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Converting a triplet Cooper pair supercurrent into a spin signal
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Superconductivity with spin-polarized Cooper pairs is known to emerge by combining conventional spinless
superconductors with materials that have spin-dependent interactions, such as magnetism and spin-orbit cou-
pling. This enables a dissipationless and conserved flow of spin. However, actually utilizing the spin polarization
of such supercurrents has proven challenging. Here, we predict an experimental signature of current-carrying
triplet Cooper pairs in the form of an induced spin signal. We show that a supercurrent carried only by triplet
Cooper pairs induces a nonlocal magnetization that is controlled by the polarization direction of the triplet
Cooper pairs. This provides a measurement protocol to directly use the spin polarization of the triplet Cooper
pairs in supercurrents to transfer spin information in a dissipationless manner.
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I. INTRODUCTION

Substantial efforts have been made to find evidence of
dissipationless currents carried by spin-polarized Cooper pairs
in superconductors [1,2], also referred to as triplet Cooper
pairs. This includes measurements of how Gilbert damping
is renormalized in Josephson junctions and superconducting
bilayers subject to ferromagnetic resonance [3–8], as well
as long-ranged supercurrent flow through magnetic materials
[9–11]. Spin pumping in ferromagnet/superconductor (FM/S)
hybrid structures [12,13], where triplet pairing will affect the
spin accumulation in the superconductor, has recently been
the subject of increased theoretical interest [14–21].

However, a long-ranged supercurrent through magnetic
materials is in itself not necessarily useful. Supercurrents
through normal metals carried by spinless, singlet Cooper
pairs are also long ranged when flowing through a normal
metal. Thus, to unlock the potential of spin-polarized su-
percurrents with regard to potential cryogenic devices, it is
necessary to find a way to utilize their spin polarization
directly. We here predict that a supercurrent carried by spin-
polarized Cooper pairs induces a nonlocal magnetization.
Both the polarization direction and magnitude of this magne-
tization are directly controlled by the spin degree of freedom
of the triplet Cooper pairs. This shows how spin supercurrents
can be used for low-dissipation information transfer by induc-
ing spin signals.

The supercurrent flow is converted into a nonlocal mag-
netization, occurring in a region where the supercurrent does
not flow, by allowing it to interact with a Rashba spin-orbit
coupled interface. This can be probed in the setup shown in
Fig. 1. We consider the scenario experimentally realized in,
e.g., Refs. [10,11]: a spin-triplet charge supercurrent gener-
ated by a magnetic multilayered structure. In the experiments,
the spin-polarized nature of the Cooper pairs carrying the
current was not directly measured, but rather inferred from
its slow decay as a function of the length of the ferromagnetic
bridge in a Josephson junction. In contrast, we provide a way
to directly convert the spin of the triplet supercurrent into a

spin signal. The induced magnetization M in the normal metal
(N) changes direction depending on the spin polarization of
triplet pairs carrying the supercurrent. Without current, the
nonlocal magnetization vanishes. The induced magnetization
M vanishes for certain spin-polarization directions of the pairs
relative to the Rashba interface normal. The predicted effect
provides a way to directly use the spin polarization of the
triplet Cooper pairs in supercurrents to transfer spin informa-
tion in a dissipationless manner.

II. THEORY

The quasiclassical theory of superconductivity [22–24] is
documented to compare well with experimental results, even
quantitatively, for measurements performed in mesoscopic
superconducting hybrid structures. Our starting point is the
Usadel equation, which can be used in the diffusive limit
of transport where the length scale hierarchy λF � lmfp � ξ

applies, with λF being the Fermi wavelength, lmfp being the
electronic mean free path, and ξ being the superconducting
coherence length. It is effectively an equation of motion for
the Green’s function matrix ǧ in Keldysh space and takes the
form

D∇(ǧ∇ǧ) + i[E ρ̂3 + ĥ + �̂, ǧ] = 0. (1)

Here, D is the diffusion coefficient, E is the quasiparti-
cle energy, ĥ = diag(h · τ, h · τ∗), where h describes the
spin-splitting field, τ is a vector with Pauli matrices as its com-

ponents, ρ̂3 = diag(1, 1,−1,−1), and �̂ = ( 0 iσ y�

−iσ y�
∗ 0 )

describes the effect of the complex superconducting order
parameter �. The quasiclassical Green’s function ǧ is an 8×8
matrix in Keldysh space and thus has retarded, advanced,
and Keldysh components [25]. We have used the spinor basis
[ψ↑(r), ψ↓(r), ψ†

↑(r), ψ†
↓(r)] when defining the Green’s func-

tion matrices. Since we will consider a system in equilibrium,
ǧ is entirely determined by the retarded Green’s function ĝ,
which is a 4×4 matrix in Nambu-spin space. This retarded
Green’s function depends on both the normal Green’s function
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FIG. 1. Sketch of the proposed experimental protocol for con-
verting a supercurrent carried by spin-polarized triplet Cooper pairs
into a nonlocal spin signal. The supercurrent flows in a region under-
neath a thin heavy metal layer. Due to interfacial Rashba spin-orbit
coupling, the triplet pairs induce a magnetization in a normal metal
where no supercurrent is flowing. The induced magnetization de-
pends sensitively on the polarization direction of the triplet pairs.

g, which is a 2×2 matrix in spin space determining spectral
properties such as the density of states, and the anomalous
Green’s function f , which contains information about the su-
perconducting correlations. The appearance of 4×4 matrices
in an equation with 8×8 matrices, such as Eq. (1), should
be understood as a repeated matrix on the diagonal. In ef-
fect, in places where the dimensions of matrices multiplied
together are inconsistent, Kronecker products with the neces-
sary identity matrices are implied for the matrix with the lower
dimensionality.

To solve this equation, it needs to be complemented
by boundary conditions. In our system, we will have
both magnetic and spin-orbit coupled interfaces. For the
magnetic (also referred to as spin-active) interfaces we
have [1,26,27]

ĝL∂zĝL = G0[ĝL, ĝR] + G1[ĝL, m̂ĝRm̂]

+ GMR[ĝL, {ĝR, m̂}] − iGφ[ĝL, m̂]. (2)

Here, m̂ = diag(m · τ, m · τ∗), where m is a unit vector that
describes the interface magnetization, G0 describes the ratio
between the barrier resistance and the normal-state resistance
of material L, GMR describes the magnetoresistance effect
of the interface, and G1 originates from the spin-dependent
transmission probabilities of spin-active interfaces. The con-
ductance parameters G1 and GMR can be written in terms of
the normal-state transmission probability Tn and spin polar-
ization Pn associated with each scattering channel n for the
interface. Here, we assume for simplicity that each scattering
channel has the same polarization P = Pn, in which case one
obtains [1]

G1

G0
= 1 − RP

1 + RP
,

GMR

G0
= P

1 + RP
, (3)

with Rp = √
1 − P2. Finally, Gφ describes the effect of quasi-

particles picking up spin-dependent phase shifts as they
scatter at the interface. The boundary conditions for ĝR are
obtained by interchanging L and R and multiplying the en-
tire right-hand side by −1. For an in-depth discussion and
derivation of these boundary conditions, see Refs. [1,26,27].
We will also need the boundary conditions for a spin-
orbit coupled interface [28,29]. Defining τ‖ = (ρx, 0, ρz ),

these read

DǧR∂yǧR = T 2
0 [ǧL, ǧR] − 2

3 T 2
1 p2

F [ǧR, τ‖ǧLτ‖]

− mDT0T1[ǧR, {τ‖,x, ǧL∂zǧL}]
+ Ddα2[ρx, ǧRρxǧR] + Ddα2[ρz, ǧRρzǧR], (4)

where T0 and T1 are phenomenological interface parameters
describing, respectively, spin-independent tunneling and spin-
flip tunneling induced by the interfacial Rashba spin-orbit
coupling, m is the electron mass, pF is the Fermi momentum,
α quantifies the spin-orbit coupling strength, and d is the
thickness of the spin-orbit coupled interface.

III. OBSERVABLES

Our primary goal is to determine how triplet Cooper pair
supercurrents can induce a magnetization in a normal metal
by scattering on a spin-orbit coupled interface. To do so, we
need the expressions for magnetization and current in quasi-
classical theory. In this section, the quasiclassical expressions
for the magnetization as well as spin and charge currents
are presented. To simplify the analytical study later on, we
also present the observables expressed in the singlet-triplet
decomposition in the weak-proximity-effect regime.

