ ) = −|z|.

(20)

Generally speaking, one may still need to calculate the first-
order correction of eigenstates. However, the first-order ket is
of order O(k), as long as we restrict ourselves to cases for
which

k, ω 
 1. (21)

Contributions from these terms can be neglected, since
the leading-order contribution from perturbation is of order
O(k/ω). To show this, we employ Eq. (17). For our case,
the only component of Berry connection is Ai = Aφ with
λ̇i = φ̇ = ω. Therefore, the equation for U is

U̇11 = −iU11|z| + i(UAφω)11,

U̇12 = iU12|z| + i(UAφω)12,

U̇21 = −iU21|z| + i(UAφω)21,

U̇22 = iU22|z| + i(UAφω)22 (22)

or, equivalently,

d

dφ
U = iU

(
Aφ − |z|

ω
σ3

)
. (23)

The dynamical effect is of order O(|z|/ω) ∼ O(k/ω), as
promised.

Therefore, one can easily deduce that the leading order of
non-Abelian connection is

(Aφ )11 = (Aφ )22 = 1
2 (1 + cos θ ),

(Aφ )12 = (Aφ )21 = 1
2 (1 − cos θ )

⇔ Aφ = 1
2 (1 + cos θ ) + 1

2 (1 − cos θ )σ1. (24)

So Eq. (23) now becomes

dU †

dφ
= − i

2
(1 + cos θ )U †

− i

(
1

2
(1 − cos θ )σ1 − k

2ω
(1 + cos θ )σ3

)
U †, (25)

with the initial condition U †(φ = 0) = U (φ = 0) = 1.
The first term of the equation above only provides an

unimportant phase factor and can be neglected. Integrating the
equation, we have

U (φ) =
⎛
⎝cos α

2 + i sin α
2 cos � i sin α

2 sin �

i sin α
2 sin � cos α

2 − i sin α
2 cos �

⎞
⎠,

(26)

where

α

2
≡ 1

2
φ(1 − cos θ )

√
1 +

(
η

k

ω

)2

,

� ≡ π − arctan

(
ω

ηk

)
, η ≡ 1 + cos θ

1 − cos θ
. (27)

C. Particle current

With the evolution matrix, we can derive the time evolution
of the particle number difference between two condensates

�N (τ ) ≡ N2(τ ) − N1(τ )

N1(τ ) + N2(τ )
= N2(τ ) − N1(τ ). (28)

Note that we have normalized the total particle number to
unity.

We start with, for example, the initial state

|ψ (τ = 0)〉 =

⎛
⎜⎝

1√
2
χn+

1√
2
χz+

⎞
⎟⎠ = ∣∣�(0)

+2(φ = 0)
〉
. (29)
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Then, the state after evolution is

|ψ (τ )〉 = U21(φ)
∣∣�(0)

+1(φ)
〉 + U22(φ)

∣∣�(0)
+2(φ)

〉

=

⎛
⎜⎝

1√
2
χn+

(−i sin α
2 sin � + cos α

2 −i sin α
2 cos �

)
e−iφ√

2
χz+

(
i sin α

2 sin � + cos α
2 −i sin α

2 cos �
)

⎞
⎟⎠,

(30)

where φ = ωτ .
Therefore, one can calculate the particle number difference

after an arbitrary evolution

�N = − sin 2� sin2 α

2

= sin

[
2 arctan

(
ω

ηk

)]

× sin2

⎛
⎝1

2
ω(1 − cos θ )

√
1 +

(
η

k

ω

)2

τ

⎞
⎠, (31)

which, in terms of the original dimensionful variables (�, t ,
and K), is

�N (t ) = sin

[
2 arctan

(
h̄�

ηK

)]

× sin2

⎛
⎝1

2
(1 − cos θ )

√
1 +

(
ηK

h̄�

)2

�t

⎞
⎠. (32)

