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Topological magnon insulators (TMI) are ordered magnets supporting chiral edge magnon excitations. These
edge states are envisioned to serve as topologically protected information channels in low-loss magnonic devices.
The standard description of TMI is based on linear spin-wave theory (LSWT), which approximates magnons
as free noninteracting particles. However, magnon excitations of TMI are genuinely interacting even at zero
temperature, calling into question descriptions based on LSWT alone. Here we perform a detailed nonlinear
spin-wave analysis to investigate the stability of chiral edge magnons. We identify three general breakdown
mechanisms: (1) The edge magnon couples to itself, generating a finite lifetime that can be large enough to lead to
a spectral annihilation of the chiral state. (2) The edge magnon hybridizes with the extended bulk magnons and,
as a consequence, delocalizes away from the edge. (3) Due to a bulk-magnon mediated edge-to-edge coupling,
the chiral magnons at opposite edges hybridize. We argue that, in general, these breakdown mechanisms may
invalidate predictions based on LSWT and violate the notion of topological protection. We discuss strategies
how the breakdown of chiral edge magnons can be avoided, e.g., via the application of large magnetic fields.
Our results highlight a challenge for the realization of chiral edge states in TMI and in other bosonic topological
systems without particle number conservation.
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I. INTRODUCTION

Magnon spintronics has emerged as a promising candidate
to meet today’s grand challenge of realizing computational
technologies with a minimal environmental footprint [1]. En-
coding information in the excitations of magnetically ordered
insulators, called magnons, bypasses the Joule heating as-
sociated with moving electrons, thus facilitating low-power
computing. To increase the lifetime of magnonic signals, it
has recently been proposed to exploit topological protection
of magnons [2–14]. Topological magnon insulators (TMI)
have been suggested to support chiral edge magnons that are
immune to backscattering, similar to the chiral electronic edge
states in Chern insulators. The chiral magnon edge states
are the key ingredient for novel spintronic devices such as
spin-wave beam splitters, Fabry-Perot interferometers, and
waveguides [6,15–18]. The proposal of TMI in magnetic ma-
terials gave rise to the flourishing field of magnon topology
recently reviewed in Refs. [19–23].

Among the first examples of TMI were the honeycomb fer-
romagnets with next-nearest-neighbor Dzyaloshinskii-Moriya
interactions (DMI) [24,25]. Several materials, including CrI3,
CrGeTe3, and CrSiTe3, are thought to be described by vari-
ations of this model, as supported by evidence from several
inelastic neutron scattering and thermal Hall experiments
[26–28]. In an approximate semiclassical description, the lin-
ear spin-wave theory (LSWT), the honeycomb ferromagnets
host topological magnon bands whose properties, including
Berry curvature and Chern number, closely resemble the elec-
tronic bands in the Haldane model [24,25,29]. At the LSWT

level, this analogy between magnonic and electronic band
topology suggests that there are protected chiral magnon edge
modes due to the bulk-boundary correspondence, as depicted
in Fig. 1(a). Importantly, it is often implicitly assumed that
these edge modes carry over to the full spin model, based on
the experience that the LSWT is a reasonably good approx-
imation for many materials, especially ferromagnets [30,31].
As a result, the field of magnon topology relies heavily on
the LSWT, which has become the standard for classifying and
searching for new topological magnon materials [32–34], for
interpreting inelastic neutron scattering data in the context
of topology [11,26–28,35–37], and for understanding ther-
mal Hall effect data in terms of a magnon Berry curvature
[2–5,12,28,38–41].

However, explicit experimental evidence for topological
chiral magnon edge modes in quantum magnets is lacking.
Conventional probes, such as inelastic neutron scattering,
measure only the bulk magnon spectrum. Also, measure-
ments of transverse transport properties cannot reliably detect
magnon topology as is possible for electronic topological in-
sulators, where quantized topological markers are accessible.
This difference is due to the Bose statistics of magnons: their
contribution to the thermal Hall effect is neither quantized nor
does it vanish in topologically trivial magnonic systems [2,4].
It has been proposed to detect chiral magnon edge modes
by amplification of their occupation via driving with electro-
magnetic fields [42]. Similarly, other theoretical proposals for
the direct detection of chiral magnon edge states have been
put forward [43–49], but have not yet been experimentally
implemented.
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FIG. 1. Conceptual illustration of how the protection of chiral
edge states in TMI breaks down. Consider a TMI with periodic
(open) boundary conditions in the x (y) direction. (a) At the level
of LSWT, the single-magnon spectrum exhibits a gap between the
bulk bands, which are denoted by the gray areas. This gap supports
chiral edge states, indicated by red and blue colors, which propagate
in opposite directions at the opposite edges (denoted left and right).
(b) The probability amplitudes of the edge states are exponentially
localized to their respective edges. However, at the level of nonlinear
spin-wave theory, there are several many-body interaction processes
(sketched as Feynman diagrams) that can couple the edge magnons
to any other magnons via virtual transitions through the two-magnon
continuum. There are three main processes that (1) couple an edge
magnon to itself, (2) couple edge magnons to the bulk magnons (de-
noted by the black extended probability amplitudes), and (3) couple
the opposite edge magnons. Process (1) leads to a finite lifetime of
edge magnons, which can be large enough to annihilate the spectral
weight of the edge state. We call this process spectral annihilation.
Process (2) leads to a hybridization of edge magnons with bulk
magnons. As a result, the edge magnons delocalize into the bulk.
Process (3) causes a hybridization of states on opposite edges, vio-
lating their topological protection via edge-to-edge coupling. Taken
together, the three processes can violate all distinguishing features
of topologically protected chiral edge states, invalidating the conclu-
sions of LSWT.

The fact that, despite much effort, topological edge
magnons have not been observed motivates a detailed mi-
croscopic analysis of their stability. Indeed, we find that a
closer theoretical investigation reveals several potential break-
down mechanisms of chiral edge magnons. First of all, the
LSWT used to describe the edge modes is an approxima-
tion and its validity must be carefully checked. In the case
of antiferromagnets, the noninteracting LWST approximation
has long been understood to have limitations in predicting
magnon spectra [31,50]. Moreover, recent theoretical study
suggests that magnon-magnon interactions beyond the LSWT
can significantly alter the bulk excitation spectrum in systems
with anisotropic interactions such as DMI or noncollinear spin
textures [51–54]. In the context of TMI, such magnon-magnon
interactions have been shown to induce strong decay of the
bulk magnons in kagome magnets with DMI, potentially un-
dermining the bulk topology and jeopardizing the integrity of
chiral edge states [55]. For field-polarized honeycomb Kitaev
magnets, there is numerical and analytical evidence of TMI
regimes with stable chiral edge modes [56]. In this paper, we

address in detail the general stability of chiral edge modes
beyond LSWT.

The key point is that the analogy between magnonic
and electronic Chern insulators generally holds only up to
LSWT. Beyond this approximation, fundamental differences
between magnons and electrons come into play, which make
magnonic chiral edge modes susceptible to decay due to
many-body interactions always present in spin systems. To
have such decays, the scattering between states must be both
(1) kinematically allowed and (2) permitted by nonzero matrix
elements [53]. Both ingredients are missing for chiral edge
modes in electronic topological insulators [57], but can be a
priori present in TMI.

First, regarding the kinematic condition (1), we recall that
particles of electronic topological insulators are fermions with
a chemical potential in the band gap. Therefore, edge modes
are low-energy degrees of freedom protected from decay be-
cause the density of available final states vanishes at low
energies and temperatures. In contrast, magnons are bosonic,
having zero chemical potential. The chiral edge modes are,
thus, high-energy degrees of freedom connecting bulk bands,
which have significant energetic overlap with the two- or
multimagnon continuum in many materials. As a result, the
decay of the magnon chiral edge modes is often kinematically
allowed.

Second, regarding the quantum mechanical condition (2),
note that with number-conserving magnon-magnon inter-
actions in the Hamiltonian—as in a simple Heisenberg
ferromagnet—decay can only occur if mediated by thermally
excited magnons [30,37,58–61]. However, there is no general
particle number conservation of magnons—for example, DMI
interactions are enough to violate it [55,62–65] and potentially
induce strong spontaneous magnon decay even at zero tem-
perature [53]. For general models of TMIs, the spin-orbit like
spin exchange opening the topological gaps simultaneously
facilitates magnon decay.

The expectation that chiral edge magnons enjoy a degree
of “topological protection” is based on the following three
features found at the level of LSWT: (i) they have an infinite
lifetime, (ii) they are exponentially localized to their respec-
tive edges, as can be seen from their probability amplitudes,
and (iii) they do not hybridize with the edge state at the op-
posite edge in the thermodynamic limit—more precisely, their
hybridization gap in finite systems decays exponentially in the
system size over their localization length. Here, concentrat-
ing on the paradigmatic TMI of the honeycomb-ferromagnet
with DMI, we show how features (i) and (ii) may disappear
and feature (iii) may be severely undermined in the presence
of ubiquitous multimagnon interactions. We argue that there
are in principle three breakdown mechanisms of chiral edge
magnons, as depicted schematically in Fig. 1(b).

(1) Spectral annihilation. Chiral edge magnons undergo
a strong spontaneous decay that leads to a spectral lifetime
broadening. This effect can be so strong that, in some situa-
tions, they disappear completely.