A. Currents

The quasiclassical expression for current can be found by
using the continuity equation ∂tρ + ∇ · j = S, where j is the
current of a quantity, S is any source term present, and ρ is
the density of the quantity such as charge or spin. In a normal
metal, the source term vanishes for the charge current.

For charge, we have that the density can be written as
ρ = e 〈ψ†ρ̂3ψ〉, and for spin the spin density can be written
as 〈ψ† 1

2 ρ̂3τψ〉, where e < 0 is the electron charge and we
set h̄ = 1. By using the Heisenberg equation of motion for
the creation and annihilation operators ψ†, ψ and writing the
expression in terms of the quasiclassical expression we get for
the charge current density [30,31]

J = eN0D

4

∫
dE Tr[ρ̂3(ǧ∇̄ǧ)K ]. (5)

The spin current density is a tensor, with a direction of flow in
real space and a polarization direction in spin space, obtained
by replacing ρ̂3 with 1

2 ρ̂3τ.
As mentioned, we will write the expressions in terms

of the singlet-triplet decomposition terms fs and d: f =
( fs + d · σ )iσy. By linearizing in f̂ , assuming ĝ = ρ̂3 + f̂ ,
and using the relation ĝA = −ρ̂3(ĝR)†ρ̂3 and the fact that in
equilibrium we have ĝK = (ĝR − ĝA) tanh( βE

2 ) we get the fol-
lowing expressions for the current density J and spin current
density Js:

J = J0

∫ ∞

0

dE

�0
ξ tanh

(
βE

2

)
Re([ fs∇ f̃s − dz∇d̃z

− dx∇d̃x − dy∇d̃y] − [ ˜· · ·]), (6)

Jsx = Js0

∫ ∞

0

dE

�0
ξ tanh

(
βE

2

)
Im([dy∇d̃z − dz∇d̃y]+[ ˜· · ·]),

(7)
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Jsy = Js0

∫ ∞

0

dE

�0
ξ tanh

(
βE

2

)
Im([dz∇d̃x − dx∇d̃z]+[ ˜· · ·]),

(8)

Jsz = Js0

∫ ∞

0

dE

�0
ξ tanh

(
βE

2

)
Im([dx∇d̃y − dy∇d̃x]+[ ˜· · ·]),

(9)

where J0 = 2eN0D�0/ξ and Js0 = N0D�0/ξ . We have writ-
ten the integral in terms of the dimensionless variable E/�0,
where �0 = �(T = 0) is the zero-temperature energy gap,
and the dimensionless spatial coordinate z/ξ . This means that
J/J0 are now dimensionless and can be used in the numerical
study.

In the following sections, we will also use the charge
current divided into which component carries the current.
Therefore we introduce the notation

J fs = J0

∫ ∞

0

dE

�0
tanh

(
βE

2

)
Re([ fs∇ f̃s] − [ ˜· · ·]), (10)

Jdi = −J0

∫ ∞

0

dE

�0
tanh

(
βE

2

)
Re([di∇d̃i] − [ ˜· · ·]), (11)

where J fs is the charge current carried by the singlet compo-
nent and Jdi is carried by the di component.

B. Magnetization

The quasiclassical expression for magnetization reads [31]

M = gμBN0

8

∫
dE Tr(τ̂ĝK ), (12)

where g is the Landé g-factor, N0 is the normal-state density
of states at the Fermi level, and μB is the Bohr magneton. It
should be mentioned that this expression does not take into
account the contribution from the entire Fermi sea and is thus
not suitable to compute the magnetization of a ferromagnetic
metal. It is, on the other hand, suitable for computing any
spin magnetization arising in otherwise nonmagnetic mate-
rials such as normal metals or conventional superconductors.
This holds both for spin accumulations in nonequilibrium sys-
tems and proximity-induced equilibrium spin magnetizations.

Once more we want to express the magnetization in terms
of the singlet-triplet-decomposed components. This can be
done similarly to the current, by using the expression for ĝA

and the equilibrium expression for ĝK . There are no first-order
contributions in the anomalous Green’s function; so we have
to take into account the normalization condition, (ĝR)2 = 1.
By this method, it can be shown that the magnetization, to the
second order in the anomalous Green’s function, reads

Mx = M0

∫ ∞

0

dE

�0
tanh

(
βE

2

)
Re(d̃x fs − dx f̃s), (13)

My = M0

∫ ∞

0

dE

�0
tanh

(
βE

2

)
Re(d̃y fs − dy f̃s), (14)

Mz = M0

∫ ∞

0

dE

�0
tanh

(
βE

2

)
Re(d̃z fs − dz f̃s), (15)

where M0 = gμBN0�0.

IV. RICCATI PARAMETRIZATION

One particularly convenient way to parametrize the
Green’s function is the Riccati parametrization [32–35]. The
Riccati parametrization is advantageous for numerical com-
putation because the parameters are bounded between 0 and
1. For the purpose of studying systems numerically we will
here briefly outline the derivation of the Riccati-parametrized
Usadel equation as well as giving a detailed derivation of the
Riccati-parametrized boundary equation in Appendixes A and
B, including the effect of a spin-orbit coupled interface, since
the latter is not present in the existing literature.

The retarded Green’s function is defined via parameters N
and γ as follows:

ĝ =
(

N (1 + γ γ̃ ) 2Nγ

−Ñ γ̃ −Ñ (1 + γ̃ γ )

)
. (16)

N and γ will only be used for 2×2 matrices; so we do not
use any special notation to indicate their matrix nature. By
the normalization condition ĝ2 = 1 it is seen that N = (1 −
γ γ̃ )−1 and Ñ = (1 − γ̃ γ )−1.

A couple of useful identities can be found:

Nγ = γ Ñ, Ñ γ̃ = γ̃ N. (17)

Notice also that

γ γ̃ = 1 − N−1. (18)

When writing the Usadel equation and the boundary con-
ditions, in particular including the role of spin-orbit coupling,
we will have to deal with derivatives. To simplify the nota-
tion, we therefore introduce γ ′ = ∂zγ . The following way of
writing derivatives will also be useful:

∂zN = N (γ ′γ̃ + γ γ̃ ′)N, (19)

∂zÑ = Ñ (γ̃ ′γ + γ̃ γ ′)Ñ, (20)

∂z(Nγ ) = N (γ ′ + γ γ̃ ′γ )Ñ, (21)

∂z(Ñ γ̃ ) = Ñ (γ̃ ′ + γ̃ γ ′γ̃ )N, (22)

all of which can be found by using the identities above.
The general approach for identifying the Riccati-

parametrized Usadel equations and the Kuprianov-Lukichev
boundary conditions is thoroughly described in Ref. [35]. The
method consists of writing the terms in the Usadel equation in
4×4 matrix notation and then taking the upper right 2×2
matrix minus the upper left 2×2 matrix multiplied by γ . More
specifically, one takes 1

2 N−1([· · · ]12 − [· · · ]11γ ) of the matrix
equation [· · · ], where the subscript indicates a block matrix.
Doing so, one manages to eliminate terms such that ∂2

z γ or
∂zγ terms can be separated out.

The final result for the Riccati-parametrized Usadel equa-
tion for a ferromagnet reads

∂2
z γ = −2iEγ − ih · (τγ − γ τ ∗) − 2γ ′Ñ γ̃ γ ′, (23)

where for a normal metal the only adjustment needed is to
set h = 0. It can be shown that the Riccati-parametrized bulk
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BCS singlet superconductor solution is

γBCS =
(

0 beiφ

−beiφ 0

)
, (24)

where φ is the phase and

b =
⎧⎨
⎩

�

E+i
√

�2−E2 for |E | < �

� sgn(E )
|E |+√

E2−�2 for |E | > �.
(25)

Riccati parametrization of boundary conditions

When deriving the Riccati parametrization of the specific
boundary conditions used in this paper, it is useful to note
that many of the terms both in the spin-orbit coupling and
spin-active boundary conditions have the same form. Here a
practical method for Riccati-parametrizing terms of this type
is presented in order to simplify the calculations.

The form which many of the terms take is

[ĝL, Û ], (26)

where Û is a matrix whose exact form depends on the specific
boundary conditions. In general, we write Û as

Û =
(

U11 U12

U21 U22

)
. (27)

By Riccati parametrization, it can be found from the left-
hand side of the boundary equation ĝ∂zĝ that

1
2 N−1

L ([ĝL∂zĝL]12 − [ĝL∂zĝL]11γL ) = ∂zγL, (28)

as seen in Ref. [35]. The subscript indicates the block of the
matrix that is meant, as in Eq. (27).

