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Kramers’ degenerate magnetism and superconductivity
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Motivated by the recent discovery of odd-parity multipolar antiferromagnetic order in CeRh2As2, we examine
the coexistence of such translation invariant Kramers’ degenerate magnetic states and superconductivity. We
show that the presence of such magnetic states generically suppresses superconductivity, whether it be spin-
singlet or spin-triplet, unless the magnetic state drives a symmetry-required pair density wave superconducting
order. We apply our results to CeRh2As2, where no pair density wave order appears, and to the loop current order
in the cuprates, where such pair density wave superconductivity must appear together with Bogoliubov Fermi
surfaces. In the former case, we explain why superconductivity is not suppressed.
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I. INTRODUCTION

The discovery of likely field-induced odd-parity super-
conductivity in CeRh2As2 [1] has generated a great deal of
interest [2–16]. Subsequent to this, in addition to quadrupolar
order [8], CeRh2As2 has been found to host odd-parity mul-
tipolar antiferromagnetic (AFM) order [17,18]. In particular,
nuclear quadrupolar resonance (NQR) and nuclear magnetic
resonance (NMR) have observed that this order develops at a
temperature below the superconducting transition temperature
(Tc). The symmetry of such a state is unusual since it indepen-
dently breaks parity (P) and time reversal (T ) symmetries but
is invariant under the action of their product PT . Since PT is
still preserved, electronic states retain the well-known twofold
Kramers’ degeneracy; hence we shall refer to such magnetic
states as Kramers’ degenerate magnets. Such order has been
referred to as odd parity multipole order [19] and magnetic
toroidal order [20,21] in different contexts. Since neither P
nor T symmetries are present, the electronic dispersion ξk

does not satisfy the usual relation ξk = ξ−k. The asymmetry
between ξk and ξ−k (ξk �= ξ−k) naturally opens up the question
of what effect Kramers’ degenerate magnetic order has on
the superconducting state. This question has been addressed
previously for multiband systems [19,22] and also for loop
current order in cuprates [23–25]. Superconductivity is usu-
ally a low energy scale phenomenon; thus it is desirable to
develop a general single-band theory to capture the interplay
of Kramers’ degenerate order and superconductivity. Here we
provide such a general theoretical framework that allows us
to encompass arbitrary energy dispersions and gap functions,
allowing us to draw broad conclusions.

Our theory shows that both spin-singlet and spin-triplet
superconductivity are strongly suppressed by such an order
(such states can still survive in one-dimensional systems [19]).
This theory is exact in the weak-coupling limit. Here Tc0 is
an input parameter. Once Tc0 is given, changes in the critical
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temperature due to Kramers’ degenerate magnetic order are
quantitatively well described [26]. Our approach is akin to An-
derson’s theorem which says magnetic order destroys s-wave
superconductivity as the Cooper pairs are formed from time-
reversal partners. For Kramers’ degenerate order considered
here both time-reversal symmetry and inversion symmetry
are broken and hence there will be a generic suppression of
both spin-singlet and spin-triplet superconductivity. However,
if the magnetic state belongs to a special symmetry class,
then superconductivity can still appear. In particular, if the
magnetic state belongs to a vector representation of the point
group, then a symmetry-dictated pair density wave (PDW)
superconducting state is stabilized. Furthermore, we find this
magnetic order often implies the existence of Fermi surfaces
in the superconducting states. Such Fermi surfaces are called
Bogoliubov Fermi surfaces (BFSs). When the magnetic state
leads to symmetry-required PDW superconductivity, we find
that the PDW order reduces the size of the Bogoliubov Fermi
surfaces, providing a natural microscopic mechanism for the
appearance of such PDW order. We apply this framework to
superconductivity coexisting with odd-parity multipolar AFM
order in CeRh2As2 and coexisting with the loop current order
in the cuprates. In a recent paper we also apply the general
framework developed here to obtain a nematic BFSs in the
tetragonal phase of FeSe1−xSx [21]. Such BFSs have recently
been observed in ARPES measurements for FeSe1−xSx [27].

II. ODD PARITY ENERGY DISPERSION

As discussed above, Kramers’ degenerate magnetic order
gives rise to asymmetry between the electronic dispersions ξk

and ξ−k. This asymmetry is the key ingredient in our theory
and we define ξ−,k = (ξk − ξ−k)/2 to quantify this. The k
dependence of ξ−,k is governed by the symmetry of Kramers’
degenerate magnetic order [20]. Since these magnetic orders
are translation invariant, they correspond to odd-parity irre-
ducible representations of the crystallographic point group.
Therefore, ξ−,k can be constructed by forming products of
momentum components ki that belong to the corresponding
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irreducible representation of the crystallographic point group.
Some examples of the predicted form of ξ−,k can be found
in [19,22,28–34] and the recent experimental observation of
this has been reported in Mn2Au [28]. Here we discuss what
form ξ−,k takes for the observed odd-parity AFM order in
CeRh2As2 and for the loop current order in the cuprates.

In CeRh2As2, with space group P4/nmm, there are two Ce
atoms per unit cell. Including a single Kramers’ doublet on
each Ce site leads to the tight-binding Hamiltonian [1],

H0 = ε00,kτ0σ0 + εx0,kτxσ0 + εy0,kτyσ0

+ εzx,kτzσx + εzy,kτzσy + εzz,kτzσz

= [t1(cos kx + cos ky) − μ]τ0σ0 + tc,1 cos
kz

2
cos

kx

2

× cos
ky

2
τxσ0 + tc,2 sin

kz

2
cos

kx

2
cos

ky

2
τyσ0

+ αR(sin kyτzσx − sin kxτzσy)

+ λ sin kz(cos kx − cos ky) sin kx sin kyτzσz. (1)

The τi Pauli matrices encode the Ce site basis and the σi Pauli
matrices encode the spin basis. Here αR and λ are the Rashba
and Ising spin-orbit couplings. This has the following energy
dispersion:

ξ1,2,k = ε00,k ±
√

ε2
x0,k + ε2

y0,k + ε2
zx,k + ε2

zy,k + ε2
zz,k. (2)

This Hamiltonian gives rise to two bands where 1,2 refers
to the + and − bands, respectively, each of which has a
pseudospin degeneracy with the property that ξ1,2,k = ξ1,2,−k.