(2) Delocalization. Chiral edge magnons hybridize with
the two-magnon continuum, which is made up of bulk modes
at lower energies, as well as with single-magnon bulk modes.
As a result, their wavefunction gains significant support deep
in the bulk, leading to a delocalization from the edge.
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(3) Edge-to-edge coupling. States on opposite edges may
hybridize via coupling to extended two-magnon bulk modes,
violating their topological protection. In particular, the decay
of the hybridization gap, albeit still exponential in system size,
can be orders of magnitude slower than that predicted in the
LSWT.

Our main finding is that predictions of topological edge
magnons based on LSWT are at least imprecise, and under
many circumstances any notion of “topological protection”
can be qualitatively wrong. On a more positive note, we
discuss under which conditions the results of LSWT can be
stabilized, and confirm the limit of large magnetic fields [56]
as the most promising regime for stable topological chiral
edge magnons.

The rest of the paper is organized as follows. In Sec. II, we
present the topological honeycomb ferromagnet with DMI,
discuss the LSWT and magnon-magnon interactions for this
model on a bounded strip geometry, and apply diagrammatic
perturbation theory to the topological magnon edge modes.
Section III presents zero-temperature single-magnon spectral
functions in the strip geometry with open boundary condi-
tions, showing the strong many-body renormalization of the
edge modes. To demonstrate the nonuniversality of these ef-
fects, we compute the spectral functions for both “zig-zag”
and “dangling” edge terminations. Section IV is devoted to
quantifying the decay rates of the edge modes using both a
self-consistent solution of the pole condition, and the widely-
used on-shell approximation. The performance of these two
methods is consequently compared. Section V A discusses
the hybridization of edge states with single-magnon and two-
magnon bulk modes. We show how the edge state of the
LSWT becomes an edge resonance with finite support in
the bulk due to magnon-magnon interactions. In Sec. V B,
we explore the hybridization of edge states with each other
by coupling to the delocalized two-magnon continuum. In
Sec. VI, we show how to restore stable and well-defined edge
modes by applying a magnetic field. Finally, in Sec. VII,
we discuss our results and their general implications in a
wide variety of ordered magnets and other bosonic systems.
Appendices A–F provide detailed technical information.

II. CHIRAL EDGE MODES IN A HONEYCOMB
TOPOLOGICAL MAGNON INSULATOR

For concreteness, we consider a spin model on the honey-
comb lattice with nearest-neighbor ferromagnetic Heisenberg
couplings and next-nearest-neighbor DMI given by

Ĥ = −J
∑
〈i j〉

�Si · �S j +
∑
〈〈i j〉〉

�Di j · (�Si × �S j ), (1)

where the spin operators �Si describe spin-S degrees of free-
dom, and J > 0 to stabilize the ferromagnetic order. Since the
honeycomb plane is a mirror plane of the system, the DMI
vector must point out of the plane, i.e. �Di j = Di j �ez [66,67],
where �ez is a unit vector in the z direction. The sign of the DMI
constant is linked to the bond direction. We set Di j = λi jD
with λi j = ±1, where the plus (minus) sign applies if the
bond from site i to site j is in the clockwise (counterclock-
wise) direction for a given hexagon. Treated in LSWT, this

FIG. 2. Sketch of the honeycomb lattice on the strip geometry
with (a) zig-zag and (b) dangling edge termination in the y direction
and periodic boundary conditions in the x direction. Next-nearest-
neighbor bonds and their orientations are indicated with teal arrows.
In our numerical analysis, the strip has 2Ny = 60 sites in the y
direction unless indicated otherwise. (c) Side view of the honey-
comb lattice with the classical ferromagnetic ground state indicated
with blue arrows. The magnetization is tilted with respect to the
out-of-plane DMI vector �D by an angle θ . (d) The only nonzero
self-energy diagram at one-loop order and zero temperature. kx (qx)
is the external (internal) momentum, and n, m (a, b) are the external
(internal) band indices. The three-magnon vertex factor g is defined
in Eq. (C1).

Hamiltonian exhibits a magnon band structure with gapped
Dirac cones due to the DMI, resulting in magnon bands with
nontrivial Chern numbers and chiral magnon modes at the
edges of the system [24,25].

To study these chiral edge modes, we consider the model
on a quasi-1D strip geometry with periodic boundary condi-
tions in the x direction and open boundary conditions in the y
direction. We denote the number of two-site honeycomb unit
cells in the y direction as Ny. This geometry has two edges
parallel to the x axis [see Figs. 2(a) and 2(b)]. The termination
of the honeycomb lattice at these edges is not unique and
affects the LSWT edge mode dispersion. To investigate how
this in turn influences the many-body magnon physics, we
study two different edge terminations: “zig-zag” edges and
“dangling” edges [see Figs. 2(a) and 2(b), respectively]. Ad-
ditional information about the edge terminations is provided
in Appendix A.
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The ground state of Hamiltonian (1) is not obvious because
there is a competition between the Heisenberg interaction,
which aligns the spins in parallel, and the DMI, which fa-
vors in-plane spin canting. However, a numerical analysis
shows that, as long as D � 0.7JS, the classical ground state
on the strip is a fully polarized ferromagnet and the DMI is
completely frustrated [see Fig. 2(c)] [68]. This result is inde-
pendent of the edge termination (see Appendix B for details).
Similar to the case of Ref. [55], the ground-state polarization
direction is arbitrary and spontaneously breaks the Hamilto-
nian’s SO(2) spin rotation symmetry about the z axis. For later
reference, we define the angle θ between the magnetization
and the out-of-plane z direction, and decompose the DMI
vector �D into its components parallel, D‖ = D cos θ , and per-
pendicular, D⊥ = D sin θ , to the magnetization, as depicted in
Fig. 2(c).

A. Spin-wave theory

The standard way to describe magnon excitations above the
ordered ground state is to map the spin operators to bosonic
creation and annihilation operators by a Holstein–Primakoff
transformation [69],

S‖
i = S − a†

i ai, (2)

S+
i =

√
2S − a†

i ai ai. (3)

Here, S‖
i denotes the component of the spin at site i that is

parallel to the ferromagnetic polarization direction, S+
i (S−

i =
(S+

i )†) is the spin raising (lowering) operator at site i with
respect to the polarization direction, and ai (a†

i ) annihilates
(creates) a magnon at site i. Plugging this transformation into
the Hamiltonian (1) and performing a large-S expansion of the
square root terms, the Hamiltonian becomes a power series in
the small parameter 1/S,

Ĥ = EGS + Ĥ2 + Ĥ3 + Ĥ4 + . . . , (4)

where EGS is the classical ground-state energy and Ĥn is of
order O(S2−n/2), containing only terms with n bosonic opera-
tors. The quadratic component is the LSWT Hamiltonian

Ĥ2 = − JS
∑
〈i j〉

(a†
i a j + H.c.) + D‖S

∑
〈〈i j〉〉

(ia†
i a j + H.c.)

+ JS
∑

i

zia
†
i ai, (5)

which describes noninteracting magnons. It is a bosonic
analog of the Haldane model [70] with a staggered π/2
flux through every plaquette and a topological band gap of
6
√

3D‖S. Furthermore, zi is the number of nearest neighbors
of site i, i.e., zi = 3 in the bulk, and zi � 3 at the edges,
depending on the termination (see Appendix A).

On the strip geometry, the eigenstates of Ĥ2 are labeled by
their momentum kx in the x direction, and a band index n ∈
{1, . . . , 2Ny}. The magnon operators in the LSWT eigenbasis
are obtained through a Fourier transform and a subsequent
unitary rotation,

a†
kx,n

= 1√
Nx

∑
y

Uny(kx )
∑

x

e−ikx

√
3xa†

i=x,y, (6)

where kx lies in the first Brillouin zone BZ ≡ [0, 2π/
√

3), and
Nx is the number of sites in the periodic x direction. In terms
of these new operators, Ĥ2 is diagonal

Ĥ2 =
∑
kx,n

εkx,na†
kx,n

akx,n, (7)

and εkx,n denotes the eigenenergies.
The higher terms in the large-S expansion in Eq. (4), i.e.,

Ĥ3, Ĥ4, etc., encode many-body magnon-magnon interactions
beyond LSWT. Particularly interesting are the three-magnon
couplings in Ĥ3, which are not number conserving and
facilitate spontaneous magnon decay. These couplings are in-
troduced if the magnetization is tilted with respect to the DMI
vector, i.e., 0 < θ < π , which leads to terms such as S±S‖ in
the spin Hamiltonian that violate magnon number conserva-
tion in the Holstein-Primakoff mapping. For our model, we
find concretely

Ĥ3 = D⊥
√

S√
2

∑
〈〈i j〉〉

ia†
i a†

j (a j − ai ) + H.c. (8)

Note also that Ĥ2 depends only on D‖ and Ĥ3 only on D⊥.
Thus, in the following analysis, we can tune the size of the
topological band gap and the cubic interaction strength in-
dependently by adjusting the magnetization angle θ and the
strength D of the DMI. It is useful to express Ĥ3 in terms of
the eigenmodes of Ĥ2,

Ĥ3 = D⊥
√

S√
Nx

∑
kx,qx∈BZ

∑
nml

gnml
kxqx

a†
kx−qx,n

a†
qx,makx,l + H.c., (9)

where kx, qx and n, m, l are momenta and band indices, re-
spectively. The vertex factors gnml

kxqx
are listed in Eq. (C1)

in Appendix C. The interaction Ĥ3 encodes two different
number-nonconserving many-body processes: decay of one
magnon into two (∼a†a†a), and the Hermitian conjugate pro-
cess (H.c.).