D. Discussion

From Eq. (31), the maximum particle difference is given
by

�Nmax = sin

{
2 arctan

(
ω

k

1 − cos θ

1 + cos θ

)}
. (33)

The maximum value of the amplitude of �N can be reached
if

2 arctan

(
ω

k

1 − cos θ

1 + cos θ

)
= π

2
. (34)

Besides, one can consider the limit case for which ηk/ω 

1. In this case, we have

�N � 2η
k

ω
sin2

(
1

2
ω(1 − cos θ )τ

)

= 2

(
1 + cos θ

1 − cos θ

)
K

h̄�
sin2

(
1

2
(1 − cos θ )�t

)
. (35)

The particle current is given by the time derivative of �N :

J ≡ ∂t�N

= K

h̄
(1 + cos θ ) sin[(1 − cos θ )�t]

∝ sin [(1 − cos θ )�t]. (36)

On the other hand, consider a spin-1 particle in the presence
of a rotating magnetic field B1(t ) = Bn(t ) (having already
appeared in Sec. II). Just like our BJJ system, we assume that

FIG. 2. J − θ relation of Eq. (40) given N = 1, where Jmax is
given by Eq. (36).

the spin stays in its sz = +1 eigenstate

χn+ =

⎛
⎜⎜⎝

1
2 (1 + cos θ )e−iφ

1√
2

sin θ

1
2 (1 − cos θ )eiφ

⎞
⎟⎟⎠. (37)

So we can calculate its corresponding (Abelian) Berry con-
nection [42]

Aφ = i〈χn+|∂φ|χn+〉 = cos θ (38)

and the Berry phase accumulated after one cycle’s adiabatic
evolution

γ =
∮
C

dr · A(r) =
∫ 2π

0
dφ Aφ = 2π cos θ. (39)

Now, we have an intuitive interpretation for Eq. (36). After
exactly N cycles’ evolution, the “current” (i.e., the derivative
of particle number) J is proportional to

J ∝ sin [2Nπ (1 − cos θ )] = sin (−N · 2π cos θ ). (40)

So the current is proportional to the sine of phase difference
of the BJJ system, as is shown in Fig. 2. The change of
phase difference comes from the collective adiabatic rotation
of spins in the left side of the BJJ (the minus sign arises
because the phase difference is defined as the phase of the
right side minus the left side and spins living on the right
do not change their phase). This coincides with the intuitive
argument given in Sec. I. Besides, from Eqs. (32), (35), and
(36) one may notice that the oscillation of �N and J has no
dependence on the value of the external magnetic field. This
can also be explained by the fact that the value of geometrical
phase does not depend on the strength of external field, but on
the area enclosed by the closed loop in parameter space.

Based on this intuitive argument, we propose a scheme
to independently vary the magnetic fields on two traps. By
introducing a geometrical phase difference, we can induce
the particle current without the need for a static field on the
right side. Instead, we rotate the field on the right side at a
different polar angle. This can be achieved in two steps, as
illustrated in Fig. 3(a). First, we generate a field gradient along
the system to provide static, opposite Bz components to atoms
on different sides. Then, we uniformly apply a circularly po-
larized beam, resulting in both sides having the same rotating
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(a) Obtaining rotating field by treating two components
separately.

(b) Particle current obtained by numerical calculation.
Parameter setting:

FIG. 3. Compared to the schematic demonstration in Fig. 1, here
we propose an experimentally feasible method to independently tune
magnetic fields in two traps.

Bx/By components. This scheme has been verified through
straightforward numerical calculations [see Fig. 3(b)], which
also demonstrate its ability to produce current. By treating the
static and rotating components separately, this scheme may be
more applicable in experimental settings.