To Eq. (1), we add the minimal coupling to the odd-parity
AFM order. This order is of opposite sign on the two Ce
sites in the unit cell and the Ce moments are oriented along
the z axis [17,18]. Consequently, we write this coupling as
Hc = Mzτzσz. The resulting Hamiltonian gives rise to two
doubly degenerate (the twofold degeneracy is a pseudospin
degeneracy) bands. Treating Hc as a perturbation to H0 yields

ξ−,k = ±Mzλ sin kz(cos kx − cos ky) sin kx sin ky√
ε2

x0,k + ε2
y0,k + ε2

zx,k + ε2
zy,k + ε2

zz,k

σ̃0, (3)

where σ̃0 denotes the pseudospin degeneracy and the ± de-
notes that ξ−,k has a different sign on the two bands ξ1,2,k.
A key feature of the ξ−,k is that even though it has the same
form for both pseudospin partners, it is generated through the
spin-orbit coupling term λ. Formally, ξ−,k has a momentum
structure that belongs to the A1u representation of the D4h

point group. We illustrate the momentum asymmetry of ξ−,k

by plotting the change to ξ1,2,k due to the presence of Kramers’
degenerate order in Fig. 1 for momenta near the Brillouin zone
boundary.

The form of ξ−,k for loop current order in the cuprates has
been derived earlier and takes the form [23,35–38]

ξ−,k = 2J[sin kx − sin ky − sin(kx − ky)]σ0, (4)

where J is the strength of the order. Physically, this term
originates from orbital currents that form closed loops within
the CuO2 unit cell. In this case, unlike for CeRh2As2 above,
spin-orbit coupling does not play a role in the origin of ξ−,k.
Formally, for the loop current order, the momentum structure

FIG. 1. Band dispersions for CeRh2As2. Top: energy dispersion
for CeRh2As2 with ky = 0.4π

a , kz = 0.4π

a , t1 = 5, tc1 = 0.1, tc2 = 0.1,
αR = 0.3, λ = 0.3 and with a = 1 and μ = −3.4. Note that the
dispersion is symmetric about kx = π . The black band corresponds
to ξ1,k, while the red band corresponds to ξ2,k. Bottom: energy
dispersion for CeRh2As2 after the addition of Kramers’ degenerate
order with Mz = 0.5. Notice the asymmetry of the dispersion around
kx = π .

of ξ−,k belongs to the Eu representation of the D4h point
group. In contrast to the odd-parity multipole AFM order in
CeRh2As2, here the momentum structure of ξ−,k belongs to a
vector representation of the D4h point group. This, as we shall
see later, leads to the stabilization of PDW superconductivity
for the cuprates.

III. GENERAL THEORY

The Kramers’ degeneracy that is retained with the presence
of Kramers’ degenerate magnetic order allows a single band
theory for superconductivity [39,40]. In the weak coupling
limit, this can be formulated for arbitrary Fermi surfaces,
gap functions, and ξ−,k and this further will allow this
physics to be treated within the framework of quasiclassical
theory, a powerful framework within which to examine su-
perconductivity [26]. We consider the following single-band
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Hamiltonian:

H =
∑

ks

εkc†
kscks + 1

2

∑
kk′αβα′β ′

Vαβα′β ′ (k, k′)

× c†
k+ q

2 ,α
c†
−k+ q

2 ,β
c−k′+ q

2 ,β ′ck′+ q
2 ,α′ , (5)

where the operator c†
ks (cks) creates (annihilates) electrons

with momentum k and spin s; s, α, β, α′, β ′ =↑,↓; q is the
center-of-mass momentum of the Cooper pairs; εk ≡ ξk −
μ = ξ+,k + ξ−,k − μ, where ξ+,k = (ξk + ξ−k)/2 is the usual
k symmetric dispersion included for single-band theories and
μ is the chemical potential. The role of Kramers’ degenerate
magnetic order is included through the addition of ξ−,k. Here
we explicitly include the Cooper pair center of mass momen-
tum since later we find that symmetry requires this must be
nonzero for Kramers’ degenerate magnetic order belonging to
a vector representation of the point group.

Prior to presenting the results of our analysis, we note that
generally Kramers’ degenerate magnetic order leads to mix-
ing between even parity, pseudospin-singlet and odd parity,
pseudospin-triplet superconductivity. This can be understood
from the Ginzburg-Landau (GL) theory. In particular, consider
an even parity order parameter ψ , an odd parity order parame-
ter η, and a Kramers’ degenerate magnetic order parameter M.
Then symmetry allows the following term iM(ψη∗ − ηψ∗)
in the GL free energy, which ensures a singlet-triplet mixed
order parameter of the form ψ + iη. However, in the sin-
gle band limit we consider here, it is possible to show that
this pseudospin singlet-triplet mixing vanishes if we assume
that the pairing interactions are not changed by Kramers’
degenerate magnetic order. This is justified if ξ−,k has a
much smaller energy scale than the electronic bandwidth,
which we assume here. Hence we consider each pairing
channel independently. For pseudospin singlet order, we take
Vαβα′β ′ (k, k′) = Vs

2 [ fkiσ2]αβ[ fk′ iσ2]†
α′β ′ , while for pseudospin

triplet order we take Vαβα′β ′ (k, k′) = −Vt
2 [dk · σiσ2]αβ[dk′ ·

σiσ2]†
α′β ′ and assume that both fk and dk can be chosen real—

in practice this applies to singly degenerate superconducting
irreducible representations. It is not difficult to generalize this
to higher-dimensional irreducible representations.

