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We study the ground state of the doped Hubbard model on honeycomb lattice with both nearest (t) and next-
nearest-neighbor hoppings (t ′) in the small doping and strongly interacting region. Previous study on the model
without t ′ showed the ground state is a half-filled stripe. We employ density matrix renormalization group and
extrapolate the results with truncation errors in the converged region. In the t ′ < 0 side, we find the half-filled
stripe phase at t ′ = 0 is stable against the frustration of t ′ until a critical point −0.4 < t ′

c < −0.3, beyond which
the ground state switches to antiferromagnetic Néel phase with charge modulation. With further increase of t ′

to −0.7, the ground state becomes paramagnetic. In the t ′ > 0 side, the half-filled stripe stretches to t ′ ≈ 0.7.
We do not find obvious enhancement of pairing for the range of t ′ studied. We study width-4 cylinders in this
paper but the results for spin, charge, and pairing correlation agree qualitatively for periodic and antiperiodic
boundary conditions in the half-filled stripe and antiferromagnetic Néel phases, suggesting the results are likely
to be representative for true two-dimensional systems. The half-filled stripe to antiferromagnetic Néel phase
transition can be realized on real materials or ultracold atom platform.
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I. INTRODUCTION

Understanding the physics of doped Mott insulators is
crucial to reveal the microscopic mechanism of high-Tc su-
perconductivity [1]. Hubbard model and its descendant, i.e.,
t − J model, are the prototype models to study Mott-related
physics [2–5]. With a simple form, Hubbard model can host
many exotic quantum states [2–5].

Recently, progresses have been made in the study of the
doped Hubbard model on the square lattice [6]. Collabo-
ration of state-of-the-art numerical methods [7] established
the filled-stripe phase in the doped Hubbard model. It
was also found that the “pure” Hubbard model (with only
nearest-neighbor hoppings) on square lattice does not host
superconductivity in its ground state [8].

The Hubbard model on honeycomb lattice [9] has also
been extensively studied, partly due to the interests in the
correlation-driven metal-insulator transition and the con-
nection to graphene [10,11]. Similar to the square lattice,
honeycomb lattice is bipartite, and the half-filled Hubbard
model on honeycomb lattice is also a Mott insulator with anti-
ferromagnetic (AF) Néel order at strong interactions [11,12].
These similarities make honeycomb lattice another play-
ground to study Mott-related physics and to explore possible
mechanisms of high-Tc superconductivity. Recent calculation
showed the ground state of the slightly doped Hubbard model
on honeycomb lattice also has stripe order similar as the
square-lattice case [13,14]. The difference between them is
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that the filling of stripe on honeycomb lattice is 1/2 [13,14].
This finding was also confirmed by followed calculations
[15,16].

Given that superconductivity is absent in the pure
Hubbard model on the square lattice [8], other terms need
to be included in the Hamiltonian to search for the possible
superconducting ground state. The simplest term is the next-
nearest-neighbor hoppings t ′. To account for the particle-hole
asymmetry of the phase diagram of cuprates [3], a nonzero
t ′ term is needed in the framework of single band Hubbard
model. Recent calculation for the t ′-Hubbard model on square
lattice showed superconductivity indeed emerges with the in-
clusion of t ′ [17]. It is argued that t ′ frustrates the stripe phase
and helps the pairs across the stripes to build coherence, so the
long-range superconducting order emerges [17].

The inclusion of t ′ term in the Hubbard model on hon-
eycomb lattice also frustrates the Néel order. Actually, the
strong-coupling limit of the Hubbard model with t ′ at half-
filling, i.e., J1 − J2 Heisenberg model on honeycomb lattice,
has a rich phase diagram [19,20]. It was shown that there is
an AF Néel phase on the small J2 side (J2�0.2J1) [21,22],
and a staggered valence-bond solid phase on the large J2 side
(J2�0.4J1) [23,24]. In the intermediate region, the frustrated
exchange melts the AF Néel state and results in competing
phases including various quantum spin liquids and plaquette
valence bond solid state [19,20]. Based on these results, it is
natural to ask whether superconductivity can be also enhanced
by t ′ for the Hubbard model on the honeycomb lattice.