To obtain the complete boundary conditions, we have to
perform the same operation on the right-hand side as on
the left side. This means we need to take 1

2 N−1
L ([· · · ]12 −

[· · · ]11γL ) of every term on the right-hand side of the bound-
ary conditions. Thus we start by finding a procedure for all
terms that come in the form of Eq. (26):

1
2 N−1

L ([ĝL, Û ]12 − [ĝL, Û ]11γL )

= 1
2 N−1

L (g
L
U12 + f

L
U22 − U11 f

L
+ U12g̃

L

− (g
L
U11 + f

L
U21 − U11g

L
+ U12 f̃

L
)γL ). (29)

As a next step we collect the terms with the same Ui j

matrices and insert f = 2Nγ , g = 2N − 1. The U11 term can
be written as

1
2 N−1

L (−U11 f
L

− g
L
U11γL + U11g

L
γL )

= 1
2 N−1

L ( − U112NLγL − (2NL − 1)U11γL

+ U11(2NL − 1)γL ) = −U11γL. (30)

In the same manner the Û12 term becomes
1
2 N−1

L (g
L
U12 + U12g̃

L
− U12 f̃

L
γL )

= 1
2 N−1

L ((2NL − 1)U12 + U12(2ÑL − 1) − U122ÑLγ̃LγL )

= U12. (31)

The Û21 term should also be written in terms of γ as
1
2 N−1

L (− f
L
U21γL ) = −γLU21γL. (32)

FIG. 2. The system in which supercurrents and induced magne-
tization are investigated. The material to the left, (L), is the material
in which the supercurrent will flow. This material will be either
a ferromagnet or a normal metal. To get the current flowing, two
conventional superconductors are connected to (L), and a phase dif-
ference between them is applied. In between the superconductors and
(L), spin-active interfaces are included for the purpose of creating
triplet Cooper pairs and thereby also triplet supercurrents. A normal
metal, (R), is connected to (L) through a spin-orbit coupled interface.
This material borders a vacuum at y = l .

Finally, the U22 term can be written as
1
2 N−1

L ( f
L
U22) = γLU22. (33)

Putting everything together, we get
1
2 N−1

L ([gL,U ]12 − [gL,U ]11γL )

= −U11γL + U12 − γLU21γL + γLU22. (34)

We note that this also can be used for the Kuprianov-
Lukichev boundary conditions [36], where one would have
Û = G0ĝR. From this, and using the identities in Eqs. (17)
and (18), the Kuprianov-Lukichev boundary conditions can
be found to be

∂zγL = G0(1 − γLγ̃R)NR(γR − γL ), (35)

∂zγR = G0(1 − γRγ̃L )NL(γR − γL ). (36)

In Appendixes A and B, both the spin-orbit coupling and
spin-active boundary conditions will be written in the Riccati-
parametrized form using the method described here.

V. SETUP

The system we are studying is illustrated in Fig. 2. The
region in which the supercurrents will flow is drawn to the
left and will therefore be referred to as (L). Similarly, the
region where induced magnetization will be studied is drawn
to the right and is called (R). In this paper, we let the region
(R) be a normal metal, and (L) will either be a normal metal
or a ferromagnet depending on the situation. The z position
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where (R) is connected to (L) is called z0. In most situations,
we use z0 = l/2, and it will be specified when other values
are used. The (L) and (R) regions are chosen to have the
same length, but this is not required for the effects predicted
here. The gray region between (L) and (R) is the spin-orbit
coupled material, for which the spin-orbit coupling boundary
conditions will be used. At z = 0 and z = l , conventional BCS
superconductors, S1 and S2, are attached to the (L) material.
These superconductors are the sources for Cooper pairs in
the rest of the system. Between (L) and the superconductor,
spin-active interfaces are introduced and are marked as gray
regions in the figure. The interface magnetizations of the spin-
active interfaces are described by unit vectors m1 and m2.

To create a pure singlet charge current, the interface
magnetizations are switched off (m1 = m2 = 0), which is
equivalent to using the regular Kuprianov-Lukichev boundary
conditions. Furthermore, (L) is a normal metal in the singlet
current case. As the superconductors S1 and S2 only contain
singlet Cooper pairs, no triplets will be induced in (L) in
this scenario. We want a supercurrent to flow through the (L)
region. This is achieved by applying a phase difference, φ,
between S1 and S2.

To create the triplet charge current and the spin current, the
interface magnetizations are switched on. The triplet charge
current is created in the same way as in the singlet case: by
applying a phase difference.

For the purpose of discovering effects caused solely by
triplets, a ferromagnetic exchange field is included in the ma-
terial (L). Because of the exchange field, the singlet becomes
short ranged and dies out rapidly in the (L) region. In an
experimental setup, it would be of importance to separate the
intrinsic magnetization coming from an exchange field and
the magnetization induced by supercurrents. Therefore the
exchange field is modeled to be spatially varying in (L) such
that it is zero in the middle region but large at the sides (as
shown later in Fig. 4). In practice, this can be realized by
attaching thin ferromagnetic regions with a strong exchange
field right next to the superconductors and then having a
long normal metal region separating the ferromagnets. In this
way, the singlets and short-range triplets are filtered out by
the thin, strongly polarized ferromagnetic regions, whereas
the long-range triplets produced in the ferromagnetic region
remain and can propagate through the normal metal. More
specifically, it is the triplet component that is spin neutral in
the exchange field orientation d ‖ h that is short ranged, and
the others are long ranged.

As we will discuss in the following analytical study, the
difference between the dz and dy components is quite in-
significant relative to the spin-orbit coupled interface, and it is
instead the dx component that is the most relevant. Therefore
we focus most of the discussion on the case where the inter-
face magnetizations lie in the xy plane and the exchange field
points in the z direction, h = (0, 0, h(z)). We do, however,
include rotation of both m1 and m2 with an angle α around
the z axis, and the angle between m1 and m2 which we call θ .
These angles are illustrated in Fig. 3. We also note here that
the directions chosen are advantageous for an experimental
setup, as rotating the interface magnetizations in plane is a
simpler task than driving them out of the xy plane.

FIG. 3. Definition of the angles α and θ . α is defined as the angle
between the x axis and the interface magnetization of the first inter-
face, m1. θ is the angle between the two interface magnetizations.

We also remark that rotating both interface magnetizations,
m1 and m2, by an angle α is equivalent to rotating material (L)
around the z axis. Thus, rotating the interface magnetization
or attaching the (R) region to the (R) region at different angles
corresponds to the same physical system.

In the numerical study, we have used the interface param-

eters T 2
0

D = 0.2/ξs, 2
3

T 2
1 p2

F
D = mT0T1/ξs = dα2 = 0.1/ξs unless

specified otherwise. To create pure charge currents, we set
P = 0 and Gφ = 3G0. We also checked that the results are
qualitatively similar if one instead uses P = 0, Gφ = 0. If both
P and Gφ are finite, spin supercurrents in addition to charge
supercurrents flow in the system. Furthermore, a combination
of a length of material (L), l , that is short enough to preserve
some of the triplets and a strength of h that is strong enough
to remove the singlet had to be found. Setting the length of the
material, l , to eight times the bulk superconducting coherence
length, l = 8ξs = 8

√
D/�0, and h(z) as in Fig. 4 was found

to work well.
Finally, we emphasize that our main aim here is to deter-

mine the qualitative behavior of the spin signal induced by
the charge and spin currents, such as when it exists and how
it changes depending on the polarization of the triplet Cooper

FIG. 4. The spatial profile of the exchange field function h(z)
which is applied to the left material (L) in the triplet current cases.
This ensures that only the long-ranged triplet component survives
at the contact with the normal metal through the Rashba spin-orbit
coupled interface. In an experiment, one would use a strong ferro-
magnet/normal metal bilayer to achieve an exchange field spatial
profile serving the same purpose. In this paper, the spatial profile
of h is continuous rather than abrupt for numerical convenience, as
one can then evaluate the Usadel equation in a single layer.
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pairs, and not predict its precise magnitude, which will depend
on the material choices.

Numerical method

In general, the materials on both sides of an interface
are affected by each other. However, here it is assumed for
simplicity that the inverse proximity effect that material (L)
induces in S1 and S2 is negligible, and only the effect from
the superconductor on the material (L) is considered. The
superconductors are thus assumed to be the bulk supercon-
ductors. Such an approximation is valid when one of the
materials is much more disordered than the other [37]. The
bulk superconductor Green’s function can by this assumption
be used directly in the boundary conditions used to solve
system (L). Similarly, the effect from (R) on (L) is neglected,
and the solution for system (L) at z = z0 is used directly in the
spin-orbit coupling boundary conditions for (R). Furthermore,
the materials are individually modeled as one dimensional,
meaning that material (L) is extended in the z direction and
(R) is extended in the y direction.