Since we consider finite momentum pairing with wavevec-
tor q, the mean-field limit of superconductivity is described
by the following Bogliubov–de Gennes Hamiltonian:

HBDG =
(

ξ+,k+ q
2
+ξ−,k+ q

2
−μ 
k,q

−
∗
k,q −ξ+,−k+ q

2
−ξ−,−k+ q

2
+μ

)
.

(6)

This leads to the following free energy:

�s − �n =
{

−2kB T
∑

k

ln

[
cosh

(
βEk,q

2

)]
+ |
q|2

Vs

}

−
{

−2kB T
∑

k

ln

[
cosh

(
βEk,q,0

2

)]}
, (7)

where Ek,q ≡ (
ε)k,q +
√

ε2
k,q + |
q fk|2 with (
ε)k,q ≡ 1

2
(εk+ q

2
− ε−k+ q

2
) and εk,q ≡ 1

2 (εk+ q
2
+ ε−k+ q

2
), Ek,q,0 ≡ (


ε)k,q +
√

ε2
k,q , and Vs is the pairing interaction. Equation (7)

applies to pseudospin-singlet order; for the pseudospin-triplet
order, | fk|2 is replaced by |dk|2. Minimizing this free energy
with respect to |
q| and q leads to the gap equation and the
condition on q that ensures a vanishing supercurrent

ln

(
T

Tc0

)
=

〈
2πkBT | fk|2Re

∞∑
n=0

(
1

δ
− 1

h̄ωn

)〉
k

, (8)

〈
∂ (
ε)k,q

∂q
| fk |2 Im

∞∑
n=0

1

δ(δ + h̄ωn + i(
ε)k,q)

〉
k

= 0, (9)

where δ ≡
√

(h̄ωn + i(
ε)k,q)2 + |
q|2| fk|2 and ωn is the
Matsubara frequency which satisfies h̄ωn = (2n + 1)
πkBT, n ∈ Z. Throughout this work, we adopt the convention
that the average over the Fermi surface 〈| fk|2〉k = 1.
This average over the Fermi surface is weighted by the
momentum-dependent density of states. By numerically
solving this set of equations, we can find the gap and the
optimal q as functions of T . As shown in the Appendix, the
Green’s function and the anomalous Green’s function are

Ĝ = − h̄
(
ε−k+ q

2
+ ih̄ωn

)
σ0(

ε−k+ q
2
+ ih̄ωn

)(
εk+ q

2
− ih̄ωn

) + |ψ (k, q)|2 , (10)

F̂ = h̄
̂(
ε−k+ q

2
− ih̄ωn

)(
εk+ q

2
+ ih̄ωn

) + |ψ (k, q)|2 , (11)

where σ0 is the identity matrix and 
̂ is the gap matrix. As
can be also seen in the Appendix, for the pseudospin triplet
|ψ (k, q)|2 is replaced by |d(k, q)|2.

To gain an understanding of the role of Kramers’ degen-
erate magnetic order, we initially consider T near Tc. The
equation determining the critical temperature T q

c is

ln

(
T q

c

Tc0

)
=

〈
| fk|2

{
ψ

(
1

2

)
− Re

[
ψ

(
1

2
+ i(
ε)k,q

2πkBT q
c

)]}〉
k

,

(12)

where Tc0 is the critical temperature for (
ε)k,q = 0, the
digamma function ψ (z) = −γ + ∑∞

n=0( 1
n+1 − 1

n+z ), and γ

is the Euler-Mascheroni constant. Assuming |q| 
 |k|, we
have (
ε)k,q = ξ−,k + q

2 · ∇ξ+,k. The expression ψ ( 1
2 ) −

Re[ψ ( 1
2 + i(
ε)k,q

2πkBT q
c

)] is intrinsically negative, which yields
T q

c < Tc0. From the monotonic decreasing dependence of
the digamma function, we find that T q

c is decreasing with
increasing |(
ε)k,q|. Eventually, T q

c will become zero, i.e.,
superconductivity is destroyed. Using the asymptotic expan-
sion of the digamma function, the critical value for |(
ε)k,q|
corresponding to Tc = 0 is given by〈

| fk|2 ln

( |(
ε)k,q|
2πkBTc0

)〉
k

= ψ

(
1

2

)
. (13)

We conclude that once the magnitude of (
ε)k,q becomes on
the order of kBTc0 superconductivity is destroyed. We note that
the usual Pauli limiting field, HP, for an s-wave superconduc-
tor is given by μBHP = 
0/

√
2; hence, throughout this paper,

we choose to express (
ε)k,q in units of μBHP to provide
some context. Importantly, since (
ε)k,q depends not only
on ξ−,k, but also on q, it is possible that (
ε)k,q can become
small even if ξ−,k is larger than the superconducting gap. To
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illustrate this, it is useful to consider an example with ξ+,k =
h̄2k2

2m and ξ−,k = αkx. Then, (
ε)k,q = αkx + h̄2

2m (qxkx + qyky).
The choice q = (qx, qy) = (− 2mα

h̄2 , 0) will cancel the ξ−,k term
making (
ε)k,q = 0. Therefore, the critical temperature re-
mains unchanged from Tc0 in spite of a ξ−,k that can be much
larger than the gap.