In this paper, we systematically study the ground-state
properties of the doped Hubbard model with both t and t ′
on honeycomb lattice in the strong interacting and slight
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FIG. 1. (a) Sketch of the honeycomb lattice, which is rearranged
into a square lattice in (b). Blue and red dots represent two in-
equivalent sublattices, respectively. Bonds along different directions
are distinguished with colors and are labeled as A, B, and C. The
two arrows in (a) are the primitive vectors of the Bravais lat-
tice. The C bond in the dashed oval in (b) is the reference bond
when calculating the pair-pair correlation function. We also vary the
position of the reference C bond when calculating pair-pair corre-
lations to analyze the boundary effect (details can be found in the
Supplemental Material [18]). Black dashed lines in (a) and (b) rep-
resent the next-nearest-neighbor hopping t ′ on honeycomb and the
corresponding square lattices, which connect sites within the same
sublattices in the hexagon in (a) and corresponding plaquette in
(b). Periodic/antiperiodic (open) boundary conditions are imposed
for the vertical (horizontal) direction. (c) shows a phase diagram
based on the DMRG results in Figs. 2 and 3, in which t ′

c(−0.4 <

t ′
c < −0.3) denotes the critical point of the phase transition between

half-filled stripe and AF Néel phases.

doping region. We employ density matrix renormalization
group (DMRG) [25,26], which can provide accurate results
for narrow cylinders [27,28]. We study the evolution of the
ground state with t ′ in both positive and negative sides. The
noninteracting dispersion can be found in the Supplemental
Material [18]. At the negative t ′ side, we find the half-filled
stripe state, previously found in the absence of t ′ [13,14],
is stable against the frustration of t ′ until a critical point t ′

c
between −0.3 and −0.4, at which a phase transition from
half-filled stripe to AF Néel phase with charge modulation
occurs. With the further increase of t ′ to about −0.7, the
ground state becomes paramagnetic and the charge modula-
tion disappears. At the positive t ′ side, the half-filled stripe
stretches to t ′ ≈ 0.7. We also analyze the long-range behavior
of the pair-pair correlation functions. We do not find obvious
enhancement of pairing for the range of t ′ studied. The phase
diagram based on DMRG results are shown in Fig. 1(c).

The ground state of the t ′-Hubbard model on square lattice
is found to be very sensitive to the boundary conditions and
widths of the studied systems, indicating the presence of large
finite-size effect [17]. To evaluate the finite-size effect in the
width-4 systems studied, we compare the results with periodic
(PBC) and antiperiodic (APBC) boundary conditions. The
spin, charge, and pairing properties turn out to be insensi-
tive to the boundary conditions in the half-filled stripe and
AF Néel phases, indicating the results we obtained in this
paper are likely to be representative of true two-dimensional
systems.

II. MODEL AND METHOD

The Hamiltonian of the Hubbard model is

Ĥ = −
∑

(i, j),σ

ti j (ĉ
†
iσ ĉ jσ + H.c.) + U

∑

i

n̂i↑n̂i↓ (1)

where ĉ†
iσ (ĉiσ ) creates (annihilates) an electron on site i =

(xi, yi ) with spin σ , and U represents the on-site Coulomb
interaction. We consider electron hopping terms up to next-
nearest neighbors (t ′) and set the nearest-neighbor hopping t
as energy unit. We focus on U = 8 in this paper. We scan a
range of t ′ from −0.7 to 0.7. We only study the hole-doped
case. The electron-doped case can be transformed to the hole-
doped case by reversing the sign of t ′ through a particle-hole
transformation. The averaged hole concentration away from
half-filling is defined as δ = Nh/N with Nh = ∑

i(1 − ni ). An
illustration of the honeycomb lattice is sketched in Fig. 1(a).
We rearrange it into a square lattice as shown in Fig. 1(b) to
index the sites more conveniently. After the rearrangement,
we study the square system with cylinder geometry, i.e., with
periodic/antiperiodic (open) boundary conditions along y (x)
direction. There are totally N = Lx × Ly lattice sites. We com-
pare the results with PBC and APBC in our calculations to test
the finite-size effect.