The system which has to be solved is now the one-
dimensional Usadel equation in two regions. This is a
second-order differential equation for two variables, γ and γ̃ ,
and to solve it numerically we rewrite it as four first-order
differential equations writing⎛

⎜⎜⎜⎝
γ ′

γ ′′

γ̃ ′

γ̃ ′′

⎞
⎟⎟⎟⎠ = f

⎛
⎜⎜⎜⎝

γ

γ ′

γ̃

γ̃ ′

⎞
⎟⎟⎟⎠, (37)

where f (· · · ) is a function that returns the derivative of the
input. The function will thus return γ ′ as the derivative for γ

and use the Riccati-parametrized Usadel equation to find the
derivative of γ ′ and similarly for γ̃ . Thus we have a system of
16 complex connected differential equations, four elements in
each of the matrices γ , γ ′, γ̃ , and γ̃ ′. The boundary conditions
give restrictions to γ ′ and γ̃ ′ on each side of the material.

To solve the system, we have used the boundary value
problem solver from SCIPY [38]. To stabilize the solver, the
real and imaginary parts are split such that the 16 complex
equations become 32 real ones. To increase numerical sta-
bility, inelastic scattering is also included by adding a small
imaginary component to the energy, which here is set to
δ/�0 = 0.01 as used in Ref. [39]. This imaginary component
is referred to as the Dynes parameter and is often used to
model experiments [40]. In essence, it has the effect of broad-
ening the spectral features, such as the peaks of the Green’s
functions that occur at E = 0 and E = �. As mentioned,
the interface magnetizations are rotated in the xy plane in
the triplet cases. A small trick was used to solve the system
with these rotations. To save computation time, the Usadel
equation only has to be solved once in material (L) for one
given θ and one given set of interface parameters. The angle
α can simply be taken into account by rotating the triplet
components dx,L and dy,L, such that

dx,L(α) = dx,L(0) cos(α) + dy,L(0) sin(α),

dy,L(α) = −dx,L(0) sin(α) + dy,L(0) cos(α). (38)

This means that instead of solving the system in (L) for every
α, we solve it once and then rotate the solution to proceed
studying the material (R). For the material (R), however, the
Usadel equation needs to be solved separately for every value
of α. We have verified the integrity of our numerical method
by, e.g., checking that current conservation is satisfied and
that we reproduce known results from the literature, such as
the induced magnetization from a singlet charge current in
Ref. [29].

VI. A BRIEF ANALYTICAL STUDY

To gain more physical insight before proceeding to the
numerical results, we here analyze the weak-proximity-effect
regime where the equations can be linearized in the anomalous
Green’s function. We will see that there is a clear relation
between the singlet charge current, Jfs , and the induced mag-
netization in the x direction, mx. A similar relation also exists
between a triplet charge current carried by the dx triplet, Jdx ,
and mx.

In the weak-proximity-effect regime, we assume that the
quasiclassical Green’s function is close to the normal metal
solution, ĝN = ρ̂3, but with a small superconducting part, f̂ ,
induced by the proximity superconductors. We thereby as-
sume that we can use the weak-proximity-effect solution ĝ ≈
ρ̂3 + f̂ . Using the singlet-triplet decomposition, the Rashba
spin-orbit coupling (SOC) boundary conditions can be written
as follows, keeping only the terms of the first order in f̂ :

∂y fs,R = − mT0T1∂zdx,L

− 2

(
T 2

0

D
− 2

2

3

T 2
1 p2

F

D

)
( fs,L − fs,R), (39)

∂ydz,R = −
(

8dα2 − 2
T 2

0

D
+ 4

2

3

T 2
1 p2

F

D

)
dz,R

− (2dz,L )

(
T 2

0

D
+ 2

2

3

T 2
1 p2

F

D

)
, (40)

∂ydx,R = − 4∂z fs,LmT0T1 −
(

4
2

3

T 2
1 p2

F

D
+ 4dα2 − 2

T 2
0

D

)
dx,R

− (2dx,L )
T 2

0

D
, (41)

∂ydy,R = −
(

4
2

3

T 2
1 p2

F

D
+ 4dα2 − 2

T 2
0

D

)
dy,R − 2

T 2
0

D
dy,L.

(42)

From this, we see that there is a link between fs,R and ∂zdx,L

and the other way around between dx,R and ∂z fs,L. On the other
hand, to first order, dy,R can only be induced by dy,L, and dz,R

can only be induced by dz,L .
Furthermore, we can use the solution to the linearized

Usadel equation in a normal metal:

fs = Ase
−ky + Bse

ky,

dx = Axe−ky + Bxeky, (43)

where k = √−2iE/D and As, Ax, Bs, and Bs are constants that
have to be determined using the boundary conditions. If we
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assume that l → ∞, the B factors have to be zero in order to
avoid a diverging function.

A. Singlet current

We start by discussing the singlet charge current case. In
this scenario, there are no triplet components present in (L).
Thus there is no induced dy or dz on the right side of the
interface. Furthermore, there is no dx and thus no ∂ydx on the
left side. Assuming for simplicity l → ∞, from Eqs. (39) and
(41) we then see that

fs,R ∝ fs,L, (44)

dx,R ∝ ∂z fs,L, (45)

since in this case ∂y fs,R ∝ fs,R and ∂ydx,R ∝ dx,R. Note that the
tilde-conjugated components have the same proportionality
between the left and right sides. Thus it follows that

fs,L∂z f̃s,L − f̃s,L∂z fs ∝ fs,Rd̃x,R − f̃s,Rdx,R. (46)

From Eqs. (10) and (13) we see that the real part of the left
side in the expression above is exactly what occurs in the
expression for a singlet current in material (L), Jfs . We also see
that the real part of the right side in the expression is exactly
what occurs in the induced magnetization expression mx,R.

From the analytical expression, we conclude that there is
a clear connection between induced magnetization and the
singlet charge current. We note, however, that fs,L∂z f̃s,L −
f̃s,L∂z fs,L and fs,Rd̃x,R − f̃s,Rdx,R might not have the same
phase, such that the real part of these expressions might not
be directly proportional.

B. Triplet charge current

Next, considering a triplet current, we see that the currents
Jdy and Jdz , which contain varying dy and dz components in
(L), do not induce a singlet in (R), at least to the first order in
f . We can thus conclude that dy and dz induce no magnetiza-
tion in (R). For the last type of triplet charge current, Jd,x, the
same argumentation as for the singlet charge current applies.
The difference is that in this case we have

dx,R ∝ dx,L, (47)

fs,R ∝ ∂zdx,L. (48)

This gives

dx,L∂zd̃x,L − d̃x,L∂zdx ∝ fs,Rd̃x,R − f̃s,Rdx,R. (49)

Seemingly, Jdx and Jfs then induce the same magnetization.
A triplet charge current does, however, not have to be

carried by a pure dx, dy, or dz. In general, we can have an
arbitrary d vector carrying a pure charge current. Keeping to
the situation where the triplet vector d points in the xy plane,
we would get a current carried partially by dx and partially
by dy. In this case, the part carried by dx induces a singlet
component in (R), whereas the dy part induces a dy in (R)
as well. By this argument, a magnetization in the y direction
would also be induced. Thus we see that with a triplet charge
current, magnetization can also be induced in more than one
direction. This is contrary to the singlet charge current.

C. Spin current

We also briefly comment on how the induced magnetiza-
tion changes when there is not only a charge supercurrent,
but also a spin supercurrent flowing in (L). From Sec. III we
see that there is no dx component involved in the x-polarized
current Jsx . From this spin current, no singlet can be induced in
(R), and thus also no magnetization. Both for the y-polarized
spin current Jsy and the z-polarized spin current Jsz , a dx

component is involved. Since the dy and dz components are
treated similarly by the spin-orbit coupled interface, we settle
for only studying Jsz . Presumably, Jsy would induce a rotated,
but similar magnetization.

The z-polarized spin current Jsz is seen in Eq. (9) to be
dependent on the imaginary part of the following expression:

dx,L∂zd̃y,L − dy,L∂zd̃x,L + d̃x,L∂zdy,L − d̃y,L∂zdx,L. (50)

Notice that from the linearized spin-orbit coupled boundary
conditions, it is found that

dy,L∂zd̃x,L ∝ dy,R f̃s,R. (51)

Notice also that the real part of the right side also occurs in
the my expression. The relation here is much less direct than
in the charge current and mx case. In the expression for my the
term and the tilde conjugation of the term are subtracted from
each other, but in the Js,z expression they are added together.
Furthermore, my depends on the real part of the expression,
whereas Jsz depends on the imaginary part. It therefore follows
that no clear connection exists between a pure spin current and
an induced magnetization via the spin-orbit coupled interface.