To understand in more detail how a PDW state with a
nonzero q can resurrect a suppressed Tc due to ξ−,k, we carry
out a small (
ε)k,q expansion. The critical temperature is then
determined by

ln

(
T q

c

Tc0

)
= 7ζ (3)(

2πkBT q
c
)2

×
〈
| fk|2

[
−ξ 2

−,k − h̄2(q · v)2

4
− h̄ξ−,kq · v

]〉
k

,

where v(k) ≡ 1
h̄∇ξ+,k is the velocity. Only the third term

(−h̄ξ−,kq · v) can be positive and hence increase T q
c . Thus

the existence of a PDW state depends on a nonzero average
〈| fk|2[−h̄ξ−,kq · v]〉k . Since the components of the velocity
v belong to a vector representation of the point group, the
only way to get this average nonzero is to require that the
momentum structure of ξ−,k also belongs to a vector represen-
tation. This implies that Kramers’ degenerate magnetic order
belongs to a vector representation of the point group. Indeed,
when Kramers’ degenerate magnetic order belongs to a vector
representation, symmetry implies that the Ginzburg-Landau
free energy contains a nonvanishing Lifshitz invariant of the
form

∑
j γ j[ψ (Djψ )∗ + ψ∗(Djψ )] with Dj ≡ −i∇ j − 2eAj ,

which guarantees the appearance of a PDW state with nonzero
q. This symmetry-dictated PDW order typically takes the form
ψ = ψ0eiq·r with a single-plane wave, unlike the multiple
plane-wave solutions often associated with PDW order [41].
The existence of Lifshitz invariants, and the concomitant finite
momentum PDW pairing, is important for the superconduct-
ing diode effect [42–45]. This suggests that superconductivity
coexisting with Kramers’ degenerate magnetic order provides
a route toward creating the superconducting diode effect.

In addition to generating PDW states, Kramers’ degenerate
magnetic order can also lead to novel low-energy excitation
spectra. In particular, by finding the poles of the Green’s
function G, we can obtain the quasiparticle dispersion

E = (
ε)k,q ±
√

ε2
k,q + |
q fk|2. (14)

In principle, because of the appearance of (
ε)k,q in this ex-
pression, Bogoliubov Fermi surfaces (BFSs) can exist. These
BFSs are given by E = 0 and appear for k where (
ε)k,q

is larger than |
q fk|. Indeed, these are guaranteed to appear
when there are gap nodes present, i.e., fk = 0 (or |dk| = 0)
provided that (
ε)k,q does not also vanish on these nodes.
When this occurs, (
ε)k,q inflates the nodes of the original
gap functions into Bogoliubov Fermi surfaces [46–49]. In
a recent paper [21] we carry out a detailed analysis of the
existence of Bogoliubov Fermi surfaces in FeSe1−xSx.

IV. APPLICATION TO CeRh2As2

In addition to Eq. (3) for ξ−,k, we require a description of
the normal state to apply our results to CeRh2As2. DFT results

[7,50] yield a Fermi surface as depicted in Fig. 2. They further
reveal that the majority of the density of states (DOS) (∼80%)
is concentrated on the Fermi surface structures near the X–M
line, which we refer to as beans. Here we include only those
beans and, for simplicity, ignore the c-axis dependence of ξ+,k

(this assumption does not qualitatively change our results).
Furthermore, we assume that a dx2−y2 gap structure as de-
picted in Fig. 2 appears when no magnetic field is applied.
This assumption also does not qualitatively change the results
unless the gap function has nodes on the beans. We briefly
comment on this possibility later. To describe these beans,
we develop a power series expansion in powers of δkx, δky

centered about the minima of the band along the X–M line.
Explicitly considering a bean centered at (k̃x, k̃y) = ( π

a , 0.4π
a ),

we have the dispersion

ξ+,k = α(δkx )2 + β(δky)2 + γ1(δkx )2(δky) + γ2(δky)3. (15)

Mirror symmetry prevents terms odd in δkx appearing in this
expression. We also expand ξ−,k in Eq. (3) around the centers
of the beans. For the pocket centered at (k̃x, k̃y ), we take
ξ−,k = λ̃δkxa sin kz, where

λ̃ = −Mzλ[1 + cos(k̃y)]

αR
. (16)

The numerical solution of the linearized gap equation is
shown in Fig. 3. Because Kramers’ degenerate magnetic order
does not belong to a vector representation, a PDW state is not
required by symmetry in this case. Thus, when ξ−,k becomes
sufficiently large, superconductivity is suppressed as seen in
Fig. 3. However, this is not observed in experiment [17,18],
i.e., there is no change seen to superconductivity upon enter-
ing the magnetic state, which raises the following question:
how does superconductivity still survive? Here we suggest
that the explanation for this persistence hinges on the value
of λ̃ defined in Eq. (16). This depends strongly on the ratio of
the Ising coupling (λ) to the Rashba spin-orbit coupling (αR).
An upper bound to this ratio, and hence λ̃, can be estimated

FIG. 2. Sketch of the normal state Fermi surface of CeRh2As2

for kz = 0 found from renormalized DFT calculations. The majority
of the density of states sits on the beans. The dx2−y2 pairing symmetry
considered here is denoted by the 
 values as shown.
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using density functional theory (DFT) calculations [51]. In
particular, for Kramers’ degenerate bands, the band splitting
by a Zeeman field can be quantified by calculating effective
g̃ factors. These g̃ factors have been calculated by DFT and
quantify the energy splitting between Kramers’ doublets for
fields applied along the x, y, and z directions. Comparing the
DFT results to the effective g factors calculated from Eq. (1)

reveals that ξ−,k generated by Kramers’ degenerate magnetic
order is too small to suppress superconductivity. More specif-
ically, the effective g̃ factor for a particular field orientation

h and momentum k is given by [52] g̃2
k,h = ε2

xo,k+ε2
yo,k+(ε3,k ·ĥ)2

ε2
xo,k+ε2

yo,k+ε2
3,k

,

where ε3,k = (εzx,k, εzy,k, εzz,k ). The ratio of relevance for λ̃ is
g̃2

k,z

g̃2
k,x+g̃2

k,y
. Near the beans, this ratio is

g̃2
k,z

g̃2
k,x + g̃2

k,y

≈ (δkx )2
{

cos2(k̃y/2)
[
t2
c,1 cos2(kz/2) + t2

c,2 sin2(kz/2)
] + sin2(k̃y)α2

Rλ̃2/M2
z

}
α2

R sin2(k̃y)
> λ̃2/M2

z . (17)