IV. HIGH-FREQUENCY LIMIT

A. Floquet Hamiltonian and particle current

In this section we shall consider the high-frequency limit,
where the frequency ω � 1 is much larger than the Zeeman
energy. In that case, the time-averaged property of the sys-
tem is captured by a stroboscopic time-independent Floquet
Hamiltonian HF [τ0], defined via the evolution operator in one
period [47]

U (τ0 + T, τ0) = T exp

(
−i

∫ τ0+T

τ0

dt H(t )

)
≡ exp (−iHF [τ0]T ), (41)

where H(t ) is the original time-dependent Hamiltonian and T
denotes the time ordering. By definition, the form of HF [τ0]
depends on our choice of τ0, which is the beginning of the
stroboscopic period. This is called the Floquet gauge choice.
In what follows, we may simply fix this gauge by setting τ0 =
0 and hence omit its symbol.

Once the frequency ω � 1 is sufficiently large, we can find
the approximate form of HF systematically by expanding it
as a series of 1/ω, which is known as the Magnus expansion
[47]:

HF =
∞∑

n=0

H(n)
F , H(n)

F ∼ O(ω−n). (42)

A few leading-order terms of the expansion (with the gauge
choice τ0 = 0) are given by

H(0)
F = H0,

H(1)
F = 1

ω

∞∑
l=1

1

l
([Hl ,H−l ] − [Hl ,H0] + [H−l ,H0]),

· · · , (43)

where Hl is the Fourier transformation of H(τ ):

H(τ ) =
∑

l

Hl e
ilωτ ↔ Hl = 1

T

∫ T

0
dτ e−ilωτH(τ ). (44)

In this system, we have

H(τ ) =
(−s · n(τ ) −k

−k −sz

)
,

n(τ ) = (sin θ cos ωτ, sin θ sin ωτ, cos θ )T . (45)

Thus

H(0)
F = 1

T

∫ T

0
dτ H(τ ) =

(−sz cos θ −k
−k −sz

)
. (46)

The upper left element is changed from −s · n to −sz cos θ .
Heuristically, this new term denotes the average Zeeman en-
ergy felt by particles when the frequency is infinitely large.

In fact, H(0)
F is sufficient to describe the high-frequency

property of the system, so there is no need to calculate higher
order terms. Figure 4 shows the predicted particle number
difference together with numerical result. The agreement of
these two curves implies that the zeroth-order term in Magnus
expansion is enough for quantitative discussions.

The argument above only relies on the absolute value of
ω. Thus HF (and hence the dynamical evolution) will not
change if we reverse the rotation of magnetic field (ω → −ω).
This is completely different from the low-frequency case in
which �N flips sign when the rotation is reversed, as Eq. (31)
implies.

Clearly, a change of basis

� =
(

�1

�2

)
, �i =

⎛
⎝�i,+

�i,0

�i,−

⎞
⎠ (i = 1, 2)

⇒ �̃ =
⎛
⎝�+

�0

�−

⎞
⎠, �σ =

(
�1,σ

�2,σ

)
(σ = +, 0,−) (47)

024508-6



GEOMETRIC PHASE DRIVEN JOSEPHSON JUNCTION: … PHYSICAL REVIEW B 109, 024508 (2024)

FIG. 4. Numerical result in high-frequency limit with
theoretical prediction using zeroth-order Floquet Hamiltonian.
Parameter setting: (k, ω, θ ) = (10−2, 300, π/3), �+ =
(1/

√
2)(1, 1)T , and �0 = �− = 0.

renders the Floquet Hamiltonian block diagonal:

HF = diag(HF,+, HF,0, HF,−),

HF,+ = −
(

cos θ k
k 1

)
, HF,0 = −

(
0 k
k 0

)
,

HF,− = −
(− cos θ k

k −1

)
. (48)

Thus we conclude that, in the high-frequency limit, the dy-
namics of three spin degrees of freedom (labeled by σ =
+1, 0,−1) are decoupled. As a result, one may study these
three Hamiltonians separately.