D. Linearized spin-active boundary conditions

Before proceeding to the numerical study, we also look
at the linearized spin-active boundary conditions in order
to understand how the currents are created. These bound-
ary conditions will only be used in interfaces where one
side is a singlet superconductor. We consider below for
concreteness the right interface and thus remove all triplets
on the right side of the interface of the equations below.
The linearized equations in the singlet-triplet decomposition
notation read

∂z fs,L = − 2m2( fs,L + fs,R)G1 + 2G0 fs,R − 2G0 fs,L

− 2Gφ (dx,Lmx + dy,Lmy + dz,Lmz ), (52)

∂zdx,L = (−m2G1 − 2G0)dx,L + (4idy,Lmz − 4idzmy)GMR

− (2Gφ ) fs,Lmx, (53)

∂zdy,L = (−2m2G1 − 2G0)dy,L + (4idzmx − 4imzdx )GMR

− (2Gφ ) fs,Lmy, (54)

∂zdz,L = (−2m2G1 − 2G0)dz,L + (4idxmy − 4idymx )GMR

− (2Gφ ) fs,Lmz. (55)

For studying the triplet scenarios, material (L) will be a
ferromagnet. Except for when we want to determine the effect
of a current Jdz , the exchange field will be oriented in the z di-
rection, which induces a dz component in (L). As mentioned,
this dz triplet will then be short ranged, and thus we focus
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FIG. 5. The supercurrent induced in material (L) as a function of
the phase difference between S1 and S2, φ. The boundary parameters
used are Gφ = 0, P = 0, G0 = 0.01/ξs.

this discussion on the dx and dy components induced by the
spin-active boundary.

The terms that create the dx and dy triplets are the Gφ and
GMR terms. If we only have the Gφ term, we see that the
induced d is parallel to the interface magnetization. If we,
however, turn off Gφ but turn on GMR (by letting P = 0), we
see that d is orthogonal to the interface magnetization, since
dz will already be present because of the exchange field in (L).

If we thus let the interface magnetizations be parallel to
each other and only include one of the terms such that we
have either Gφ = 0 or P = 0, the behavior of the current
closely resembles that of a conventional Josephson junction,
except that it is only the triplet and not the singlet that is
long ranged. Applying a phase difference between the BCS
superconductors S1 and S2, it is reasonable to expect that in
this case we can create a pure triplet charge current in (L). As
we, in that case, are able to create only one long-ranged triplet
component, we know there cannot be any spin current. When

FIG. 6. The induced magnetization in (R), right next to the in-
terface SOC interface at y = 0, in the presence of a supercurrent
flow in region (L) due to a phase difference φ. The spin-active
boundary parameters used are Gφ = 0, P = 0, G0 = 0.01/ξs, and
the spin-orbit coupled boundary parameters used are T 2

0 /D = 0.2/ξs,
2
3 T 2

1 p2
F /D = mT0T1/ξs = dα2 = 0.1/ξs.

FIG. 7. The supercurrent-induced magnetization in (R) as a func-
tion of phase difference φ and position y in the zero-temperature
case. The spin-active boundary parameters used are Gφ = 0, P = 0,
G0 = 0.01/ξs, and the spin-orbit coupled boundary parameters used
are T 2

0 /D = 0.2/ξs, 2
3 T 2

1 p2
F /D = mT0T1/ξs = dα2 = 0.1/ξs.

both Gφ and GMR are present, or θ = 0, we see that both dx

and dy will be created, and we can in general also find a spin
supercurrent.

VII. NUMERICAL RESULTS

A. Singlet charge current

The proximity effect and magnetization induced by the
singlet supercurrent are explored by removing the interface
magnetizations and the exchange field in (L). We numeri-
cally determine the magnetization in the full-proximity-effect
regime, using the nonlinear Riccati-parametrized equations,
and compare it with the results expected from the analyti-
cal treatment. Furthermore, the role of the symmetry of the
anomalous Green’s function under the ˜· · · operation is dis-
cussed. Finally, we discuss the spatial dependence of the
magnetization induced in the normal metal (R) and also check
the temperature dependency.

The current and magnetization as a function of φ are shown
in Figs. 5 and 6. The magnetization shown in the Fig. 6 is
evaluated at y = 0. As expected from the analytical study, no
magnetization was induced in the y or z direction. Further-
more, it is seen from the figure that the induced mx in (R)
is proportional to the singlet current in (L). We remark that
this is consistent with Ref. [29], whose authors found, from
using an effective model for the Green’s function in (L), that
mx ∝ J . The effective model used in Ref. [29] has a disap-
pearing derivative of fs when J = 0 as it does not consider
that the absolute value of fs can be decaying. Inside a normal
metal, however, we expect the Cooper pair wave function to
decay away from the superconductor interfaces. Even when
the current is zero, the singlet component can therefore still
have a finite derivative. Therefore it is natural to ask whether
the disappearance of the magnetization at J = 0 is caused by
the spatial gradient of the fs,L and dx,L components vanishing
at φ = 0, π or caused by the symmetry properties under the
˜· · · operation of the triplet and singlet components. We have

performed this analysis in Appendix C, and our conclusion
is that the ˜· · ·-operation symmetry, which is influenced by
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FIG. 8. The magnetization evaluated at y = l as a function of
temperature. We used φ = π/4. The spin-active boundary param-
eters used are Gφ = 0, P = 0, G0 = 0.01/ξs, and the spin-orbit
coupled boundary parameters used are T 2

0 /D = 0.2/ξs, 2
3 T 2

1 p2
F /D =

mT0T1/ξs = dα2 = 0.1/ξs.

whether or not a supercurrent flows, causes the magnetiza-
tion to vanish at φ = 0, π . Note that the absence of induced
magnetization does not necessarily imply the absence of a
triplet being induced. The supercurrent-induced magnetiza-
tion decays monotonically in the (R) normal metal, as shown
in Fig. 7.

Finally, we consider the temperature dependence of the
supercurrent-induced magnetization. The quasiclassical mag-
netization from Eq. (13) has a factor tanh(βE/2) in the
integrand. Varying the temperature changes how the contri-
bution

Re( fs(E )d̃x(E ) − f̃s(E )dx(E )) (56)

is weighted with respect to energy. A relevant question to ask
is therefore how the temperature affects the magnetization.
The temperature dependence of the energy gap must be taken
into account. We chose a standard interpolation formula which
is valid for T ∈ (0, Tc) [41]:

�(T ) = �(0) tanh

(
1.74

√
Tc

T
− 1

)
, (57)

where Tc is the critical temperature. We also use the BCS
relation between the zero-temperature gap and the critical
temperature, �0

Tc
= 1.76.

Figure 8 shows the magnetization evaluated at y = l as a
function of temperature. Although the integrand in general
oscillates as a function of energy E , similarly to the spectral
supercurrent, the total magnetization shows a monotonic de-
cay with temperature.

B. Triplet charge current

In the following, the case with a pure triplet charge current
is explored and compared with the singlet charge current case.
To reduce the number of parameters to vary, this discussion
only considers the zero-temperature case. We nevertheless
expect a monotonic decay of the induced magnetization as the
temperature approaches Tc.

To create a pure triplet charge current, as discussed in
Sec. VI, the interface magnetizations have to be parallel.

FIG. 9. The absolute value of the triplet components evaluated
for E/�0 = 0.14. The figure shows that fs and dz are many orders of
magnitude smaller than the long-ranged dx component. The bound-
ary parameters used are P = 0, Gφ = 3G0, G0 = 1/ξs, α = 0, θ = 0.

Moreover, we also have to set either the polarization or the
spin-mixing angles to zero. Otherwise, a spin supercurrent
will also flow through the junction [42].

We first consider the P = 0 case, with a finite spin-mixing
angle Gφ = 0. This means only considering spin-independent
transmission amplitudes from the proximate superconductor
but with spin-dependent reflection terms.

We consider a situation where the fs component is negli-
gible compared with the triplets in (L). This is achieved via
the exchange field profile discussed in Sec. V. Figure 9 shows
that both fs and dz die out over a short range into the material
(L) when m1 = m2 = (m, 0, 0) and h(z) = (0, 0, h(z)). The
singlet and the dz triplet oscillate rapidly and decay quickly
[31,37]. In the middle region, dz and fs are many orders of
magnitude smaller than dx, and we conclude that the results
from this section are pure triplet effects.