We further estimate Mz ≈ μBHP, where HP is the usual Pauli
limiting field since the temperature scale for Mz is of the order
of the critical temperature of superconductivity. From DFT it
is found that, after averaging over the Fermi surface of the
beans,

√
g2

k,z/(g2
k,x + g2

k,y) ≈ 0.2 [51], and hence akF λ̃
μBHP

< 0.1
(where we have used that akF ≈ 0.5). The ratio of akF is
determined by the size of the beans to the size of the Brillouin
zone. The condition akF λ̃

μBHP
< 0.1 is shown as the shaded region

in Fig. 3. We note that the actual value of λ̃ is likely much
smaller due to the use of the final inequality in Eq. (17). Thus
superconductivity persists despite the presence of Kramers’
degenerate magnetic order. Recent ARPES measurements
[53,54] have found quasi-two-dimensional (2D) Fermi sur-
faces with a large density of states near the zone boundary
consistent with the beans considered in this manuscript. While
the detailed structure of the Fermi surfaces obtained the
ARPES measurements may be different than that considered
here, nevertheless the arguments outlined above giving rise
to a small λ̃ will still stand and superconductivity will still
persist.

While the pairing state we consider above has dx2−y2 sym-
metry, it is nodeless on the Fermi surface beans which do not

FIG. 3. Transition temperature as a function of the antisymmetric
coupling parameter λ in CeRh2As2. The parameter a is the lat-

tice constant; kF ≡
√

μ√
αβ

is the natural unit for δkx and δky. We

choose the values α = 1
(1.25)2 , β = 1

(0.55)2 , μ = 0.7, and γ1 = 0.75,

γ2 = −0.9. The Pauli limiting field energy scale μBHP = 
0/
√

2,
where 
0 = 1.764kBTc0. The shaded region describes the estimated
allowed parameter regime for CeRh2As2.

intersect the dx2−y2 nodes. However, the dx2−y2 gap will have
nodes along the �-centered Fermi surfaces, possibly allowing
for Bogoliubov Fermi surfaces to appear in the supercon-
ducting state. However, these nodes will not be inflated to
Bogoliubov Fermi surfaces since (
ε)k vanishes on the nodes
of the dx2−y2 gap. We can further consider other gap functions
with nodes to see if Bogoliubov Fermi surfaces are expected.
For example, nodes can appear on the beans for a dxy-like
gap. The beans will then have nodes where they intersect
the Brillouin zone face. However, these nodes will also not
be inflated to form Bogoliubov Fermi surfaces because again
(
ε)k vanishes on these nodes. Consequently, we do not ex-
pect Bogoliubov Fermi surfaces to appear as a consequence
of Kramers’ degenerate magnetic order in CeRh2As2 for any
pairing symmetry.

V. APPLICATION TO LOOP CURRENT ORDER
IN CUPRATES

The normal state is given by the dispersion ξ+,k =
−2t (cos kx + cos ky) − 4t ′ cos(kx ) cos(ky), where t and t ′ are
the nearest and next nearest neighbor hoppings on the square

FIG. 4. Transition temperature as a function of the loop current
order parameter for both q = 0 and finite q theories. The Pauli
limiting field energy scale μBHP = 
0/

√
2, where 
0 = 1.764kBTc0.

Using hopping parameter t as the energy scale, we choose t ′ =
−0.25, μ = −0.9. We can observe a nonmonotonic behavior in the
q = 0 plot. This kind of behavior typically suggests the existence of
a PDW state. This reveals that PDW order is energetically favorable
since it shrinks the size of the Bogoliubov Fermi surfaces.
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FIG. 5. Bogoliubov Fermi surfaces. The upper plot is for q = 0;
the lower plot is for q �= 0.

2D lattice [23]. Equation (4) above gives ξ−,k. The gap func-
tion is taken to be 
k,q = 
q fk = 
qC(cos kx − cos ky) with
normalization factor C (determined by 〈| fk|2〉k = 1). Since
Kramers’ degenerate magnetic order belongs to a vector rep-
resentation, our general results imply that a PDW state is
stabilized by the loop current order. In Fig. 4, we compare
the calculated values for Tc with and without the PDW order.
Remarkably, the maximum J value for the PDW state is about
15 times larger than the q = 0 state. In addition, since the
d-wave gap has nodes, the loop current order will give rise to
BFSs. As shown in Fig. 5, we find that the BFSs are strongly
shrunk due to the PDW order. The gain in condensation energy
due to the shrinking of the BFSs provides an energetic mech-
anism to stabilize the PDW state. The properties of such BFSs
have been examined previously in the cuprates when there is
no PDW order [23,25,55]. There it has been discussed that
specific heat measurements will reveal a residual Sommerfeld
coefficient from the BFSs. However, in general, this cannot be
distinguished from impurity effects unless, as shown in [56], it
is possible to control the impurity concentration. We note that
a supercurrent can be used to experimentally probe the PDW
state. In particular, the addition of a supercurrent will change
the momentum of the PDW and hence change the size of the
BFSs.