The higher-order terms in the large-S expansion are less
important for our following analysis, where we are most in-
terested in understanding processes that can lead to magnon
decay. The quartic Ĥ4 (and general even-magnon contribu-
tions) only contain number-conserving interactions ∼a†a†aa
and cannot lead to spontaneous decays. The next-leading
odd contribution Ĥ5 does contain number-nonconserving in-
teractions, but is suppressed by a factor 1/S compared to
Ĥ3 in the large-S limit. Hence, we expect Ĥ3 to yield the
dominant number-nonconserving correction to LSWT and
correspondingly restrict our analysis to this level of the large-S
expansion.

B. Many-body perturbation theory

Our main goal is to study how the magnon-magnon inter-
actions renormalize the LSWT magnon spectrum, especially
the edge modes. The magnon-magnon interactions Ĥ�3 are of
lower order in S than Ĥ2 and so we treat them as a perturbation
to the LSWT using the standard diagrammatic techniques.
The primary quantity of interest is the retarded single-magnon
self-energy �̂(ω, kx ). Since we consider the model on a strip
geometry, �̂(ω, kx ) is a 2Ny × 2Ny-matrix in band space; we
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label its elements as �̂nm(ω, kx ) with band indices n and m.
Our main focus is on the role of spontaneous magnon decay
due to interactions. Therefore, we evaluate the self-energy at
zero temperature.

In the perturbative regime, the dominant self-energy di-
agrams occur at one-loop order O(1/S0). They are simple
bubbles, either made up of two cubic vertices or of one quartic
vertex. Since the quartic vertex Ĥ4 conserves magnon number,
it is frozen out at zero temperature. Therefore, we can omit
the quartic vertex bubble. We are left with only one dominant
diagram containing two cubic vertices, which is shown in
Fig. 2(d). The corresponding self-energy at one-loop order is
given by

�̂nm(ω, kx ) = 2D2
⊥S

Nx

∑
qx,ab

gban
kxqx

(
gbam

kxqx

)∗

ω − εqx,a − εkx−qx,b + i0+ , (10)

where a, b are intermediate band indices and the factor of 2
is the symmetry factor of the relevant bubble diagram. Note
that the above expression is formally of order O(S0) because
the prefactor of S is canceled by the linear-S dependence of
the energies in the denominator. From the self-energy, we
compute the renormalized retarded single-magnon Green’s
function

Ĝ(ω, kx ) = ((ω + i0+)1̂ − ε̂kx − �̂(ω, kx ))−1, (11)

where 1̂ is a 2Ny × 2Ny-unit matrix, ε̂kx = diag(εkx,n) is a
diagonal matrix of the 2Ny LSWT band energies at momen-
tum kx, and Ĝ is a 2Ny × 2Ny-matrix in band space like the
self-energy. The poles of Ĝ, i.e., those frequencies ε̃kx,n where
Ĝ−1 is not invertible, are the renormalized single-magnon
resonances. Note that in the absence of magnon-magnon in-
teractions, the poles of the propagator are simply the LSWT
energies. We can assign a band index n ∈ {1, . . . , 2Ny} to each
pole ε̃kx,n because the inclusion of interactions does not change
the number of poles compared to LSWT. If the magnon-
magnon interactions do not induce a band crossing, we can
establish a unique correspondence between an LSWT band
index and a pole of the interacting propagator by adiabatically
turning the magnon-magnon interaction strength D⊥ to zero.

Both the self-energy and the single-magnon propagator
capture how the interactions couple the single-magnon modes
to the two-magnon continuum. Specifically, they encode the
following renormalization effects:

(1) Decay. The anti-Hermitian part of the self-energy,
(�̂ − �̂†)/2, gives the single-magnon modes a finite lifetime
as a single magnon can irreversibly decay into the two-
magnon continuum. In particular, an edge magnon can decay
into two bulk magnons, potentially suppressing well-defined
long-lived edge excitations. In technical terms, decay effects
shift the poles of the Green’s function to complex values; their
imaginary parts are proportional to the respective magnon
decay rates,

�kx,n = −2Imε̃kx,n (12)

where the factor of 2 is convention [71]. In Sec. IV, we explain
in detail how we numerically quantify magnon decay rates.

(2) Dispersion renormalization. The Hermitian part of the
self-energy, (�̂ + �̂†)/2, shifts the real part of the Green’s
function poles away from the LSWT dispersion. This effect
can be understood as a level repulsion of the single-magnon
modes from the two-magnon continuum [72]. We call Reε̃kx,n

the renormalized magnon dispersion.
(3) Hybridization. A single magnon in band n can decay

into an intermediate pair of virtual magnons, which may
then recombine to yield a single magnon in a different band
m �= n. This leads to nonzero off-diagonal self-energy terms
�̂n �=m(ω, kx ), and the renormalized single-magnon wavefunc-
tions are hybrids of different LSWT band eigenstates [63] as
analyzed in detail in Sec. V.

III. RENORMALIZED SINGLE-MAGNON SPECTRA

To analyze the single-magnon spectrum in the presence of
many-body interactions, we numerically compute the spectral
function

A(ω, kx ) ≡ − 1

π
ImTrĜ(ω, kx ). (13)

It is a useful diagnostic tool because it is closely related to ob-
servables like the dynamical spin structure factor, which can
be probed experimentally, e.g., by inelastic neutron scattering.
If a single-magnon mode has an infinite lifetime, it appears
as a sharp delta peak in the spectrum at the corresponding
renormalized magnon dispersion Reε̃kx,n, although its spectral
weight can be reduced by a quasiparticle weight Zkx,n � 1.
Decay effects, such as those induced by many-body interac-
tions coupling the single- and two-magnon sectors, broaden
this peak into a Lorentzian whose width is exactly the decay
rate �. Therefore, the formerly sharp single-magnon response
becomes an unstable resonance. In addition to this broadened
but “coherent” single-magnon resonance, there is a continuum
Aincoh of incoherent background spectral weight that cannot
be associated with a well-defined single-magnon excitation. In
the vicinity of a pole ε̃kx,n, we can therefore write the spectral
function as

A(ω, kx ) = Zkx,n�kx,n
/

2(
ω − Reε̃kx,n

)2 + (
�kx,n

/
2
)2 +Aincoh(ω, kx ).

(14)

In the following numerical results, we consider a strip with
Ny = 30 unit cells in the nonperiodic y direction [73], and
set the DMI component parallel to the magnetization to D‖ =
0.1JS unless stated otherwise. Note that we vary D⊥ and keep
D‖ fixed, such that the topological gap in the harmonic theory
does not change, but the interactions are tuned. This variation
does not correspond to a mere rotation of the magnetization
angle but is associated with a change of the magnitude of the
DMI vector.

In Fig. 3, we present two full single-magnon spectra
for the zig-zag edge termination with and without magnon-
magnon interactions. Without interactions [D⊥ = 0.0J

√
S in

Fig. 3(a)], the spectrum corresponds exactly to the LSWT
band structure, with delta peaks in frequency space centered at
the band energies. In particular, the chiral edge modes inside
the band gap are sharp and thus stable, as predicted by the
LSWT bulk-boundary correspondence [see Fig. 3(d)].
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FIG. 3. Single-magnon spectra and two-magnon density of states for the strip with zig-zag edge termination (Ny = 30, D‖ = 0.1JS,
numerical line broadening 0.02JS). (a) Single-magnon spectrum without magnon-magnon interactions (D⊥ = 0J

√
S); inset (d) shows a zoom

into the sharp chiral edge mode, visible inside the topological band gap around the center of the Brillouin zone. (b) Single-magnon spectrum
with strong magnon-magnon interactions (D⊥ = 0.4J

√
S). The bulk modes of the upper band acquire a strong lifetime broadening and inset

(e) shows that the chiral edge modes disappear completely. (c) Two-magnon density of states describing the available decay phase space for a
magnon with initial momentum kx and energy ω. The chiral edge modes from panel (a) lie in a region of large two-magnon density of states,
which enhances their lifetime broadening. Panels (a)–(e) additionally show the edge mode (band edge) dispersions obtained from Ĥ2 (LSWT)
as dashed red (green) lines. (f) Spectral functions at the reference momentum k∗

x [dashed white line in (d) and (e)] vs frequency inside the
band gap for different magnon-magnon interaction strengths D⊥. For visual guidance, the peaks for D⊥ = 0.0, 0.2J

√
S are decorated with

Lorentzian fits.

In the presence of interactions [D⊥ = 0.4J
√

S in Fig. 3(b)],
however, the spectrum is significantly renormalized [74]. The
upper half of the band structure is washed out by life-time
broadening, and the bands tend to be pushed downwards as
a result of the level repulsion between single-magnon bands
and the two-magnon continuum.