We employ DMRG [25,26] in this paper, which can pro-
vide accurate results of narrow cylinders [27,28]. We focus
on 1/16 hole-doping regime in which half-filled stripe was
found in the model without t ′ before [13,14]. We calculate
systems with width Ly = 4 and length Lx = 32. We apply
AF pinning fields with strength hm = 0.5 on the open edges
of the width-4 cylinder, which allows us to detect spin or-
der by measuring the local magnetization 〈Ŝz

i 〉 instead of the
more demanding spin-spin correlation functions and makes
the DMRG calculations easier to converge [30]. To char-
acterize the charge and spin order, we define rung charge
density as n(x) = ∑Ly

y=1〈n̂i(x, y)〉/Ly along the width direction

of the cylinders and staggered spin density as (−1)i〈Ŝz
i 〉. We

also measure the singlet pair-pair correlation function defined
as D(r) = 〈�̂†

i �̂i+r〉 with �̂
†
i = ĉ†

(i,1),↑ĉ†
(i,2),↓ − ĉ†

(i,1),↓ĉ†
(i,2),↑.

The state kept in the DMRG calculation is as large as m =
11 000 with a typical truncation error ε ≈ 1.5 × 10−5 and
careful extrapolations of DMRG results with truncation errors
are performed in the converged region.

III. CHARGE AND SPIN DENSITIES

In Fig. 2, we show the results for charge and staggered
spin-density profiles for various values of t ′ under PBC (upper
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FIG. 2. Electron density and staggered spin density for positive [(b),(d)] and negative [(a,(c)] t ′ under PBC (upper panel) and APBC (lower
panel). The dashed horizontal lines in (c), (d), (g), and (h) represent zero. We can find a phase transition from half-filled stripe order to AF
Néel order at critical t ′

c between −0.3 and −0.4. The results for spin and charge density agree qualitatively between PBC and APBC in the
half-filled stripe and AF Néel phases. The results are from extrapolation of truncation errors in DMRG except the ±0.7 case and t ′ close to the
phase transition point, for which results for largest bond dimension is shown. See the Supplemental Material [18] for details.

panel) and APBC (lower panel). As mentioned above, we only
study the hole-doped cases and the electron-doped case can be
mapped to the hole-doped case by reversing the sign of t ′ with
a particle-hole transformation.

As shown in Figs. 2(b) and 2(f), in the positive t ′ side, when
t ′ is small, the charge distribution n(x) displays an oscillation
with period λρ = 1/2δ = 8. And the spatial modulation of
staggered spin density has a wavelength twice that of the
charge density with a π phase flip at the hole concentrated
sites [see Figs. 2(d) and 2(h)]. The spin and charge modula-
tions are consistent with the half-filled stripe state found in
the t ′ = 0 case [13,14] [also shown in Fig. 2(a)]. The half-
filled stripe phase terminates at about t ′ = 0.7. When t ′ � 0.7,
there is large discrepancy for the states obtained for PBC and
APBC. The characterization of the phase in this region needs
further investigation on wider systems.

In the negative t ′ side, the half-filled stripe phase at t ′ = 0
stretches to t ′

c ≈ −0.3, beyond which a phase transition oc-
curs. When t ′ < t ′

c, the system switches to an AF Néel phase
with charge modulation as shown in Figs. 2(a), 2(e), 2(c), and
2(g). The charge-modulated Néel phase terminates at about
t ′ = −0.7, beyond which the ground state is paramagnetic
with nearly uniform density.

The results for spin and charge densities agree (quantitative
difference still exists) with PBC and APBC in the half-filled
stripe and AF Néel phases, suggesting the results are likely to
be representative for the true two-dimensional system.

A phase diagram based on these results can be found in
Fig. 1(c).

IV. PAIRING CORRELATION

The singlet pair-pair correlation function D(r) is shown in
Fig. 3 for a series of t ′ values. We plot the absolute value of
D(r) for A, B, and C bonds (see Fig. 1 for the definitions)
under PBC and APBC in the upper and lower panes, respec-

tively. The reference bond is the C bond placed between sites
(8, 2) and (9, 3) [see Fig. 1(b)]. We find that the long-distance
behaviors of pair-pair correlation do not change qualitatively
within the range of t ′. They do not change qualitatively either
under different boundary conditions. There is a tiny oscillation
in the decay of the pair-pair correlations induced by the charge
modulation.