VI. CONCLUSIONS

We considered the interplay of PT translation invariant
Kramers’ degenerate magnetic order and superconductivity.
The absence of P and T symmetry leads to an asymmetry
in the electronic dispersion relation (ξk �= ξ−k). We develop
a general single-band framework to capture the effect of
Kramers’ degenerate magnetic order on superconductivity.
We find that, when the magnetic states belong to a vector
representation of the point group, pair density wave states are
stabilized. In the absence of such symmetries, superconduc-
tivity is generically suppressed. We apply our framework to
CeRh2As2, where we explain why superconductivity persists
in the presence of Kramers’ degenerate magnetic order, as
well as to the coexistence of loop current order and supercon-
ductivity in the cuprates, where pair density wave supercon-
ductivity appears together with Bogoliubov Fermi surfaces.
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APPENDIX: DERIVATION OF THE GREEN’S FUNCTIONS

Starting from the single-band Hamiltonian

H =
∑

ks

εkc†
kscks + 1

2

∑
kk′αβα′β ′

Vαβα′β ′ (k, k′)

× c†
k+ q

2 ,α
c†
−k+ q

2 ,β
c−k′+ q

2 ,β ′ck′+ q
2 ,α′ (A1)

within mean-field approximation, we get the mean-field
Hamiltonian

H =
∑

ks

εkc†
kscks − 1

2

∑
kαβ


αβ (k, q)c†
k+ q

2 ,α
c†
−k+ q

2 ,β

− 1

2

∑
kαβ


∗
αβ (k, q)c−k+ q

2 ,βck+ q
2 ,α, (A2)

where we have defined the gap function as


αβ (k, q) ≡ −
∑

k′α′β ′
Vαβα′β ′ (k, k′)

〈
c−k′+ q

2 ,β ′ck′+ q
2 ,α′

〉
(A3)

and then


∗
αβ (k, q) = −

∑
k′α′β ′

[Vαβα′β ′ (k, k′)]∗
〈
c−k′+ q

2 ,β ′ck′+ q
2 ,α′

〉∗

= −
∑

k′α′β ′
Vα′β ′αβ (k′, k)

〈
c†

k′+ q
2 ,α′c

†
−k′+ q

2 ,β ′
〉
, (A4)

where 〈. . .〉 stands for a grand canonical ensemble average.
We introduce the finite-temperature Green’s function:

Gαβ (k, q, τ ) ≡ −〈
Tτ ck+ q

2 ,α (τ )c†
k+ q

2 ,β
(0)

〉
. (A5)
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The operator A(τ ) denotes eHτ/h̄A e−Hτ/h̄, A(0) is for τ = 0,
where H is the Hamiltonian and τ is the “imaginary time,”
which is treated as a real quantity. Tτ is the time ordering op-
erator with respect to the imaginary time. Using the Heaviside
step function

θ (x) =
{

0, x < 0,

1, x > 0,
(A6)

we can express the Green’s function as

Gαβ (k, q, τ ) = − θ (τ )
〈
ck+ q

2 ,α (τ )c†
k+ q

2 ,β
(0)

〉
+ θ (−τ )

〈
c†

k+ q
2 ,β

(0)ck+ q
2 ,α (τ )

〉
. (A7)

Using ∂
∂τ

Gαβ (k, q, τ ), we get the equation of motion for the
Green’s function:(

∂

∂τ
+ εk+ q

2

h̄

)
Gαβ (k, q, τ ) + 1

h̄

∑
α′′


αα′′ (k, q)

× 〈
Tτ c†

−k+ q
2 ,α′′ (τ )c†

k+ q
2 ,β

(0)
〉 = −δ(τ )δαβ. (A8)

We can define the anomalous Green’s function:

F †
αβ (k, q, τ ) ≡ −〈

Tτ c†
−k+ q

2 ,α
(τ )c†

k+ q
2 ,β

(0)
〉
. (A9)

Similarly, using ∂
∂τ

F †
αβ (k, q, τ ), we get the equation of motion

for the anomalous Green’s function:(
∂

∂τ
− ε−k+ q

2

h̄

)
F †

αβ (k, q, τ )

− 1

h̄

∑
α′′


∗
α′′α (k, q)Gα′′β (k, q, τ ) = 0. (A10)

Transforming the Green’s function and the anomalous Green’s
function from the imaginary-time-momentum space to the
frequency-momentum space, we get the Gor’kov equations(

−iωn + εk+ q
2

h̄

)
Gαβ (k, q, ωn)

− 1

h̄

∑
α′′


αα′′ (k, q)F †
α′′β (k, q, ωn) = −δαβ, (A11)

(
−iωn − ε−k+ q

2

h̄

)
F †

αβ
(k, q, ωn)

− 1

h̄

∑
α′′


∗
α′′α (k, q)Gα′′β (k, q, ωn) = 0, (A12)

where δαβ is the Kronecker delta. We can define a second
anomalous Green’s function as

Fαβ (k, q, τ ) ≡ −〈
Tτ ck+ q

2 ,α (τ )c−k+ q
2 ,β (0)

〉
. (A13)

Combining the definition of the gap function, the expression
of the complex conjugate of the gap function, and the def-
initions of the anomalous Green’s function and the second
anomalous Green’s function in imaginary-time space and their
transformations in frequency space, we can get a relationship:

F †
β ′α′ (k′, q, ωn) = [Fα′β ′ (k′, q, ωn)]∗. (A14)

Then, we can replace the anomalous Green’s functions with
the second anomalous Green’s functions in the Gor’kov

equations to get(
−iωn + εk+ q

2

h̄

)
Gαβ (k, q, ωn)

− 1

h̄

∑
α′′


αα′′ (k, q)[Fβα′′ (k, q, ωn)]∗ = −δαβ, (A15)

(
−iωn − ε−k+ q

2

h̄

)
[Fβα (k, q, ωn)]∗

− 1

h̄

∑
α′′


∗
α′′α (k, q)Gα′′β (k, q, ωn) = 0. (A16)

The Gor’kov equations can be written in a matrix form,

( − ih̄ωn + εk+ q
2

)
Ĝ − 
̂F̂ † = −h̄σ0, (A17)( − ih̄ωn − ε−k+ q

2

)
F̂ † − 
̂†Ĝ = 0, (A18)

where 
̂ is the gap matrix and σ0 is the identity matrix.
Solving this system of matrix equations, we obtain the Green’s
function and the anomalous Green’s function as

Ĝ = − h̄
(
ε−k+ q

2
+ ih̄ωn

)
× [(

ε−k+ q
2
+ ih̄ωn

)(
εk+ q

2
− ih̄ωn

)
σ0 + 
̂
̂†

]−1
,

(A19)

F̂ = h̄
[(

ε−k+ q
2
− ih̄ωn

)(
εk+ q

2
+ ih̄ωn

)
σ0 + 
̂
̂†

]−1

̂.