Most strikingly, the spectral peaks of the edge modes van-
ish completely [see Fig. 3(e)]. Instead, a sizable incoherent
spectral background continuum emerges inside the bulk gap
as spectral weight is drawn into the gap. As can be seen in
Fig. 3(f), this process happens gradually for increasing inter-
action strength. At D⊥ = 0.3J

√
S, we still observe a weak

Lorentzian resonance inside the band gap, albeit severely
broadened and offset by incoherent background. At D⊥ =
0.4J

√
S, this resonance is completely overshadowed by the

incoherent background and thus becomes invisible in the spec-
trum.

We can understand why the renormalization effects are
so dramatic by inspecting the two-magnon density of states
[see Fig. 3(c)]: it is fairly weak at low frequencies, but jumps
abruptly to relatively high values in the region of the LSWT
band gap. This jump appears due to the opening of a new
decay channel: an edge magnon is suddenly kinematically
allowed to decay into two final bulk magnons, one of which

lives at the almost degenerate M point. This strongly increases
the available decay phase space, enhancing the lifetime broad-
ening of the edge modes and the accumulation of incoherent
background inside the band gap.

Our main result is that magnon-magnon interactions can
severely alter the topological features predicted by LSWT;
in particular, the bulk-boundary correspondence from LSWT
may not accurately predict the edge physics of the full spin
model. On a conceptual level, the incoherent background
inside the LSWT band gap gives rise to a continuum of
single-magnon-like states, which effectively closes the gap in-
validating the computation of Chern numbers as these require
gapped bands.

The situation is less dramatic for the strip with dangling
edge termination (see Fig. 4). Even for the strongest in-
teraction D⊥ = 0.4J

√
S, the edge modes appear as clearly

distinguishable resonances in the spectrum, albeit in part
heavily broadened [see Figs. 4(e) and 4(f)]. The degree of
broadening is correlated with the two-magnon density of
states: the lower-energy edge mode lies in a region of low
two-magnon density of states and thus remains relatively
sharp; the higher-energy edge mode suddenly acquires a more
pronounced broadening at k∗

x , where it crosses the aforemen-
tioned step in the two-magnon density of states, and decays
to the M point become kinematically possible. Nonetheless,
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FIG. 4. Same as Fig. 3 but for dangling edge termination.

the lifetime broadening of the edge modes indicates that their
renormalized wavefunctions generally contain admixtures
from bulk-like two-magnon states. Hence, the single-magnon
picture from LSWT again fails to describe the magnon physics
accurately in the presence of magnon-magnon interactions.

In general, we observe that the impact of magnon-magnon
interactions on the topological edge modes is nonuniversal:
while the existence of edge modes is topologically guaranteed
in LSWT, they may be absent beyond LSWT, depending on
microscopic details like the edge termination. This nonuni-
versality is due to the high-energy nature of the magnon edge
modes, which makes them prone to decay. This behavior is
very different from that of electronic edge modes near the
Fermi energy, which are universally protected against decay
by a lack of final decay phase space at low-energies.

IV. SPONTANEOUS DECAY RATES OF EDGE MODES

To quantify the life-time broadening of the edge modes, we
can extract their decay rates �kx,n = −2Imε̃kx,n, where n is the
band index of the edge mode of interest. To obtain ε̃kx,n, one
must self-consistently solve the pole condition

det
(
(ε̃kx,n + i0+)1̂ − ε̂kx − �̂

(
ε̃∗

kx,n, kx
)) = 0, (15)

where (. . . )∗ is complex conjugation [51]. This is numerically
cumbersome, especially for the system sizes, which we inves-
tigate. To circumvent these difficulties, an established way to
estimate the decay rates is the on-shell approximation [53] (for
a derivation, see Appendix E),

�os
kx,n = −2Im�nn(εkx,n, kx ), (16)

where εkx,n is the bare (“on-shell”) energy of mode n obtained
from LSWT. This simple and quick approximation is exact up
to order O(1/S0), but it can neither capture hybridization of
LSWT bands (since it disregards the off-diagonal self-energy
elements) nor dispersion shifting due to level repulsion (since
it does not know about the real part of the self-energy).

Here, we use both a self-consistent solution to the pole
condition and the on-shell approximation. We later compare
the two methods to assess the validity of the latter (also cf.
Sec. VI). Figure 5 shows the self-consistent (dotted lines)
and on-shell (dashed lines) decay rates of a selected edge
mode versus momentum kx for dangling [LSWT spectrum in
Fig. 5(a), decay rates in Fig. 5(c)] and zig-zag edge termina-
tions [LSWT spectrum in Fig. 5(b), decay rates in Fig. 5(d)].
In the case of dangling edges, we find that the decay rates of
the higher-energy edge mode show a peak close to the refer-
ence momentum k∗

x where the edge mode dispersion enters a
region of higher two-magnon density of states (as detailed in
Sec. III). We note that this peak appears at a higher momentum
in the self-consistent decay rates as compared to the on-shell
values. This is because the self-consistent treatment naturally
takes into account level repulsion of the edge mode from the
two-magnon continuum (which allows it to stay in regions
of low two-magnon density of states up to higher momenta),
while the on-shell approximation ignores this effect. Yet, we
observe that even for the strongest magnon-magnon interac-
tion strength D⊥ = 0.4J

√
S, the peak decay rate is only about

0.2JS, much smaller than the topological band gap of approx-
imately 1JS at the K point. Therefore, the edge resonances are
broadened but still clearly visible.

For the zig-zag edge termination, the decay rates are
generally much higher than for the dangling edges. For
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FIG. 5. Edge mode decay rates for different interaction strengths
D⊥ along selected momentum cuts through the Brillouin zone. Decay
rates obtained from the on-shell approximation are depicted with
solid lines, while dotted lines correspond to decay rates obtained self-
consistently from the imaginary parts of the Green’s function poles.
[(a),(b)] Noninteracting band structures obtained from Ĥ2 for dan-
gling and zig-zag edge terminations, respectively. The edge modes
whose decay rates are shown in panels (c) and (d) are highlighted
in red along the respective momentum cuts. (c) Decay rates of the
higher-energy edge mode for dangling edge termination between the
� and the K point. The reference momentum k∗

x from Figs. 4(d) and
4(e) is also indicated. (d) Decay rates of the left edge mode for
zig-zag edge termination in the vicinity of the K point. We also show
the reference momentum k∗

x from Figs. 3(d) and 3(e).

D⊥ = 0.4J
√

S, they reach up to about 0.5JS, which is of the
order of magnitude of the topological band gap around the
K point. In the presence of such severe lifetime broadening,
speaking of a well-defined mode inside the band gap is ques-
tionable.

Furthermore, Figs. 5(c) and 5(d) show that, upon varying
the interaction strength, the on-shell decay rate of a mode is
just rescaled by a factor that is independent of the considered
mode, as the on-shell decay rates are directly proportional to
D2

⊥. In contrast, the self-consistent decay rates as a function

of interaction strength behave differently for different modes,
as their dependence on D⊥ is highly nontrivial.

As a side note, the on-shell decay rates in Figs. 5(c) and
5(d) appear slightly jagged, which we attribute to finite-size
effects: the finite number of lattice sites in y direction leads
to van-Hove singularities in the two-magnon density of states
originating from the quasi-1D kx dispersion, which are im-
mediately reflected in the on-shell decay rate. In contrast, the
self-consistent decay rates intrinsically take into account the
lifetime broadening of the decaying edge magnon so that the
van-Hove singularities are smoothed out. We emphasize that
in the limit of Ny → ∞, the jaggedness of the on-shell decay
rates disappears and the decay rate converges to a constant, as
shown in the insets of Figs. 5(c) and 5(d).

V. SPONTANEOUS HYBRIDIZATION

A. Edge-bulk hybridization

Beyond the study of decay rates, off-diagonal self-energy
terms produce renormalized hybrids of different LSWT eigen-
states (see Sec. II B). Most remarkably, we find that the edge
modes can hybridize with delocalized bulk states. Because
this already happens at zero temperature, spontaneous edge-
bulk hybrid resonances form.

In order to investigate these delocalized hybrid resonances,
we first consider a modification of the spectral function, which
resolves the real-space y coordinate [63],

Ay(ω, kx ) ≡ − 1

π
Im

(∑
nm

U†
yn(kx )Ĝnm(ω, kx )Umy(kx )

)
.

(17)

Here, n, m are band indices, and the matrix elements Uyn(kx )
constitute the unitary transformation that diagonalizes the
kx-space blocks of the LSWT Hamiltonian Ĥ2 as defined in
Eq. (6). Note that summing this y-resolved spectral function
over all y recovers the standard spectral function in Eq. (13),
asU(kx ) is unitary,∑

y

Ay(ω, kx ) = A(ω, kx ). (18)

In the following, we will only investigate the case of dan-
gling edge terminations since the edge modes for the zig-zag
edges are severely overdamped. We will also focus on the
reference momentum k∗

x (about halfway between the � and
K point) as indicated in Fig. 4: at this momentum, the two-
magnon density of states has a step due to the opening of
a new decay channel to the M point. Since the edge-bulk
hybridization is mediated by virtual two-magnon states, we
expect that it is particularly pronounced around this momen-
tum.

In Fig. 6(a), we plot the y-resolved spectral function versus
the frequency window of the band gap for different values
of y with strong magnon-magnon interactions D⊥ = 0.4J

√
S.