FIG. 10. The absolute value of the magnetization in mate-
rial (R) induced by dx-, dy-, and dz-carried charge current. It is
seen that it is only the dx-carried charge current that induces a
magnetization. As seen, for certain triplet pair polarizations, a
supercurrent (Jdy and Jdz ) does not induce magnetization in any direc-
tion. The spin-orbit boundary parameters used are T 2

0 /D = 0.2/ξs,
2
3 T 2

1 p2
F /D = mT0T1/ξs = dα2 = 0.1/ξs, and the spin-active bound-

ary parameters used are P = 0, Gφ = 3G0, G0 = 1/ξs; m1 = m2 =
(1, 0, 0), (0, 1, 0), (0, 0, 1) for the Jdx , Jdy , and Jdz cases, respectively.
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FIG. 11. Charge current as a function of φ in material (L). The
green curve shows the total current, and the orange line shows the
singlet current. It is clear that the singlet current is negligible com-
pared with the triplet current. The magnitude of the triplet charge
current is invariant when changing α. The boundary parameters used
are P = 0, Gφ = 3G0, G0 = 1/ξs, θ = 0.

The triplet charge current can be divided into three com-
ponents, Jdx , Jdy , and Jdz , which from Sec. VI are expected to
give different results. We explore all these currents here. A
Jdx current is created by using m1 = m2 = (m, 0, 0) and h =
(0, 0, h(z)). In the same manner, a Jdy current is created by
using m1 = m2 = (0, m, 0) and h = (0, 0, h(z)), and a Jdz cur-
rent is created with m1 = m2 = (0, 0, m) and h = (h(z), 0, 0).
The absolute value of the induced magnetization in (R) is
plotted for the three different triplet cases as a function of
φ in Fig. 10. Consistent with the analysis in Sec. VI only
the dx-carried current induces a magnetization in (R), which
confirms the analytical results. The induced magnetization can
thereby be utilized to distinguish Jdx from the other triplet
currents. In other words, the induced spin signal is strongly
dependent on the polarization of the triplet Cooper pair
supercurrent.

However, a triplet current does not have to be carried by
a pure dx, dy, or dz, but could just as well be carried by any
combination of d-triplet components. Therefore rotation of

FIG. 12. The supercurrent carried by dx triplet Cooper pairs,
which induce a magnetization in (R) through the spin-orbit coupled
interface, as both the phase difference φ and the interface angle in
the xy plane, α, are varied. The boundary parameters used are P = 0,
Gφ = 3G0, G0 = 1/ξs, θ = 0.

FIG. 13. Induced magnetization mx in (L) in the triplet supercur-
rent case where Gφ = 0, P = 0. The spin-orbit boundary parameters
used are T 2

0 /D = 0.2/ξs, 2
3 T 2

1 p2
F /D = mT0T1/ξs = dα2 = 0.1/ξs,

and the spin-active boundary parameters are P = 0, Gφ = 3G0, G0 =
1/ξs, θ = 0.

the interface magnetization in the xy plane is investigated.
First, we consider the behavior of the charge current in mate-
rial (L), shown in Fig. 11 as a function of the phase difference
φ. The current shows a standard current-phase relation and
is independent of the value of α. As seen in Sec. VI the Gφ

term creates a d vector proportional to the interface magneti-
zation. At α = 0 the interface magnetizations are m1 = m2 =
(m, 0, 0); so it is natural that the charge current then will be
carried only by the dx triplet. As α changes, the current will
gradually be carried more and more by the dy component, until
it at α = π/2 is carried only by the dy components. Thus, as α

is varied, the total current stays unchanged; however, Jdx does
change, as shown in Fig. 12.

The induced magnetization in material (R) in the triplet
current case is plotted in Figs. 13 and 14. As discussed in
Sec. VI, there exists a clear relation between Jdx and mx,R.
Figure 13 confirms this relation as the induced mx has the
same form as Jdx from Fig. 12.

FIG. 14. Induced magnetization my in (L) in the triplet supercur-
rent case where Gφ = 0, P = 0. The spin-orbit boundary parameters
used are T 2

0 /D = 0.2/ξs, 2
3 T 2

1 p2
F /D = mT0T1/ξs = dα2 = 0.1/ξs;

and the spin-active boundary parameters are P = 0, Gφ = 3G0, G0 =
1/ξs, θ = 0.
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The magnetization plots also show differences from the
singlet current case. First of all, the induced mx varies
with α. In the singlet case there is no interface magne-
tization; however, as varying α in the triplet case is the
same as rotating the material (R) around material (L), it
still makes sense to compare the α dependencies of the
singlet case and the triplet case. What this means is that
in the singlet case one would measure the same induced
magnetization [in axes relative to (R)], no matter in what
direction (R) was connected to (L). However, in the triplet
case, the angle in which (R) is connected to (L) makes a
difference.

Besides the α dependency in mx, an additional new sig-
nature arises in the triplet case, namely a magnetization
component in the y direction seen in Fig. 14. In the singlet
current case, only mx was induced, and thus the induced my

contributes to making the triplet and singlet currents distin-
guishable. From the figure it is seen that my has a different α

dependency than mx. This can be explained by realizing that
we expect dx,L and thus ∂zdx,L to have a cos(α) dependency.
This would, according to the linearized spin-orbit coupled
boundary conditions, give dx,R and fs,R both a cos(α) depen-
dency. Thus the induced magnetization mx in (R), which is a
product of dx,R and fs,R, naturally acquires a cos2(α) depen-
dency as in the figure. Furthermore, we should expect dy,L and
thus also dy,R to have a sin(α) dependency. The magnetization
in the y direction, a product of fs,R and dy,R, should therefore,
consistent with the figure, have a sin(α) cos(α) dependency.

If we compare the singlet current case with the triplet
current at α = 0, the induced magnetization in (R) looks
the same. However, by either growing the normal metal on
the (L) region at different crystallographic orientations, or
alternatively growing two normal metals to (L), both through
a spin-orbit coupling interface, but at different angles, the
induced magnetization would change strongly in the triplet
case. Similarly, as in the singlet case, we have checked that
the disappearance of the magnetization at φ = 0 and at φ = π

can be explained by the symmetry properties under the ˜· · ·
operation of the components. Thus we do not expect that a
spatial gradient in the triplet correlations is sufficient to induce
a magnetization: Only when a supercurrent is flowing, thus
providing the triplet correlations with the correct ˜· · · symme-
try, is a magnetization induced.

In Fig. 15, we consider the dependence of the induced
magnetization and the triplet supercurrent on the misalign-
ment angle θ between the interfacial magnetic moments. This
angle can be tuned experimentally by using different mate-
rials and/or thicknesses of the magnetic barriers. In such a
case, the magnetization orientation of one barrier remains
fixed upon applying an external magnetic field, whereas the
magnetization of the (softer) barrier rotates with the field.
We fix m1 ‖ x (α = 0) and consider a superconducting phase
difference φ = π/2 which typically maximizes the supercur-
rent. The exchange field is fixed at h ‖ z, thus filtering out
singlets fs and the dz triplets, as before. In the absence of
misalignment (θ = 0), the current is carried by dx triplets,
whereas no current is carried by dy triplets. The ratio of the
currents carried by these Cooper pairs changes upon varying
θ , as seen in the lower row of Fig. 15. Both Jdx and Jdy are
suppressed at θ = π/2, in which case the magnetic texture

FIG. 15. Upper row: plots of the induced magnetization com-
ponents. Lower row: the triplet supercurrent through the junction.
The spin-orbit boundary parameters used are T 2

0 /D = 0.2/ξs,
2
3 T 2

1 p2
F /D = mT0T1/ξs = dα2 = 0.1/ξs, and the spin-active bound-

ary parameters are P = 0, Gφ = 3G0, G0 = 1/ξs, with α = 0 and
varying θ .

of the system maximizes its spin chirality (m1×m2) · h. This
can be understood as follows. Keeping m1 fixed in the x
direction, there is always a dx component induced at the z = 0
interface. Keeping the phase difference fixed to φ = π/2, the
amount of supercurrent Jdx then depends on the induced dx on
the x = l interface. The dx on this side will be proportional
to m2,x ∝ cos(θ ) since it is primarily induced from singlet
conversion at the x = l interface. Figure 15 shows that Jdx has
precisely this θ dependency and so vanishes at θ = π/2. For
the dy, on the other hand, there is no directly induced dy from
singlet conversion at the z = 0 interface, and thus one cannot
immediately read out the phase or tilde-conjugation properties
of dy from the linearized equations. Since dy is only directly
induced at the z = l interface, it is nevertheless reasonable to
expect that Jdy is smaller than Jdx , which is consistent with
Fig. 15.