B. Discussion

The dynamical evolution of three internal states are gov-
erned by three 2 × 2 matrices:

HF,+ = −HF,−
= − 1

2 (1 + cos θ ) − kσx + 1
2 (1 − cos θ )σz, (49)

HF,0 = −kσx, (50)

and the corresponding frequencies of oscillation are then
given by Bohr frequencies

ω+ = ω− = 2
√

1
4 (1 − cos θ )2 + k2, ω0 = 2k, (51)

namely (in terms of dimensionful frequencies given by ωτ →
�t)

�+ = �− = 1

h̄

√
[gμBB(1 − cos θ )]2 + (2K )2,

�0 = 2K

h̄
. (52)

Notice that frequencies from sz = ±1 are identical. In prac-
tice, one may distinguish the oscillation of these two levels by

FIG. 5. Fourier transformation of �N (τ ). The color indicates the
intensity of the Fourier component �N (ωFourier ) and ω represents
the rotation frequency of the external magnetic field. Parame-
ter setting: (k, θ ) = (10−2, π/5). Initial condition [cf. Eq. (29)]:
(1/

√
2)(χn+, χz+).

adding a small energy difference. For example,

H(τ ) =
(−s · n(τ ) −k

−k −sz

)

→ H′(τ ) =
(−s · n(τ ) + δ −k

−k −sz − δ

)
(53)

and frequencies become

ω′
+ = 2

√[
1
2 (1 − cos θ ) + δ

]2 + k2,

ω′
0 = 2

√
δ2 + k2,

ω′
− = 2

√[
1
2 (1 − cos θ ) − δ

]2 + k2, (54)

which are three distinct values. Presently, we do not clearly
understand the system’s behavior when frequency ω is nei-
ther too low nor too high. In that case, it turns out that the
oscillation behavior of �N is no longer periodic. This can be
seen from the numeric Fourier transformation of �N (τ ), as is
shown in Fig. 5. One can observe sharp peak(s) of the Fourier
spectrum, provided that ω 
 1 or ω � 1. On the contrary,
when ω ∼ O(1) the spectrum is continuous, signaling the
nonperiodicity.

This nonperiodicity may be explained in terms of higher-
order terms of the Magnus expansion. To see this, notice
that the characteristic oscillation frequencies of different ex-
pansion terms are, in general, different. For instance, by
employing Eqs. (43), (44), and (45), we can calculate the
first-order correction of the Floquet Hamiltonian

H(1)
F = 1

ω

⎛
⎝− sin θ

(
sx cos θ + 1

2 sz sin θ
)

iksy sin θ

−iksy sin θ 0

⎞
⎠. (55)

The eigenvalue of H(1)
F is{

0, ±k sin θ

ω
, ± sin θ

2
√

2ω

√
5 + 3 cos 2θ + 8k2

}
, (56)
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so its characteristic frequency is indeed different from that of
H(0)

F . When ω is in a high-frequency regime (i.e., ω � 1),
the contribution from H(1)

F is suppressed by a factor of or-
der 1/ω. When ω becomes lower, this contribution becomes
significant, yielding peaks with different frequencies. Clearly,
this argument can be generalized to higher-order terms: more
and more frequencies become significant and the oscillation
becomes nonperiodic at last.

V. EFFECT OF SELF-INTERACTION

In this section we discuss the effect of weak self-interaction
to our results. To estimate the interaction strength, in this sec-
tion we normalize the macroscopic wave function and �1/2,
such that ∫

d3r �†(r, t )�(r, t ) = Ntot,

�
†
1�1 = N1, �

†
2�2 = N2, (57)

where Ntot is the total particle number and N1/2 is the particle
number on the left/right side. The effect of interaction can
be encapsulated in nonlinear terms [36] of the time-dependent
GPE:

ih̄∂t� =
(

− h̄2

2m
∇2 + Vext (r) − gμBs · B(r, t )

)
�

+ α|�|2� + β(�†s�) · s�, (58)

where α and β denote the strength of spin-independent and
spin-dependent interactions [50,51], respectively. To sim-
plify the question, we use the same two-mode approximation
[Eq. (3)], which yields

i∂τ�1 = −s · n(τ )�1 − k�2 + uN1�1 + vs1 · s�1,

i∂τ�2 = −k�1 − sz�2 + uN2�2 + vs2 · s�2, (59)

with the definition

u ≡ 1

gμBB
α

∫
d3rφ4

i , v ≡ 1

gμBB
β

∫
d3rφ4

i ,

si ≡ �
†
i s�i (i = 1, 2). (60)

Notice that we have assumed that the shape of φ1 and φ2 are
identical, for simplicity.