For small y close to the lower edge of the strip, we see
clear Lorentzian resonances stemming from the higher-energy
LSWT edge mode. The amplitudes of these Lorentzians
decrease for increasing y. Without magnon-magnon inter-
actions, we would expect them to become exponentially
small when reaching values of y deep inside the bulk. With
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FIG. 6. With dangling edge termination, the higher-energy
edge mode delocalizes due to hybridization with bulk modes.
(a) y-resolved spectral functions on the B sublattice evaluated at the
reference momentum k∗

x from Fig. 4 vs frequency within the band
gap for different y coordinates at interaction strength D⊥ = 0.4J

√
S.

The visible edge mode peaks are equipped with Lorentzian fits.
The cylinder on the right is a sketch of the system for periodic
boundary conditions in x direction and open boundary conditions
in y direction; the chosen y coordinates are highlighted by rings
of the corresponding colors. Note that the plot does not show any
signature of the lower-energy edge mode because it is predominantly
localized on the A sublattice at the lower end of the cylinder. (Inset)
Spectral function from Fig. 4 with a gray bar at k∗

x indicating the
frequency window on the horizontal axis of the main plot. (b) Quasi-
particle weights extracted from Lorentzians fitted to the edge mode
peaks vs y for different interaction strengths. At finite interaction
strengths D⊥ > 0J

√
S, the exponential decay at the edge levels off

at a roughly constant value inside the bulk, approximated by the
delocalization parameter 	. (Inset) Delocalization parameter vs in-
teraction strength.

magnon-magnon interactions, we instead observe that the res-
onances do not tend to zero but there remains a residual peak
even at y = Ny/2 = 15 in the middle of the bulk. This is a
signature that the interactions admix the edge modes with
delocalized bulk states.

Next, we fit Lorentzian shapes to the resonances in
Fig. 6(a) to extract their y-resolved quasiparticle weight Zy.
Figure 6(b) shows these quasiparticle weights versus y for
different interaction strengths D⊥. They decay exponentially
near the edge, but then level off at larger y and approach a
finite value, which depends on the interaction strength. For
each D⊥, we also fit a heuristic function Ae−2y/L + 	 to the
data, where A is a constant, L corresponds to the localiza-
tion length of the edge resonance, and 	 is a delocalization
parameter, which measures how much of the spectral weight
near the edge mode energy is contributed by bulk states. In the
noninteracting case D⊥ = 0, we observe a pure exponential
decay of the quasiparticle weight with 	 = 0, in accordance
with the LSWT prediction of a localized edge mode. Including
magnon-magnon interactions, however, 	 grows quadrati-
cally with D⊥ [see inset of Fig. 6(b)].

To understand the behavior of 	, we perform a perturbative
analysis (see Appendix F). We find that the interactions mix
single-magnon bulk states and delocalized two-magnon states
into the renormalized edge mode wavefunction. As a conse-
quence, the y-resolved spectral function undergoes corrections
at order O(D2

⊥). The corrections’ delocalized nature becomes
apparent in the bulk tails of the quasiparticle weights, as
demonstrated in Fig. 6(b), explaining the observed scaling of
	. We note, however, that the y-resolved spectral function
is unable to distinguish clearly between delocalized contribu-
tions from single- and two-magnon states.

Therefore, to highlight specifically the hybridization
strength between single-magnon edge and bulk states, we per-
turbatively compute the squared overlap of the renormalized
edge mode at the lower edge |ψ〉 with all single-magnon bulk
states (see Appendix F),

w ≡
∑

m∈bulk

∣∣〈0|ak∗
x ,m|ψ〉∣∣2 =

∑
m∈bulk

∣∣∣∣∣ �̂lm(εk∗
x ,l , k∗

x )

εk∗
x ,l − εk∗

x ,m

∣∣∣∣∣
2

, (19)

where l is the band index of the edge mode localized at the
lower edge, and

∑
m∈bulk is the sum over bulk band indices.

Fig. 7 shows w versus strip width Ny at interaction strength
D⊥ = 0.4J

√
S. The plot suggests that w approaches a con-

stant value of approximately 0.016 in the thermodynamic limit
Ny → ∞. Hence, the renormalized edge mode is a hybrid
state that contains 1.6% single-magnon bulk states, resulting
in a delocalized wavefunction that is nonzero even far away
from the edges.

In conclusion, we find that magnon-magnon interactions
are capable of hybridizing the localized edge modes from
LSWT with delocalized bulk modes even at T = 0. This is
further evidence that the LSWT bulk-boundary correspon-
dence gives inaccurate predictions about the edge physics in
the full spin model where magnon-magnon interactions are
important.
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FIG. 7. Edge-bulk hybridization strength w vs number of unit
cells in y direction for interaction strength D⊥ = 0.4J

√
S. The data

points approach a constant ≈0.016 in the thermodynamic limit,
signifying a stable edge-bulk hybrid state extending over the whole
system.

B. Edge-edge hybridization

Besides the hybridization of edge modes with bulk states,
magnon-magnon interactions may also mediate hybridization
between edge modes of opposite chirality and support on
opposite sides of the strip. This effect is particularly relevant
at the crossing points of two edge modes: at these points, they
become energetically degenerate so that an arbitrarily small
coupling can give rise to an avoided crossing and formation of
edge-edge hybrid states. In our honeycomb TMI on the strip,
we expect the edge-edge hybridization to be more pronounced
for the zig-zag edge termination than for the dangling edge
termination because the edge mode crossing for the former
lies at the M point in a region of high two-magnon density of
states, while the crossing for the latter is at the � point where
two-magnon states are relatively scarce. Therefore, we only
consider the zig-zag edges in the following. We can describe
the interaction-mediated edge-edge coupling by means of an
effective non-Hermitian on-shell Hamiltonian in the subspace
of the two crossing edge modes. It is composed of the LSWT
Hamiltonian and the self-energy matrix at the momentum of
the crossing point kx = M, evaluated at the corresponding
LSWT (on-shell) crossing energy ε× and projected into the
edge mode subspace. Labeling the band indices of the edge
modes localized at the upper and lower edge u and l , the
effective Hamiltonian reads

Ĥeff =
(

ε× + �̂uu(ε×, M ) �̂ul (ε×, M )

�̂lu(ε×, M ) ε× + �̂ll (ε×, M )

)
, (20)

where ε× = εM,u = εM,l . In general, the anti-Hermitian part
of Ĥeff may give rise to exceptional points [62]. How-
ever, neglecting these complications and only focusing on
the Hermitian part, we can read off the interaction-induced
edge-edge hybridization strength to be v ≡ |�̂ul (ε×, M ) +
�̂lu(ε×, M )|/2.

Note that, in principle, the edge modes also hybridize at
LSWT level for sufficiently thin strips due to the closeness of
the edges. The thus induced hybridization gap decays expo-
nentially with the strip width ∼ exp(−Ny/L), where L is the
typical LSWT localization length of the edge modes. At the
M point, L is only about 0.97 unit cells, so the hybridization
at LSWT level is already insignificant for very thin strips.
In contrast, the interaction-induced edge mode coupling v is
fundamentally different as it is mediated by delocalized two-

FIG. 8. (a) Edge-edge hybridization strength v vs number of unit
cells in y direction for different magnetic fields at D⊥ = 0.4J

√
S

(only even Ny are considered). The inset shows v vs a higher-
resolution range of magnetic field values at fixed Ny = 30 (indicated
by the dashed blue line in the main plot). It showcases the sudden
drop of the edge-edge hybridization at B = 1.0JS connected to the
separation of the LSWT edge modes and the two-magnon contin-
uum. The data points in the inset are bold when the corresponding
magnetic field is included in the main plot. Panel (b) shows v vs Ny

for zero magnetic field on a semi-log scale. An exponential is fitted in
the interval between Ny = 150 and 350; its decay length is about 52
unit cells, much larger than the LSWT edge mode localization length
of 0.97 unit cells.

magnon states. To demonstrate how v scales with strip size,
we plot the numerical values versus a range of strip widths
between Ny = 8 and 100 at the strongest probed interaction
strength D⊥ = 0.4J

√
S [see Fig. 8(a)]. In this section, we only

focus on the case of zero magnetic field (B = 0.0JS, black
dots) and defer the discussion of the nonzero field data to
Sec. VI. Note that, in Fig. 8, we only include even Ny; for
odd Ny, a subtle cancellation effect in the self-energy matrix
elements renders the hybridization strength several orders of
magnitude lower than the values for even Ny.

At zero magnetic field, we observe a very slow decay of
v with the strip width. Like in the LSWT limit, it is still
exponential for larger strip sizes as depicted in Fig. 8(b).
However, an exponential fit reveals a decay length of about
52 unit cells—almost two orders of magnitude larger than
the LSWT edge mode localization length of 0.97 unit cells.
Although the numerical data suggest that v tends to zero
in the thermodynamic limit Ny → ∞, we conclude that the
edge-edge hybridization may still lead to a breakdown of
topological edge mode protection in nanoscale systems.
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FIG. 9. Single-magnon spectral functions and two-magnon densities of states for zig-zag edge termination at representative values of
the magnetic field B. Noninteracting band edges and edge mode dispersions are overlaid like in Figs. 3 and 4. At finite magnetic field, the
single-magnon spectra are shifted upwards by B while the two-magnon densities of states are shifted upwards by 2B compared to the B = 0
case. At about B = 1.0JS, the areas of high two-magnon density of states start leaving the band gap, restoring sharp and long-lived edge
modes.