Consider now the resulting induced spin magnetization
in the normal metal and its dependence on θ , shown in the
upper row of Fig. 15. The mx component follows the current
carried by dx triplets, as in the previous cases considered
in this paper. The my component, however, does not fol-
low the dy triplets. In fact, the my component is maximal
at θ = π/2, where Jdy = 0. This can be understood by con-
sidering the tilde-conjugation properties of the individual dx

and dy components. The argument is most easily presented
by considering the phase of S1 to be 0 and the phase of
S2 to be φ, although the physics naturally only depends on
the actual value of the phase difference. At φ = π/2 the
singlet superconductors S1 and S2 behave oppositely un-
der tilde conjugation, f̃s,1 = − fs,1, f̃s,2 = − fs,2e2iφ = + fs,2.
Thus we should also expect dx and dy to have opposite
tilde-conjugation properties at θ = π/2 since they are induced
at different interfaces. We see that there is no Jdx at θ = π/2,
which means that ∂zdx and dx have the same tilde-conjugation
property, and thus by the SOC boundary conditions, fs,R will
also inherit this tilde-conjugation property. Furthermore, since
dy,R inherits the tilde-conjugation property of dy,L, we have
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Rashba interface

Normal metal BCS superconductor

Triplet superconductor

Substrate

Normal metal

Misaligned magnetic interface

Strong ferromagnet

Triplet Cooper pair supercurrent

M

(a)

(b)

x

z

y

FIG. 16. Two possible experimental realizations of the proposed system. In (a), thin magnetic insulators with a magnetization in the
xy plane couple BCS superconductors to a strong ferromagnet which is polarized in the z direction. The strong ferromagnet filters out all
superconducting correlations except equal-spin Cooper pairs along the magnetization direction. Adjusting the magnetization of the magnetic
interfaces allows one to vary the spin polarization of the triplet Cooper pairs carrying a supercurrent in the system. A simpler setup is shown
in (b), where one uses intrinsic triplet superconductors. By growing these materials along different crystallographic axes relative to the normal
metal in the middle, the polarization of the triplet pairs, quantified by the d vector, is varied. The drawback of the setup in (b) is that intrinsic
p-wave triplet superconductivity is rare and is only well established in uranium-based compounds.

dy,R and fs,R with opposite tilde-conjugation properties, which
leads to an induced my as seen in Fig. 15.

Finally, to check the robustness of the results, another
parameter set was also investigated. The interface magnetiza-
tions are kept parallel; however, the polarization is turned on,
adding the magnetoresistive term and the G1 term. Instead the
spin mixing is turned off, Gφ = 0. From Sec. VI we see that
the GMR term creates a triplet d orthogonal to the interface
magnetization and to h. In this case, a π/2 shift in α arises
compared with the P = 0 situation because of the induced
triplet being orthogonal to the interface magnetization instead
of parallel. Other than that, the form of the magnetization is
similar, and the conclusions from the P = 0 case hold.

VIII. CONCLUSION

In summary, we predict an experimental signature of
current-carrying triplet Cooper pairs in the form of an induced
spin signal. We show that a supercurrent carried only by
triplet Cooper pairs induces a nonlocal magnetization that is
controlled by the polarization direction of the triplet Cooper
pairs. The dependence of the nonlocal magnetization on the
polarization direction of the triplet pairs can be experimentally
tested in situ. Specifically, the component of the d vector
carrying the supercurrent is determined by the magnetizations
in Fig. 16. This provides a measurement protocol to directly
use the spin polarization of the triplet Cooper pairs in su-
percurrents to transfer spin information in a dissipationless
manner.

ACKNOWLEDGMENTS

This work was supported by the Research Council of
Norway through Grant No. 323766 and its Centres of Excel-
lence funding scheme, Grant No. 262633 “QuSpin.” Support
from Sigma2 - the National Infrastructure for High Perfor-
mance Computing and Data Storage in Norway, Project No.
NN9577K, is acknowledged.

APPENDIX A: RICCATI PARAMETRIZATION
OF THE SOC BOUNDARY CONDITIONS

We now derive the Riccati parametrization of spin-orbit
coupling boundary conditions given in Eq. (4). These bound-
ary conditions take into account charge-spin conversion at
the interface [29]. The starting point is to perform the same
operation on the right-hand side as we did on the left-hand side
in Eq. (28). The first term is simply the Kuprianov-Lukichev
boundary term [36]. The rest of the terms we go through one
by one. For concreteness, the derivation below is done for a
boundary condition which has gR∂ygR on the left-hand side of
the boundary condition.

The first term is − 2
3 T 2

1 p2
F [ĝR, τ̂‖ĝL τ̂‖], for which we define

the matrix

Û (1) = τ̂‖ĝL τ̂‖

=
(

τxgLτx −τx fLτ ∗
x

τ ∗
x f̃Lτx −τ ∗

x g̃Lτ ∗
x

)
+

(
τzgLτz −τz fLτ ∗

z

τ ∗
z f̃Lτz −τ ∗

z g̃Lτ ∗
z

)
.

(A1)
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Thus the contribution from this term will, according to
Eq. (35), be

1
2 N−1

R ([ĝR, τ̂‖ĝL τ̂‖]1,2 − [ĝR, τ̂‖ĝL τ̂‖]1,1γR)

= [−(τxgLτx + τzgLτz )γR − τx fLτ ∗
x − τz fLτ ∗

z

− γR(τ ∗
x f̃Lτx + τ ∗

z f̃Lτz )γR + γR(−τ ∗
x g̃Lτ ∗

x − τ ∗
z g̃Lτ ∗

z )],

(A2)

and inserting f = 2Nγ and g = (2N − 1), we get

− τxNLτxγR + γR − τxNLγLτ ∗
x − γRτ ∗

x ÑLγ̃LτxγR − γRτ ∗
x ÑLτ ∗

x

− τzNLτzγR + γR − τzNLγLτ ∗
z − γRτ ∗

z ÑLγ̃LτzγR − γRτ ∗
z ÑLτ ∗

z .

(A3)

From the second term we define

Û (2) = {τ̂‖,x, ĝL∂yĝL}

=
(

τx[gLg′
L − fL f̃ ′

L] τx[gL f ′
L − fLg̃′

L]

−τ ∗
x [ f̃Lg′

L + g̃L f̃ ′
L] −τx[− f̃L f ′

L + g̃Lg̃′
L]

)

+
(

[gLg′
L − fL f̃ ′

L]τx −[gL f ′
L − fLg̃′

L]τ ∗
x

[ f̃Lg′
L + g̃L f̃ ′

L]τx −[− f̃L f ′
L + g̃Lg̃′

L]τ ∗
x

)
,

(A4)

which gives us the contribution to the right-hand side

[−(τx[gLg′
L − fL f̃ ′

L] + [gLg′
L − fL f̃ ′

L]τx )γR

+ τx[gL f ′
L − fLg̃′

L] − [gL f ′
L − fLg̃′

L]τ ∗
x

− γR(−τ ∗
x [ f̃Lg′

L + g̃L f̃ ′
L] + [ f̃Lg′

L + g̃L f̃ ′
L]τx )γR

+ γR(−τx[− f̃L f ′
L + g̃Lg̃′

L] − [− f̃L f ′
L + g̃Lg̃′

L]τ ∗
x )].

(A5)

Using Eqs. (21) and (22), we see that we can write the
following:

[gLg′
L − fL f̃ ′

L] = NL[γ ′
Lγ̃L − γLγ̃ ′

L]NL,

[gL f ′
L − fLg̃′

L] = NL[γ ′
L − γLγ̃ ′

LγL]ÑL. (A6)

Thus the contribution to the right-hand side of the Riccati-
parametrized boundary conditions can be written as

τx2NL[γ ′
L − γLγ̃ ′

LγL]ÑL − 2NL[γ ′
L − γLγ̃ ′

LγL]ÑLτ ∗
x

− γRτ ∗
x 2ÑL[γ̃ ′

LγL − γ̃Lγ ′
L]ÑL−γR2ÑL[γ̃ ′

LγL−γ̃Lγ ′
L]ÑLτ ∗

x

− τx2NL[γ ′
Lγ̃L−γLγ̃L]NLγR − 2NL[γ ′

Lγ̃L−γLγ̃L]NLτxγR

+ γRτ ∗
x 2ÑL[γ̃ ′

L − γ̃Lγ ′
Lγ̃L]NLγR − γR2ÑL[γ̃ ′

L

− γ̃Lγ ′
Lγ̃L]NLτxγR. (A7)

The fourth term and fifth term in Eq. (4) cannot be written
as [gR, Û ]; so we have to treat them differently. The two terms
do, however, have the same form as each other. Therefore we
only have to perform the calculation once by performing the
parametrization procedure on

[ρ̂i, ĝRρ̂iĝR]. (A8)
We write out

gRρ̂igR =
(

gRτigR + fRτ ∗
i f̃R gRτi fR + fRτ ∗

i g̃R

− f̃RτigR − g̃Rτ ∗
i f̃R − f̃Rτi fR − g̃Rτ ∗

i g̃R

)
.