(A20)

For singlet pairing, the gap matrix 
̂(k, q) is antisymmetric,
which can be characterized by a single even function ψ (k, q):


̂(k, q) = ψ (k, q)iσ2 =
[

0 ψ (k, q)
−ψ (k, q) 0

]
. (A21)

Substituting 
̂
̂† = |ψ |2σ0 into Ĝ and F̂ , we get the explicit
forms of the Green’s function and the anomalous Green’s
function:

Ĝ = − h̄
(
ε−k+ q

2
+ ih̄ωn

)
σ0(

ε−k+ q
2
+ ih̄ωn

)(
εk+ q

2
− ih̄ωn

) + |ψ (k, q)|2 , (A22)

F̂ = h̄
̂(
ε−k+ q

2
− ih̄ωn

)(
εk+ q

2
+ ih̄ωn

) + |ψ (k, q)|2 . (A23)

For triplet pairing, the gap matrix 
̂(k, q) is symmetric, which
can be parametrized by an odd vector function d(k, q),


̂(k, q) = d(k, q) · σiσ2

=
[−dx(k, q) + idy(k, q) dz(k, q)

dz(k, q) dx(k, q) + idy(k, q)

]
,

(A24)

where the Pauli matrix vector σ = (σ1, σ2, σ3). Assuming real
d(k, q), we have 
̂
̂† = |d|2σ0. Substituting this into the so-
lutions for Ĝ and F̂ , we get the explicit forms for the Green’s
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functions:

Ĝ = − h̄
(
ε−k+ q

2
+ ih̄ωn

)
σ0(

ε−k+ q
2
+ ih̄ωn

)(
εk+ q

2
− ih̄ωn

) + |d(k, q)|2 , (A25)

F̂ = h̄
̂(
ε−k+ q

2
− ih̄ωn

)(
εk+ q

2
+ ih̄ωn

) + |d(k, q)|2 . (A26)
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[29] L. Šmejkal, J. Železnỳ, J. Sinova, and T. Jungwirth,
Electric control of Dirac quasiparticles by spin-orbit
torque in an antiferromagnet, Phys. Rev. Lett. 118, 106402
(2017).

[30] A. Urru, J.-R. Soh, N. Qureshi, A. Stunault, B. Roessli,
H. M. Rønnow, and N. A. Spaldin, Neutron scattering from
local magnetoelectric multipoles: A combined theoretical,

024502-8

https://doi.org/10.1126/science.abe7518
https://doi.org/10.1103/PhysRevResearch.3.023179
https://doi.org/10.1103/PhysRevB.104.L041109
https://doi.org/10.1103/PhysRevResearch.3.023204
https://doi.org/10.1103/PhysRevResearch.3.033133
https://doi.org/10.1103/PhysRevResearch.3.L032071
https://doi.org/10.1103/PhysRevB.105.L020505
https://doi.org/10.1103/PhysRevX.12.031001
https://doi.org/10.1103/PhysRevB.106.L100504
https://doi.org/10.1103/PhysRevB.104.134517
https://doi.org/10.1103/PhysRevLett.130.136002
https://doi.org/10.1103/PhysRevB.106.L140502
https://doi.org/10.1103/PhysRevB.104.245116
https://doi.org/10.1103/PhysRevB.106.184509
https://arxiv.org/abs/2301.09151
https://doi.org/10.3389/femat.2022.880579
https://doi.org/10.1103/PhysRevLett.128.057002
https://doi.org/10.7566/JPSJ.91.043702
https://doi.org/10.1103/PhysRevB.93.224507
https://doi.org/10.1103/PhysRevB.98.165110
https://arxiv.org/abs/2306.11200
https://doi.org/10.1103/PhysRevLett.119.027001
https://doi.org/10.1103/PhysRevLett.100.027003
https://doi.org/10.1103/PhysRevB.86.045118
https://doi.org/10.1103/PhysRevB.88.024506
https://doi.org/10.1016/0370-1573(83)90051-0
https://doi.org/10.21203/rs.3.rs-2224728/v1
https://doi.org/10.1088/1361-648X/ac87e6
https://doi.org/10.1103/PhysRevLett.118.106402


KRAMERS’ DEGENERATE MAGNETISM AND … PHYSICAL REVIEW B 109, 024502 (2024)

computational, and experimental perspective, Phys. Rev. Res.
5, 033147 (2023).

[31] S. Bhowal and N. A. Spaldin, Revealing hidden magnetoelectric
multipoles using Compton scattering, Phys. Rev. Res. 3, 033185
(2021).

[32] N. A. Spaldin and R. Ramesh, Advances in magnetoelectric
multiferroics, Nat. Mater. 18, 203 (2019).

[33] M. Yatsushiro, R. Oiwa, H. Kusunose, and S. Hayami, Analysis
of model-parameter dependences on the second-order nonlin-
ear conductivity in PT -symmetric collinear antiferromagnetic
metals with magnetic toroidal moment on zigzag chains, Phys.
Rev. B 105, 155157 (2022).

[34] S. Hayami, M. Yatsushiro, and H. Kusunose, Nonlinear spin
Hall effect in PT -symmetric collinear magnets, Phys. Rev. B
106, 024405 (2022).

[35] C. M. Varma, Non-Fermi-liquid states and pairing instability of
a general model of copper oxide metals, Phys. Rev. B 55, 14554
(1997).

[36] C. M. Varma, Pseudogap phase and the quantum-critical point
in copper-oxide metals, Phys. Rev. Lett. 83, 3538 (1999).

[37] M. E. Simon and C. M. Varma, Detection and implications of a
time-reversal breaking state in underdoped cuprates, Phys. Rev.
Lett. 89, 247003 (2002).