As a side note, our numerical data indicate that also the
anti-Hermitian part of Ĥeff decays to zero exponentially for
large Ny. The corresponding decay length is comparable to
that of the Hermitian part v.

VI. RESTORING MAGNON TOPOLOGY
WITH MAGNETIC FIELDS

So far, we have demonstrated that magnon-magnon in-
teractions may strongly affect or even completely erase
topological edge modes in the single-magnon spectrum in
nonuniversal ways. We have focused on the situation of ener-
getically overlapping single- and two-magnon spectra, which
is the crucial ingredient to find magnon decay in perturba-
tion theory [53]. Importantly, this overlap can be tuned by
an external magnetic field. Indeed, Ref. [56] has shown that
topological magnon edge modes are stable in a field-polarized
generalized Kitaev-Heisenberg model at strong enough fields.
It turns out that the magnetic field, which in this model is
required to have topological magnons in the first place, sep-
arates single-magnon bands and multimagnon continua, and
thus prohibits edge mode decays kinematically. In contrast,
the DMI honeycomb ferromagnet does not require a magnetic
field to host topological magnons. Next, we demonstrate that,
in a similar way, a magnetic field is able to restore sharp
edge modes and the topological features from LSWT by kine-
matically suppressing magnon decay for the DMI honeycomb
ferromagnet.

A magnetic field �B pointing in the direction of the ground-
state magnetization acts like a chemical potential for the
magnons. We model it by adding a Zeeman term

ĤZeeman = −�B ·
∑

i

�Si = −B
∑

i

(S − a†
i ai ) (21)

to the Hamiltonian, where B ≡ | �B|. This term shifts up the
LSWT single-magnon energies by a constant offset of B.
Crucially, the two-magnon continuum is also shifted, but by
an offset of 2B, since the magnetic field couples equally to
both magnons. As a consequence, the two-magnon contin-
uum is eventually pushed past the single-magnon bands for
increasing B, energetically freezing out the decay channel of
one magnon into two, and thus stabilizing the edge modes.
The same argument can be extended to higher-order decay
into n � 3 final magnons, which may be induced by the terms
Ĥn�4 in the large-S expansion of the Hamiltonian, or by higher
powers of Ĥ3. The n-magnon continuum required for these
processes is shifted by an offset of nB, so they are already
suppressed at even smaller B than the decay into two final
magnons [75]. Therefore, the high-field regime provides a
limit in which the bulk-boundary correspondence from LSWT
holds rigorously even in the presence of arbitrary magnon-
magnon interactions, reinstalling a well-defined notion of
magnon topology.

In Fig. 9, we show single-magnon spectra and the cor-
responding two-magnon densities of states for increasing
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FIG. 10. Restoration of a sharp edge mode peak through a magnetic field for the zig-zag edge termination. (a) Spectral functions evaluated
at the reference momentum k∗

x from Fig. 3 vs frequency within the band gap for different magnetic fields B. The magnetic field shifts the band
gap to higher frequencies while gradually restoring the spectral peak of the left edge mode. Lorentzians are fitted to the visible edge mode peaks
for visual guidance. (Inset) Noninteracting band structure obtained from Ĥ2 with a black bar indicating indicating the frequency window on
the horizontal axis of the main plot. Notice that the inset shows ω − B on the vertical axis. (b) Decay rates of the left edge mode at momentum
k∗

x vs magnetic field for different interaction strengths. Solid lines are the on-shell values, dotted lines are self-consistently extracted from the
Green’s function poles.

magnetic field in the presence of strong magnon-magnon in-
teractions, D⊥ = 0.4J

√
S. Without magnetic field, as depicted

in Figs. 9(a) and 9(d), the LSWT edge modes completely
vanish from the spectrum because they couple to a large
two-magnon density of states (as detailed in Sec. III). As the
magnetic field increases, the two-magnon density of states at
the LSWT edge mode dispersion decreases while the edge
resonances first become visible again [see Figs. 9(b) and 9(e)]
and then sharpen significantly [see Figs. 9(c) and 9(f)]. Al-
though decays are suppressed in strong magnetic fields, the
entire spectrum is still subject to level repulsion from the two-
magnon continuum, renormalizing the single-magnon modes
downward (relative to the dashed green lines).

A quantitative analysis of the field-induced spectral reap-
pearance of the edge resonance is shown in Fig. 10.
The spectral function is plotted for selected magnetic field
strengths in Fig. 10(a), with reference momentum k∗

x and
frequency window indicated in the inset. For B � 0.4JS, the
spectrum is dominated by incoherent background; but at B =
0.6JS, an approximate Lorentzian suddenly emerges inside
the band gap, signaling the restoration of a distinct edge res-
onance. For even higher B, the resonance gets sharper due to
the kinematic suppression of decays, and it is shifted to higher
frequencies due to the coupling to the magnetic field.

To quantify the field-induced suppression of decays, we
extract the decay rates of the discussed edge resonance at
momentum k∗

x as a function of B, using both on-shell approx-
imation and a self-consistent solution to the pole condition.
Figure 10(b) shows the decay rates versus B for differ-
ent magnon-magnon interaction strengths. For low B, edge
magnons can decay into bulk magnons at the almost degen-
erate M point (see Sec. III), significantly boosting the decay
rates and leading to their disappearance in the incoherent

background. For B � 0.5JS, this decay channel begins to
close as the two-magnon continuum is gradually shifted past
the single-magnon bands, leading to a sudden strong reduction
of the decay rate between B = 0.5JS and B = 1.0JS. Beyond
B = 1.0JS, edge magnons can only decay to low-energy bulk
magnons near the � point, which are not very dense, such
that the decay rates level off at very low values (� 0.05JS
for D⊥ = 0.4J

√
S, much smaller than the band gap). As B

is increased even further, the decay rates slowly drop fur-
ther and eventually vanish identically at B ≈ 2.3JS. At this
high field, the two-magnon density of states is zero at the
energy of the (renormalized) edge mode, and the edge mode
becomes a delta peak. Thus, the magnetic field has restored
well-defined chiral edge excitations with infinite lifetime, and
the LSWT bulk-boundary correspondence predicts the correct
edge physics in the full spin model.

Finally, we get back to the edge-edge hybridization dis-
cussed in Sec. V B and assess its behavior at finite magnetic
fields. From Fig. 8(a), it is apparent that fields lower than
1.0JS do not have any significant impact on the edge-edge
hybridization strength v. In contrast, fields higher than 1.0JS
lead to a much more rapid decay of v with strip width Ny

than in the zero-field case. The cause of this is the separation
of the LSWT edge modes and the two-magnon continuum at
B ≈ 1.0JS, resulting in the suppression of the two-magnon
mediated edge-edge coupling. This result is consistent with
the restoration of a well-defined topology in the high-field
limit.

However, we remark that for typical exchange couplings
of candidate materials (e.g., J ≈ 2 meV in CrI3 [26]), the re-
quired magnetic field to reach the well-defined topology limit
is of the order of several tens of Teslas. An alternative strategy
to find stable topological magnons is to look for strongly
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spin-anisotropic magnets with large anisotropy-induced spin-
wave gaps, which can separate the single-magnon spectrum
from the two-magnon continuum already in zero field. For the
DMI ferromagnet at hand, examples for such an anisotropy
would be the XXZ-type two-ion anisotropy or a single-ion
easy-axis anisotropy. We note in passing that other spin
excitations, namely triplons, are naturally gapped without
spin-space anisotropies (e.g., see Refs. [122,123]), suggesting
that their kinematics might be favorable for avoiding edge
state breakdown.

VII. DISCUSSION & CONCLUSIONS

We have shown that magnon-magnon interactions can have
destructive and nonuniversal effects on the chiral edge modes
of the honeycomb ferromagnet with DMI. Those range from
strong decays to delocalization into the bulk to complete
disappearance of the chiral edge modes from the spectrum.
Similar to Ref. [55], in our model the strength of the observed
renormalization effects is tunable with the magnetization an-
gle θ . At θ = 0, the magnetization is aligned with the DMI
vector (D⊥ = 0) and the resulting U (1) symmetry gives rise
to a magnon number conservation law [76]. As a result, spon-
taneous magnon decay is prohibited quantum mechanically
due to the absence of the corresponding transition matrix ele-
ments; the chiral edge modes are sharp and the bulk-boundary
correspondence is exactly valid. However, the U (1) symmet-
ric case is fine tuned and expected to be violated in any real
material. In our model, the degree of violation is emulated
by the size of θ . When gradually tilting the magnetization
away from the DMI vector (D⊥ �= 0), the bulk-boundary cor-
respondence initially provides a fair approximation of the
edge physics at small θ . However, for larger θ and thus larger
D⊥, the predictions of the bulk-boundary correspondence
about the edge spectrum of the model become unreliable,
and in some cases qualitatively wrong. Crucially, estimating
a critical angle up to which the LSWT bulk-boundary corre-
spondence is still predictive is nontrivial due to nonuniversal
decays, which depend not only on θ and the DMI magnitude
D, but also on the two-magnon density of states, quantum
matrix elements, edge terminations, and other model param-
eters such as external magnetic fields. Nevertheless, finding
soft ferromagnets, which allow a tuning of the direction of
the magnetization, thus θ , via a small external magnetic field
would enable a tuning of interaction effects [55].