To begin with, we argue that the effect of spin-dependent
interaction is similar to that of the spin-independent one. No-
tice that �i is always proportional to the s · n = +1 eigenstate
along one particular axis n. Then, one can rotate the axis such
that ez // n. In that case, we have sz�i = �i and

sz,i = �
†
i sz�i = �

†
i �i = Ni, sx,i = sy,i = 0, (61)

which further yield

vsi · s�i = v�
†
i s�i · s�i

= vsz,isz�i = vNi�i. (62)

Therefore, the spin-dependent interaction term behaves like
the spin-independent one. Intuitively, this is because all the
atoms share the same spin wave function in one trap and
the spin cannot be changed by the mean field of itself.
In fact, from numerical results as shown in Figs. 6(a) and

(a) Spin-independent interaction

(b) Constant ΔE

(c) Spin-dependent interaction

FIG. 6. Time evolution of �N with self-interaction or constant
�E in low-frequency regime. Parameter setting: (k, ω, θ ) = [5 ×
10−4, 10−2, arccos(1/3)].

6(c), the time evolution of �N in the presence of spin-
dependent or spin-independent interactions are identical. Thus
it suffices to consider spin-independent interactions. In the
following discussions, we exclusively focus on the impact
of weak self-interactions. Fortunately, the strength of these
self-interactions can be adjusted through Feshbach resonance
[52–55]. Consequently, a weak self-interaction, on one hand,
can stabilize the superfluid phase [48,56]; on the other hand, it
will not compromise the qualitative features elucidated in our
proposal.
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First, we discuss interaction effect in the low-frequency
limit. Since we only care about the time evolution of particle
numbers, we may consider an equivalent set of equations

i∂τ�1 = −s · n(τ )�1 − k�2 + (uN1 − uN2)�1

= [−s · n(τ ) − uNtot�N]�1 − k�2,

i∂τ�2 = −k�1 − sz�2, (63)

which can be done by taking substitution

� → exp

(
−i

∫ τ

uN2(λ)dλ

)
�. (64)

Since the interaction strength is small, the �N term in Eq. (63)
can be substituted by �N (0) (the particle number difference
in absence of self-interaction). Thus the interaction effect is
equivalent to an asymmetric double-well potential with the
difference of ground state energy to be �E = E1 − E2 =
u�N (0).

To roughly discuss the effect of a time-dependent energy
difference �E = u�N (0)(τ ), let us consider a simplified case:
a constant �E > 0

i∂τ�1 = [−s · n(τ ) − �E ]�1 − k�2,

i∂τ�2 = −k�1 − sz�2. (65)

In the low-frequency regime, by following the same treat-
ment in Sec. III, we get the (approximate) particle number
difference

�N � sin

[
2 arctan

(
ω

ηk
(1 + �)

)]

× sin2

⎛
⎝1

2
ω(1 − cos θ )

√
1 +

(
ηk

ω
(1 − �)

)2

τ

⎞
⎠,

(66)

where

� ≡ ω(1 − cos θ )�E

k2(1 + cos θ )2
> 0. (67)

Comparing the equation above with Eq. (31), we find that
a positive energy difference leads to the increase of period.
Consider a system with k 
 ω. In that case, one can neglect
the tunneling term in one period of adiabatic rotation and two
spinors (�1/2) would keep being parallel to local magnetic
fields. Intuitively, after one period, the �E term should lead to
a dynamical phase ei�ET on the left side, which decreases the
phase difference of the junction and hence inhibits the current.
The effect of self-interaction and constant energy difference
can be calculated numerically. As is shown in Figs. 6(a)
and 6(b), both additions lead to an increase of period, as
expected. Clearly, the presence of interaction does not bring
about any qualitative change.