(A9)
The upper left component of the whole expression then reads

[ρ̂i, ĝRρ̂iĝR](11) = τigRτigR + τi fRτ ∗
i f̃R − gRτigRτi

− fRτ ∗
i f̃Rτi, (A10)

and the upper right part reads

[ρ̂i, ĝRρ̂iĝR](12) = τigRτi fR + τi fRτ ∗
i g̃R + gRτi fRτ ∗

i

+ fRτ ∗
i g̃Rτ ∗

i . (A11)

We write g and f in terms of the Riccati-parametrized ex-
pressions and get that the contribution from these terms to the
right-hand side 1

2 N−1
L ((1, 2) − (1, 1)) 1

2 N−1
R ((1, 2) − (1, 1))

is

1
2 N−1

R [τi(2NR − 1)τi2NRγR + τi2NRγRτ ∗
i (2ÑR − 1) + (2NR − 1)τi2NRγRτ ∗

i

+ 2NRγRτ ∗
i (2ÑR − 1)τ ∗

i − [τi(2NR − 1)τi(2NR − 1) + τi2NRγRτ ∗
i 2ÑRγ̃R

− (2NR − 1)τi(2NR − 1)τi − 2NRγRτ ∗
i 2ÑRγ̃R]γR]

= −2γR + 2τiNRγRτ ∗
i + 2γRτ ∗

i ÑRτ ∗
i + 2τiNRτiγR + 2γRτ ∗

i ÑRγ̃RτiγR. (A12)

Putting all of the terms together, we get

∂yγR = 2
T 2

0

D
(1 − γRγ̃L )NL(γR − γL )

− 2
2

3

T 2
1 p2

F

D
(−τxNLτxγR + γR − τxNLγLτ ∗

x − γRτ ∗
x ÑLγ̃LτxγR − γRτ ∗

x ÑLτ ∗
x

− τzNLτzγR + γR − τzNLγLτ ∗
z − γRτ ∗

z ÑLγ̃LτzγR − γRτ ∗
z ÑLτ ∗

z )

− mT1T0(+τx2NL[γ ′
L − γLγ̃ ′

LγL]ÑL − 2NL[γ ′
L − γLγ̃ ′

LγL]ÑLτ ∗
x

− γRτ ∗
x 2ÑL[γ̃ ′

LγL − γ̃Lγ ′
L]ÑL − γR2ÑL[γ̃ ′

LγL − γ̃Lγ ′
L]ÑLτ ∗

x
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− τx2NL[γ ′
Lγ̃L − γLγ̃L]NLγR − 2NL[γ ′

Lγ̃L − γLγ̃L]NLτxγR

+ γRτ ∗
x 2ÑL[γ̃ ′

L − γ̃Lγ ′
Lγ̃L]NLγR − γR2ÑL[γ̃ ′

L − γ̃Lγ ′
Lγ̃L]NLτxγR)

+ dα2(−2γR + 2τxNRγRτ ∗
x + 2γRτ ∗

x ÑRτ ∗
x + 2τxNRτxγR + 2γRτ ∗

x ÑRγ̃RτxγR)

+ dα2(−2γR + 2τzNRγRτ ∗
z + 2γRτ ∗

z ÑRτ ∗
z + 2τzNRτyγR + 2γRτ ∗

z ÑRγ̃RτzγR). (A13)

APPENDIX B: RICCATI PARAMETRIZATION
OF THE SPIN-ACTIVE BOUNDARY CONDITIONS

We now find the Riccati-parametrized boundary conditions
for the spin-active interfaces given in Eq. (2). All the terms on
this boundary condition are in the same form as in Eq. (26).
Just as for the spin-orbit coupling boundary conditions, the
first term is simply the Kuprianov-Lukichev term; the rest we
go through one term at a time starting with the G1 term. Here
we define

U1 = m̂ĝRm̂ =
(

m · τgRm · τ m · τ fRm · τ∗

−m · τ∗ f̃Rm · τ −m · τ∗g̃Rm · τ∗

)
,

(B1)

which gives the contribution to the right-hand side

−m · τgRmτγL + mτ fRmτ∗+γLmτ∗ f̃RmτγL−γLmτ∗g̃Rmτ∗.

(B2)

For the second term we define the U matrix

UMR = {ĝR, m̂}

=
(

gRm · τ + m · τgR fRm · τ∗ + m · τ fR

− f̃Rm · τ − m · τ∗ f̃R −g̃Rm · τ∗ − m · τ∗g̃R

)
,

(B3)

which gives the contribution to the right-hand side

− (gRm · τ + m · τgR)γL + fRm · τ∗ + m · τ fR

− γL(− f̃Rm · τ − m · τ∗ f̃R)γL

+ γL(−g̃Rm · τ∗ − m · τ∗g̃R). (B4)

For the third term the U matrix is simply Uφ = m̂, which
gives the contribution

−m · τγL + γLm · τ∗. (B5)

FIG. 17. The absolute value of the singlet component fs(E/�0)
and its derivative in material (L) at z0 = l/2.

The total Riccati-parametrized spin-active boundary con-
ditions thus read

∂zγL = G0(1 − γLγ̃R)NR(γR − γL )

+ G1(m · τNRγRm · τ∗ − γLm · τ∗ÑRm · τ∗ + m2γL

− m · τNRm · τγL + γLm · τ∗ÑRγ̃ m · τγL )

+ GMR(NRγRm · τ∗ + m · τNRγR

− γL[ÑRm · τ∗ + m · τ∗ÑR − m · τ∗]

− [NRm · τ − m · τ + m · τNR]γL

+ γL[ÑRγ̃Rm · τ + m · τ∗ÑRγ̃R]γL )

− iGφ (−m · τγL + γLm · τ∗). (B6)

APPENDIX C: ANALYSIS OF THE SYMMETRY
OF THE ANOMALOUS GREEN’S FUNCTION

UNDER THE ˜· · · OPERATION

We here analyze whether the disappearance of the mag-
netization at J = 0 is caused by the spatial gradient of the
fs,R and dx,R components at φ = 0, π or by the symmetry
properties under the ˜· · · operation of the triplet and singlet
components. To investigate this, consider Figs. 17 and 18.
The first situation explored is when material (R) is connected
to the middle of material (L), z0 = l/2. It is seen from the
figures that in this case the singlet component, fs,L, is zero
at φ = π while the derivative, ∂z fs,L, is zero at φ = 0. The
figures show that this also causes dx,R to vanish at φ = 0 and
fs,R at φ = π . Thus a finite derivative of fs is not sufficient to
induce a magnetization in (R).

To check whether it is the symmetry of the anomalous
Green’s function under the ˜· · · operation that dictates when

FIG. 18. The absolute value of the components fs(E/�0) and
dx (E/�0) in material (R) as a function of φ for different energies,
E/�0, at z0 = l/2.

024503-14



CONVERTING A TRIPLET COOPER PAIR SUPERCURRENT … PHYSICAL REVIEW B 109, 024503 (2024)

FIG. 19. The absolute value of the singlet component fs(E/�0)
and its derivative in material (L) at z0 = l/4.

a finite magnetization occurs, we considered a different sit-
uation where z0 = l/4 so that the material (R) is no longer
connected to the middle of (L). The result is shown in Figs. 19
and 20. It is here seen that neither fs,L nor ∂z fs,L vanishes at
any φ. Therefore also dx,R and fs,R are finite at every φ. It

FIG. 20. The absolute value of the components fs(E/�0) and
dx (E/�0) in material (R) as a function of φ for different energies,
E/�0, at z0 = l/4.

was checked that the magnetization looks exactly like that in
Fig. 6, also for z0 = l/4. Thus we can conclude that it is the
˜· · ·-operation symmetry, which is influenced by whether or not

a supercurrent flows, that causes the magnetization to vanish
at φ = 0, π .
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