We expect that our findings for the honeycomb-lattice
TMI have broad implications for topological magnons in
other models, which describe various real materials. Examples
are the kagome-lattice magnets Cu(1-3,bdc) [11,12,55] and
YMn6Sn6 [77], and the pyrochlore-lattice magnets, such as
Lu2V2O7 [3,8,78]. Similar to the honeycomb model studied
in this paper, these systems utilize DMI to generate noninter-
acting topological magnons at the level of LSWT. In analogy
to the honeycomb model studied here, the DMI is capable
of simultaneously introducing spin interactions of the form
S±S‖, which violate magnon number conservation and enable
spontaneous magnon decay [55]. Building upon our paper, we
propose that these nonconserving interactions pose a signifi-
cant challenge to the stability of chiral edge modes in these
models beyond LSWT.

We expect a similar breakdown of topological chiral
edge magnons in field-polarized Kitaev magnets [79], such
as α-RuCl3 [41]. In the field-polarized limit, the Kitaev
interaction introduces both topological magnon gaps and
magnon-magnon interactions. In contrast to the DMI models
discussed so far, the magnon number is already nonconserved
at the LSWT level because of terms like S+S+. Therefore,
a particle-hole-mixing Bogoliubov transformation is neces-
sary to diagonalize the LSWT. Substituting the Bogoliubov
eigenmodes into the interaction Hamiltonians Ĥ�3 generates
all kinds of magnon-magnon vertices; for example, in addition
to familiar three-magnon interactions ∼a†a†a that we encoun-
tered in this paper, four-magnon terms ∼a†a†a†a also appear,
allowing spontaneous decay into three final magnons [80].
Therefore, a rich renormalization of topological magnons is
expected in magnetic fields too small to separate the sin-
gle magnons from the two-magnon spectrum. Large enough
magnetic fields stabilize topological chiral edge magnons, in
accordance with Ref. [56].

So far, we considered collinear ferromagnetic phases,
either stabilized in the ground state or by applying a
strong magnetic field. These ferromagnetic phases have in
common that the number-nonconserving interactions of the
form S±S‖ necessarily originate from spin-orbit interactions
(DMI, anisotropic exchange). However, so do the topological
magnon gaps at the LSWT level. Therefore, spin-orbit cou-
pling is a blessing and a curse: It is necessary to open up
a topological magnon gap in the first place, but at the same
time installs magnon-magnon interactions that can lead to the
demise of the topological magnon picture [55].

The effects of magnon-magnon interactions are even more
pronounced in noncollinear magnets, in which topological
magnons can arise due to a finite scalar spin chirality. Ex-
amples are kagome antiferromagnets [81–84], pyrochlore
antiferromagnets [85,86], and skyrmion crystals [7,87–91].
Due to the noncollinearity, the strength of the magnon-
magnon interactions is given by the Heisenberg exchange
and not just by spin-orbit coupling [51,92]. Consequently, a
nonuniversal breakdown of the chiral edge modes should be
expected unless their stability is explicitly demonstrated by a
more detailed analysis. Additionally, it should be noted that
the high-field limit is not applicable in noncollinear magnets
to restore well-defined chiral edge modes, since a sufficiently
strong magnetic field will destroy the noncollinear order that
is necessary for topological magnons to exist in the first place.

As a complement to our perturbation theory results, we
propose a full quantum treatment of the honeycomb ferromag-
net with DMI using numerical methods such as the density
matrix renormalization group and time evolution based on
matrix product operators, which have already been used to
study aspects of interacting magnon topology in Refs. [56]
and [64]. These methods can provide quantitative insight into
the fate of the chiral edge modes even in the deep quantum
limit S = 1/2, where the perturbative truncation of the large-S
expansion after Ĥ3 is not formally justified. Importantly, non-
perturbative simulations have already revealed mechanisms
that help stabilize topological magnons: In the case of field
reduction from large fields with separated one- and two-
magnon spectra, the level repulsion between them prevents
the single-particle modes from entering the continuum at the
expense of the quasiparticle residue [56,64,72]. The analysis
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of the breakdown mechanisms of chiral edge modes in the
nonperturbative setting will be an important task for a more
comprehensive understanding of magnon topology.

Furthermore, magnons are subject to a variety of interac-
tion effects beyond the magnon-magnon interactions studied
in this paper. An important interaction channel is the spin-
lattice coupling [93]. While the resulting magnon-phonon
coupling can itself lead to topological magnon-phonon hy-
brids in a noninteracting theory [94–98], it has also been
shown to significantly broaden the single-magnon modes in
CrGeTe3 [99] and has been suggested to lead to a substantial
suppression of the magnon thermal Hall effect [100]. Since
these materials are thought to be described by variants of
the honeycomb ferromagnet with DMI studied in this paper,
the model provides a suitable platform for comparing the
effects of magnon-phonon and magnon-magnon interactions
on the chiral edge modes. Furthermore, phonons are intrinsi-
cally gapless and cannot be gapped out by a magnetic field
like magnons, which implies that magnon-phonon interac-
tions could have potentially detrimental effects on the magnon
topology even in the high-field limit, where magnon-magnon
interactions are kinematically frozen out. Therefore, we pro-
pose a detailed analysis of the stability of topological magnons
in the presence of spin-lattice coupling for future studies.

We have derived our results for chiral edge states
in two-dimensional TMI. However, we expect the break-
down physics to carry over to other bosonic topological
boundary modes, including helical magnon edge states
in antiferromagnets [101–103], magnon surface arcs of
Weyl magnons [78,85,104–109], magnon drumhead states
in magnon nodal line systems [106,110–113], surface Dirac
magnons [109,114,115], and chiral hinge modes or cor-
ner states in second-order topological magnon systems
[34,109,116–121]. The coupling to the two-magnon contin-
uum is a universal effect caused by particle number noncon-
servation. Consequently, such a coupling is not restricted to
magnons. We expect qualitatively identical effects for other
bosonic topological collective modes/quasiparticles without
a number conservation law as long as decay is kinematically
allowed. This applies to, for example, topological triplons
[122–126] and topological phonons [127–130]. Therefore, our
results provide further evidence that predictions of topological
boundary modes obtained in a noninteracting theory must be
carefully checked in the interacting case.

Since quantum interactions already occur at zero temper-
ature, there is, in general, no low-temperature limit in which
the noninteracting theory is trustworthy. Nonetheless, we also
briefly discuss the effects of finite temperature, as neutron
scattering and transport experiments are usually performed at
a non-negligible fraction of the magnetic ordering tempera-
ture. We anticipate that increasing temperature exacerbates the
observed breakdown phenomena due to the possibility of scat-
tering off thermally excited magnons. More precisely, thermal
fluctuations introduce additional contributions to the decay
bubble in Fig. 2(d) and activate further scattering processes.
All of these contribute to the total self-energy and potentially
enhance magnon decay, edge-bulk coupling and edge-edge
coupling.

Finally, we comment on the implications of our results
for spin and heat transport, in particular, for spin Nernst and

thermal Hall effects. The available expressions for the corre-
sponding intrinsic transverse conductivities have been derived
in the noninteracting limit, where the magnon Berry curva-
ture fully determines the transverse transport [2,4,5,131,132].
Recent experiments suggest that these expressions overes-
timate the thermal Hall effect of magnons and triplons
[100,133,134]. In principle, it is known how to express
the conductivities in terms of spin operators [135], without
the need for a Holstein-Primakoff transformation, and these
expressions can be numerically evaluated in classical spin
dynamics simulations [136–138]. However, to understand
Hall-type transport in the deep quantum and low-temperature
limit, a more comprehensive theory must be developed to pro-
vide insight into the microscopic many-body processes of the
elementary excitations. Since the three-particle interactions
lead to a drastic renormalization of the topological features,
we believe that they also provide the leading-order corrections
to the Hall-type transport effects.

In conclusion, our results have important implications for
the design and implementation of TMI, as well as for a wide
range of bosonic many-body systems in the field of con-
densed matter physics. We discovered and quantified different
breakdown mechanisms for chiral bosonic edge modes due
to many-body interactions in conjunction with the absence
of particle number conservation. On a positive note, we also
discussed ways of restoring the stability, which will hopefully
guide future experiments for an unambiguous observation of
chiral magnon edge modes.

Note added in proof. A recently published paper [139]
addresses a similar problem and confirms our results.
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APPENDIX A: EDGE TERMINATIONS

To elucidate the choice of edge terminations, we first label
each site i by its coordinates (x, y) (see Fig. 11). To introduce
open boundary conditions, we cut the honeycomb lattice along
the x direction at y = 1 and y = 2Ny. The dangling edge
termination is obtained when the lattice is cut in between the
unit cells, while the zig-zag edge termination requires slicing
the unit cells at the edge in half.