To estimate the strength of the weak interaction, we
consider the geometrical and dynamical phases accumu-
lated in one period. The geometrical phase is roughly γg =
2π cos θ ∼ O(1) and the dynamical phase difference is
�γd ∼ uNtot�NT � uNtotT ∼ uNtot/ω (and �γd � vNtot/ω

for spin-dependent interaction). As a result, to obtain a
weak interaction, one should require that �γd 
 γg, namely
uNtot 
 ω. Our argument breaks down if parameters do not

(a) Spin-independent interaction

(b) Spin-dependent interaction

FIG. 7. �N (τ ) with larger interaction. Parameter setting:
(k, ω, θ ) = [5 × 10−4, 10−2, arccos(1/3)].

satisfy the above condition. In that case, the interaction may
not only modify the phase difference, but also significantly
change the amplitude of �N (τ ), which could become anhar-
monic due to the nonlinearity as shown in Figs. 7(a) and 7(b).

The interaction strength α and β can be tuned by the
method of Feshbach resonance [52,57]. Using optically in-
duced Feshbach resonance [55,58–60], the scattering length
as can be modified from 10a0 to 190a0 (a0 is the Bohr radius).
Noticing that α and β have the magnitude of 4π h̄2as/m [61],
we can estimate the magnitude of interaction energy. Con-
sider a 1D optical trap potential V (x) = V0 cos(2kx) confining
Ntot ∼ 103 87Rb atoms, with typical value V0 ∼ 300 Hz and
λ = 2π/k ∼ 10 µm. In that case, the typical length of spatial
wave function at the bottom of the potential is ξ ∼ 0.7 µm.
Hence the interaction energy is of the magnitude of

4π h̄2as

m

Ntot

ξ 3
� 4π h̄210a0

m

Ntot

ξ 3
∼ 10−11 eV. (68)

Comparing this with the typical magnitude [61] of Zeeman
energy (∼10−6 eV), we find that uNtot and vNtot have the order
of 10−5. Thus, to ensure that the interaction is weak in the low-
frequency regime, one should set the rotation frequency of
field to be of order ω ∼ 10−3–10−2, namely � ∼ 105–106 Hz.

In the high-frequency limit, Eq. (63) is still valid, and
one can still substitute �N by its unperturbed value �N (0).
On the other hand, �N (0) oscillates with frequency given
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(a) Λ+ = (1/
√

2)(1, 1)T , Λ0 = Λ− = 0

(b) Λ+ = (1/
√

2)(1,−1)T , Λ0 = Λ− = 0

FIG. 8. Time evolution of �N with/without self-interaction
in high-frequency regime. Parameter setting: (k, ω, θ ) =
(10−2, 300, π/3).

by Eq. (51). Thus it remains almost a constant when taking
time average over a period T ∼ 1/ω. Therefore, the net con-
tribution of the interaction term in Eq. (63) to the Floquet
Hamiltonian is a small (time-dependent) energy difference
δ = −uNtot�N (0)/2, as shown in Eq. (53). Thus the most sig-
nificant effect of weak interaction is to modify the oscillation
frequency of �N as shown in Eq. (54).

For oscillations with definite sign of �N (0), we expect that
the interaction would have the same qualitative effect as that
of Eq. (54). Figure 8 shows such kind of oscillation of �+
components with different initial conditions. For Fig. 8(a),
�N (0) is positive, so effectively we have a negative energy
difference δ. According to Eq. (54), the oscillation frequency
(ω+) decreases as expected. On the contrary, for Fig. 8(b),
�N (0) is negative and δ is positive, which then increases the
oscillation frequency.