[38] C. M. Varma, Theory of the pseudogap state of the cuprates,
Phys. Rev. B 73, 155113 (2006).

[39] M. Sigrist and K. Ueda, Phenomenological theory of unconven-
tional superconductivity, Rev. Mod. Phys. 63, 239 (1991).

[40] L. P. Gor’kov and E. I. Rashba, Superconducting 2D system
with lifted spin degeneracy: Mixed singlet-triplet state, Phys.
Rev. Lett. 87, 037004 (2001).

[41] D. F. Agterberg, J. C. S. Davis, S. D. Edkins, E. Fradkin, D. J. V.
Harlingen, S. A. Kivelson, P. A. Lee, L. Radzihovsky, J. M.
Tranquada, and Y. Wang, The physics of pair-density waves:
Cuprate superconductors and beyond, Annu. Rev. Condens.
Matter Phys. 11, 231 (2020).

[42] N. F. Q. Yuan and L. Fu, Supercurrent diode effect and finite-
momentum superconductors, Proc. Natl. Acad. Sci. USA 119,
e2119548119 (2022).

[43] J. J. He, Y. Tanaka, and N. Nagaosa, A phenomenological the-
ory of superconductor diodes, New J. Phys. 24, 053014 (2022).

[44] A. Daido, Y. Ikeda, and Y. Yanase, Intrinsic superconducting
diode effect, Phys. Rev. Lett. 128, 037001 (2022).

[45] B. Pal, A. Chakraborty, P. K. Sivakumar, M. Davydova, A. K.
Gopi, A. K. Pandeya, J. A. Krieger, Y. Zhang, M. Date, S. Ju
et al., Josephson diode effect from Cooper pair momentum in a
topological semimetal, Nat. Phys. 18, 1228 (2022).

[46] D. F. Agterberg, P. M. R. Brydon, and C. Timm, Bogoliubov
Fermi surfaces in superconductors with broken time-reversal
symmetry, Phys. Rev. Lett. 118, 127001 (2017).

[47] P. M. R. Brydon, D. F. Agterberg, H. Menke, and C. Timm,
Bogoliubov Fermi surfaces: General theory, magnetic order,
and topology, Phys. Rev. B 98, 224509 (2018).

[48] J. M. Link and I. F. Herbut, Bogoliubov-Fermi surfaces in non-
centrosymmetric multicomponent superconductors, Phys. Rev.
Lett. 125, 237004 (2020).

[49] C. Timm, A. P. Schnyder, D. F. Agterberg, and P. M. R.
Brydon, Inflated nodes and surface states in superconduct-
ing half-Heusler compounds, Phys. Rev. B 96, 094526
(2017).

[50] D. Hafner, P. Khanenko, E.-O. Eljaouhari, R. Küchler, J. Banda,
N. Bannor, T. Lühmann, J. F. Landaeta, S. Mishra, I. Sheikin,
E. Hassinger, S. Khim, C. Geibel, G. Zwicknagl, and M.
Brando, Possible quadrupole density wave in the supercon-
ducting Kondo lattice CeRh2As2, Phys. Rev. X 12, 011023
(2022).

[51] T. Shishidou (unpublished).
[52] H. G. Suh, Y. Yu, T. Shishidou, M. Weinert, P. M. R. Brydon,

and D. F. Agterberg, Superconductivity of anomalous pseu-
dospin in nonsymmorphic materials, Phys. Rev. Res. 5, 033204
(2023).

[53] X. Chen, L. Wang, J. Ishizuka, K. Nogaki, Y. Cheng, F. Yang,
R. Zhang, Z. Chen, F. Zhu, Y. Yanase et al., Coexistence of
near-EF flat band and van Hove singularity in a two-phase
superconductor, arXiv:2309.05895.

[54] Y. Wu, Y. Zhang, S. Ju, Y. Hu, G. Yang, H. Zheng,
Y. Huang, Y. Zhang, H. Zhang, B. Song et al., Quasi-
two-dimensional Fermi surface and heavy quasiparticles in
CeRh2As2, arXiv:2309.06732.

[55] S. A. Kivelson and C. M. Varma, Fermi pockets in a
d-wave superconductor with coexisting loop-current order,
arXiv:1208.6498.

[56] H. Oh, D. F. Agterberg, and E.-G. Moon, Using disorder to
identify Bogoliubov Fermi-surface states, Phys. Rev. Lett. 127,
257002 (2021).

024502-9

https://doi.org/10.1103/PhysRevResearch.5.033147
https://doi.org/10.1103/PhysRevResearch.3.033185
https://doi.org/10.1038/s41563-018-0275-2
https://doi.org/10.1103/PhysRevB.105.155157
https://doi.org/10.1103/PhysRevB.106.024405
https://doi.org/10.1103/PhysRevB.55.14554
https://doi.org/10.1103/PhysRevLett.83.3538
https://doi.org/10.1103/PhysRevLett.89.247003
https://doi.org/10.1103/PhysRevB.73.155113
https://doi.org/10.1103/RevModPhys.63.239
https://doi.org/10.1103/PhysRevLett.87.037004
https://doi.org/10.1146/annurev-conmatphys-031119-050711
https://doi.org/10.1073/pnas.2119548119
https://doi.org/10.1088/1367-2630/ac6766
https://doi.org/10.1103/PhysRevLett.128.037001
https://doi.org/10.1038/s41567-022-01699-5
https://doi.org/10.1103/PhysRevLett.118.127001
https://doi.org/10.1103/PhysRevB.98.224509
https://doi.org/10.1103/PhysRevLett.125.237004
https://doi.org/10.1103/PhysRevB.96.094526
https://doi.org/10.1103/PhysRevX.12.011023
https://doi.org/10.1103/PhysRevResearch.5.033204
https://arxiv.org/abs/2309.05895
https://arxiv.org/abs/2309.06732
https://arxiv.org/abs/1208.6498
https://doi.org/10.1103/PhysRevLett.127.257002