On the square lattice, long-range pairing order emerges
with the inclusion of t ′ [17]. But as shown in Fig. 3, we do
not find obvious enhancement of pairing for the range of t ′
studied. Near the transition point −0.4 < t ′ < −0.3 where
half-filled stripe switches to AF Néel order with charge modu-
lation, the strength of D(r) is actually slightly suppressed. We
have also calculated the spin-triplet pair-pair correlations (see
the results in the Supplement Material [18]) but found they are
much weaker than the singlet pair-pair correlations.

In Fig. 4 we show the relative strengths of the pair-pair
correlation for PBC and APBC with different t ′ values, by
dividing the correlation on A and B bonds with the value on
C bonds, which are connected by the same site. In the stripe
phase (i.e., |t ′| < |t ′

c|), we can find that the relative strength
of pair-pair correlations on A bonds is nearly equal to C
bonds in magnitude but with opposite sign. And the pair-pair
correlations on B bonds are very tiny comparing to the values
on C bonds. Therefore, the pairing order have an approximate
(–1,0,1) sign structure locally, which is one of the degenerate
d-wave representations dxy of D6h symmetry of the honey-
comb lattice [31]. In the AF Néel phase [t ′ = −0.5 results in
Figs. 4(d) and 4(h)], we can not find a clear pattern for the
relative strength of the pairing correlations, which could be
resulted from the finite-size effect.

V. SUMMARY AND PERSPECTIVES

We systematically study the evolution of the half-filled
stripe order with next-nearest-neighbor hopping t ′ on the
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FIG. 3. Absolute value of pair-pair correlation functions of A [(a),(d)], B [(b),(e)], and C [(c),(f)] bonds for different t ′. The upper (lower)
panel denotes results with PBC (APBC). The reference bond is placed at the bond between site (8, 2) and (9, 3) to remove the boundary effect
[29]. Notice that r is measured from the reference bond along the x direction in unit of the lattice constant. The long-distance behaviors of
pair-pair correlation do not change qualitatively within the range of t ′ studied and under different boundary conditions.

slightly doped Hubbard model on honeycomb lattice in the
strongly interacting region. We employ DMRG and study
width-4 cylinders. In the negative t ′ side, the half-filled stripe
phase is stable against the frustration of t ′ until a critical
point −0.4 < t ′

c < −0.3, at which a phase transition from
half-filled stripe to AF Néel phase with charge modulation
occurs. The charge-modulated AF Néel phase terminates at
about t ′ = −0.7. In the positive t ′ side, the half-filled stripe
state stretches to about t ′ = 0.7. Different from the square
lattice case [17], we do not find obvious enhancement of
pairing for the range of t ′ studied. The results with PBC and

APBC agree qualitatively in the half-filled stripe and AF Néel
phases, indicating the results in this work are likely to be
representative for real two-dimensional system. Experimen-
tally, long-range AF Néel order was observed in Na2IrO3

[32] and InCu2/3V1/3O3 [33] in which the contributions are
from the 1/2 spin on a honeycomb lattice. Moreover, Hub-
bard model on honeycomb lattice was also realized on cold
atom platform [34]. It will be interesting to see the real-
ization of the phases and phase transitions found in this
paper in real materials or in ultracold atom platforms in the
future.

FIG. 4. The relative strengths of the pair-pair correlations for bonds connected by the same site. The relative strength is defined by dividing
the correlation on A and B bonds with the value on C bonds, which are connected by the same site, i.e., DA/DC and DB/DC . The upper (lower)
panel denotes results under PBC (APBC) with different t ′. The reference bond is placed at the bond between sites (8, 2) and (9, 3). The dashed
horizontal lines represent 0 and –1. In the half-filled stripe phase [(a)–(c) and (e)–(g)], we can find a (–1, 0, 1) sign structure at long distance,
which is the dxy representation of the D6h symmetry of the honeycomb lattice. In the AF Néel phase [(d) and (h)], we can not find a clear
pattern for the relative strength of the pairing correlations.
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