VI. SUMMARY

We have investigated the particle current in a system com-
posed of spin-1 bosons within a BJJ framework. Our findings
suggest that the presence of a rotating magnetic field induces
an oscillation in the particle number difference, observable in
both low- and high-frequency limits. This oscillation results
in a population imbalance, with the potential to achieve max-
imum bias through the adjustment of specific parameters. In

the low-frequency limit, the system’s dynamics can be com-
prehended by applying the adiabatic theorem. Furthermore,
by taking a proper limit in that case, the particle current can
be intuitively explained as an interplay between the Abelian
Berry phase and the Josephson effect. In the high-frequency
limit, the stroboscopic behavior of the current is encapsulated
in the Floquet Hamiltonian, which, in our system, is simply
the time average of the original time-dependent Hamiltonian.
Additionally, we have also explored the impact of weak self-
interactions, which only quantitatively affect the oscillation
frequency. We remark that our proposed scheme is intrinsi-
cally different from the previous reported BJJ setup [36,62–
66] and may be straightforwardly generalized for detecting
other types of charge neutral condensates, such as the exciton
superfluids [67–71].
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APPENDIX A: GENERALIZATION OF THE
NONDEGENERATE ADIABATIC THEOREM

We now present a proof of the generalized adiabatic
theorem. As is discussed in Sec. III, we consider an “al-
most” degenerate system with Hamiltonian H = H(λ(τ ))
and instantaneous eigenstates are denoted as |ni[λ = λ(τ )]〉.
We will continue to use Greek and Latin subscripts to
distinguish eigenstates with different zeroth-order energies.
However, we use Latin indices starting from i (e.g., i, j,
k) to denote a generic instantaneous eigenstate. The state of
a system, |ψ (τ )〉, satisfies the time-dependent Schrödinger
equation (with h̄ set to 1)

i
d

dτ
|ψ (τ )〉 = H(λ(τ ))|ψ (τ )〉. (A1)

If one starts with

|ψμ(τ = 0)〉 ≡ |nμ(λ(τ = 0))〉, (A2)

at time τ we have the expansion

|ψμ(τ )〉 =
∑

ν

Uμν (τ )|nν (λ(τ ))〉 +
∑

a

Uμa(τ )|na(λ(τ ))〉,
(A3)

with initial condition Uμ j = δμ j . Substituting it to Eq. (A1),
we have

i
∑

ν

(U̇μν |nν〉 + Uμν |ṅν〉) + i
∑

a

(U̇μa|na〉 + Uμa|ṅa〉)

=
∑

ν

UμνEν |nν〉 +
∑

a

UμaEa|na〉. (A4)
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We want to show that Uμa’s are suppressed in the adiabatic
limit. Taking overlap with 〈na| and rearranging, we have

U̇μa = −iUμaEa −
∑

ν

Uμν〈na|ṅν〉 −
∑

b

Uμb〈nb|ṅa〉, (A5)

where we have used the orthogonality of |ni〉’s. From initial
conditions we know that Uμa = 0, so the first and third terms
have been suppressed already. We only need to show that
terms like

Uμν〈na|ṅν〉 (A6)

are also suppressed. However, this can be done by noticing
that

〈na| d

dτ
(Hnμ)〉 = 〈na| d

dτ
(Eμnμ)〉 = Eμ〈na|ṅμ〉

= 〈na|Ḣ |nμ〉 + 〈na|H |ṅμ〉
= 〈na|Ḣ |nμ〉 + Ea〈na|ṅμ〉

⇒ 〈na|ṅμ〉 = 1

Eμ − Ea
〈na|Ḣ |nμ〉. (A7)

Thus terms in Eq. (A6) can be suppressed as long as

〈na|ṅν〉 = 1

Eν − Ea
〈na|Ḣ |nν〉 
 1. (A8)

Since |nν〉 and |na〉 have different zeroth-order energies, one
can equally require that the inverse of characteristic time of
Hamiltonian is small compared with the zeroth-order energy
spacing, which completes the proof.

APPENDIX B: GAUGE INVARIANCE

To complete the argument in Sec. III, one still needs to
show that the results derived are independent of the set of
instantaneous eigenstates we choose. That is, upon a gauge
transformation |n′

a(φ)〉 = �ab(φ)|nb(φ)〉 (with � a unitary
transformation), the value of N1 and N2 calculated from
Eq. (31) should be invariant. Strictly speaking, the spectrum of
Hamiltonian is nondegenerate, though the gap is rather small.
Therefore, the � matrix has to be diagonal:

� =
(

e−iθa

e−iθb

)
, (B1)

where θa and θb are functions of φ such that e−iθx |φ=φ0+2π =
e−iθx |φ=φ0 (x = a, b).

Upon gauge transformations, the non-Abelian Berry con-
nection becomes

Aφ → = �Aφ�† + i∂φ� · �†

= �

⎛
⎜⎜⎜⎝Aφ +

(
∂φθa

∂φθb

)
︸ ︷︷ ︸

≡S

⎞
⎟⎟⎟⎠�†, (B2)

where we have introduced S just for conciseness. Accordingly,
the differential equation for the U matrix [Eq. (25)] becomes

(U †)′ = −i

(
Aφ − |z|

ω
σ3︸ ︷︷ ︸

≡Q

)
U †

→ (Ũ †)′ = −i

[
�(Aφ + S)�† − |z|

ω
σ3

]
Ũ †

= −i
[
�(Q + S)�†

]
Ũ †, (B3)

with the initial condition Ũ †(φ = 0) = Ũ (φ = 0) = 1. Note
that � and S are functions of φ rather than constants.

In fact, with �′ = −iS� = −i�S, which can be easily
checked, one can verify that

[�(φ)U †(φ)�†(0)]′

= −i�(φ)S(φ)U †(φ)�†(0) + �(φ)[−iQU †(φ)]�†(0)

= −i�(φ)[Q + S(φ)]U †(φ)�†(0)

= −i{�(φ)[Q + S(φ)]�†(φ)}[�(φ)U †(φ)�†(0)], (B4)

which implies that

U †(φ) → Ũ †(φ) = �(φ)U †(φ)�†(0)

⇔ U (φ) → Ũ (φ) = �(0)U (φ)�†(φ) (B5)

by the uniqueness of solution to the differential equation (B3).
On the other hand, the coefficients for the linear combina-

tion of state kets also change under the gauge transformation.
In fact, noticing that

|ψ (0)〉 = ca(0)|na[φ(τ = 0)]〉 + cb(0)|nb[φ(τ = 0)]〉
= ca(0)eiθa (0)e−iθa (0)|na[φ(τ = 0)]〉

+ cb(0)eiθb(0)e−iθb(0)|nb[φ(τ = 0)]〉 (B6)

implies that

[ca(0), cb(0)]

→ [ca(0)eiθa (0), cb(0)eiθb(0)] = [ca(0), cb(0)]�†(0). (B7)

Thus, after evolution, these coefficients become

[c̃a(τ ), c̃b(τ )] = [ca(0), cb(0)]�†(0) · �(0)U (φ)�†(φ)

= [ca(0), cb(0)]U (φ)�†(φ)

= [ca(τ ), cb(τ )]�†(φ)

= [ca(τ )eiθa , cb(τ )eiθb]. (B8)

Therefore, the state ket (at time τ ) calculated through our
method

|ψ̃ (τ )〉 = c̃a(τ )e−iθa |na(φ)〉 + c̃b(τ )e−iθb |nb(φ)〉
= ca(τ )|na(φ)〉 + cb(τ )|nb(φ)〉 = |ψ (τ )〉 (B9)

is a gauge invariant, which also implies that quan-
tities which can be calculated directly through
|ψ (τ )〉 (such as N1, N2, and �N) are all gauge
invariants.
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