The number of nearest neighbors of a site i at an edge (i.e.,
at y = 1, 2Ny) is zi = 1 for dangling, and zi = 2 for zig-zag
edges. However, the LSWT edge mode spectra for the two
edge terminations would be rather similar in that the edge
modes all have momenta around the M point [see Figs. 11(a)
and 11(b)]. Therefore, in the case of dangling edges, we add
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FIG. 11. LSWT band structures on the strip for (a) zig-zag edge
termination, (b) dangling edge termination, and (c) dangling edge
termination with edge chemical potential. The edge modes in (a) and
(b) lie in the vicinity of the M point, while the edge modes in (c) are
near the � point. In this study, we focus on the cases (a) and (c). Also
note the trivial low-energy edge modes in (b), which are pushed up
into the lower bulk bands in (c) due to the edge chemical potential.
The insets show the corresponding lattices for Ny = 3. Represen-
tative sites of the honeycomb sublattices A and B are indicated in
red and blue, respectively. The Bravais lattice vectors �ax and �ay are
shown in orange, and the additional edge potential in (c) is marked
by turquoise dots on the respective sites.

an “edge chemical potential” of the form

2JS
∑

x

∑
y∈{1,2Ny}

a†
x,yax,y (A1)

to the Hamiltonian (one could think of it as being generated
by, e.g., an interfacial anisotropy). This term effectively sets
zi = 3 at the edge, and shifts the dangling edge modes to the

vicinity of the � point [see Fig. 11(c)]. The two sets of edge
modes at different momenta help us demonstrate more clearly
the nonuniversality of the edge mode decay (see Sec. III) and
their delocalization into the bulk (see Sec. V).

APPENDIX B: CLASSICAL SPIN GROUND
STATE ON THE STRIP

The classical ground state of the investigated DMI-induced
TMI on a torus geometry (i.e., only periodic boundary condi-
tions) is known to be a completely polarized ferromagnet for
weak enough DMI [24]. However, this result does not trivially
carry over to the strip geometry because the fewer number
of nearest neighbors at the strip edges effectively reduce the
ferromagnetic Heisenberg interaction felt by the edge spins.
For example, in the field-polarized Kitaev-Heisenberg model,
spins at the edges tilt away from the ferromagnetic polariza-
tion axis of the bulk [56]. Therefore, one must carefully check
that the DMI-induced TMI on the strip is not subject to spin
tilting and remains fully polarized at the edges.

To find the classical spin ground state on the strip, we
need to find the spin configuration {�Si}, which minimizes the
classical Hamiltonian

H ({�Si}) =
∑

i j

�ST
i Ji j �S j

under the normalization constraint

|�Si|2 = S2 ∀ sites i, (B1)

where i, j are lattice site indices, Ji j is the 3NxNy × 3NxNy

spin interaction matrix between all sites i and j, comprised
of the nearest-neighbor Heisenberg coupling and the next-
nearest-neighbor DMI, and S is the local magnetic moment.
Note that the classical spins {�Si} and the Hamiltonian H are
not operator-valued but three-dimensional real vectors and a
real scalar, respectively.

We first exploit the translational symmetry in x direc-
tion through a Fourier transform �Sy(kx ) = ∑

x eikx

√
3x �Si=(x,y),

where the Fourier components fulfill �Sy(kx ) = �Sy(−kx )∗. The
spin interaction matrices decompose into 3Ny × 3Ny-blocks
Jyy′ (kx ) so that the Hamiltonian becomes

H ({�Si}) =
∑

kx∈BZ

∑
yy′

�ST
y (kx )Jyy′ (kx )�Sy′ (kx ), (B2)

and the normalization constraint transforms to

|�Si|2 =
∑

kx,qx∈BZ

ei(�k+�q)
√

3x �ST
y (kx )�Sy(qx ) = S2. (B3)

To satisfy Eq. (B3) for all sites i, we need to enforce∑
kx∈BZ

�ST
y (−kx )�Sy(kx ) =

∑
kx∈BZ

|�Sy(kx )|2 = S2, (B4)

�ST
y (kx )�Sy(qx ) = 0 for kx + qx �= 0 (B5)

for all y. We employ two different numerical methods to carry
out the constrained minimization.

1. Luttinger-Tisza

The idea is to temporarily ignore the normalization con-
straint [68]. Then, the problem reduces to the minimization

024441-15



HABEL, MOOK, WILLSHER, AND KNOLLE PHYSICAL REVIEW B 109, 024441 (2024)

of the quadratic form (B2), which amounts to finding the
lowest eigenvalue of each kx block. The ground state is the
eigenvector corresponding to the overall lowest eigenvalue
of all kx blocks. However, this ground state is generally not
normalized according to the constraint (B1), and therefore
only an approximation.

As long as the DMI strength D � 0.6J is weak enough,
we find that kx = 0 yields the lowest overall eigenvalues,
which are threefold degenerate. The corresponding eigen-
vectors have all spins pointing in the x, y, or z direction,
respectively. This is characteristic for a ferromagnet whose
polarization axis is completely arbitrary. In particular, the
spins do not tilt away from that axis near the edges. This result
is independent of the edge termination.

While the Luttinger-Tisza method yields qualitative evi-
dence for the existence of a ferromagnet for finite DMI, the
role of the normalization constraint remains unclear.

2. Projected gradient descent

This method provides a more rigorous treatment of the
normalization constraint. First, we convince ourselves that,
even in the presence of the constraint, the ground state still is
a configuration with fixed wavenumber kx (up to degeneracy).
Consider one spin configuration to be the superposition of dif-
ferent wavenumbers {Kx}, i.e., �Si=(x,y) = ∑

Kx
e−iKx

√
3x �Sy(Kx ),

where �Sy(Kx ) is an eigenvector of Jyy′ (Kx ) with eigenvalue
εKx . Now define the wavenumber Qx so that εQx is the lowest of
all eigenvalues {εKx }, and consider a second spin configuration
�S′

i=(x,y) = e−iQx

√
3x �S′

y(Qx ), which has a unique wavenumber.

We show that the energy H ({�Si}) of the first configuration is
always greater than the energy H ({�S′

i}) of the second configu-
ration,

H ({�Si}) =
∑
Kx

εKx

∑
y

|�Sy(Kx )|2 (B4)
> εQx

∑
y

S2,

(B4)= εQx

∑
y

|�S′
y(Qx )|2 = H ({�S′

i}).

Therefore, a configuration with mixed wavenumbers can
never be the ground state. For a unique-wavenumber configu-
ration such as {�S′

i}, the constraints (B4) and (B5) simplify to

|�S′
y(Qx )|2 = S2, (B6)

�S′T
y (Qx )�S′

y(Qx ) = 0 if Qx �= 0 (B7)

for all y.
To compute �S′

y(Qx ) for some Qx using the projected gra-
dient descent method, we start from a random initial spin
configuration and improve it iteratively until convergence is
achieved up to a tolerance. Each iteration, we evaluate the
gradient δH/δ �Sy(Qx ) at the previous configuration, perform
a gradient descent step with step size 0.3, and project the thus
obtained spin configuration onto the manifold defined by the
constraints (B6) and (B7). Finally, we compare the obtained
energies in each Qx block to find the spin configuration with
the overall lowest energy (i.e., the ground-state spin configu-
ration).

We obtain that as long as D � 0.7J the converged configu-
ration for Qx = 0 has the lowest energy. It describes the same
ferromagnetic alignment as the Luttinger-Tisza result. Hence,
we conclude that the strip ground state of our model is indeed
fully polarized and does not exhibit spin tilting at the edges in
this parameter regime.

APPENDIX C: MAGNON-MAGNON VERTEX FACTORS

To illustrate the derivation of the vertex factors in Eq. (9),
we focus on the dangling edge termination; the equations can
be swiftly generalized to the zig-zag edge termination.

The convention for the coordinates of a lattice site i =
(x, y) is as in Appendix A. We introduce the set nnn(x, y),
which contains the distance vectors to the next-nearest-
neighbor sites of i, expressed in terms of the honeycomb
Bravais lattice vectors. That is,

nnn(x, y even) =
⎧⎨
⎩

{(−1, 0), (1, 1), (0,−1)} 2 � y/2 � Ny − 1
{(−1, 0), (1, 1)} y/2 = 1
{(−1, 0), (0,−1)} y/2 = Ny

,

nnn(x, y odd) = {−�vnnn | �vnnn ∈ nnn(x, y + 1)}.

Note the case distinction between even and odd y, which correspond to sites on the A and B sublattices, respectively. Due to
translational invariance in x direction, nnn(x, y) does not depend on x, so we write nnn(y) from now on. With these definitions,
the sum over all next-nearest neighbors

∑
〈〈i j〉〉 becomes

∑
x,y

∑
(δx,δy)∈nnn(y).

To compute the vertex factors, we start from Eq. (8) and plug in the LSWT diagonalization transformation (6). We
subsequently use the completeness relation

∑
x ei(px+qx−kx )

√
3x = Nx δpx+qx−kx,0,

Ĥ3 = D⊥
√

S√
2

∑
〈〈i j〉〉

(ia†
i a†

j (a j − ai ) + H.c.)

= D⊥
√

S√
2

∑
x,y

∑
(δx,δy)∈
nnn(y)

(ia†
x,ya†

x+δx,y+δy(ax+δx,y+δy − ax,y) + H.c.) = D⊥
√

S√
Nx

∑
nml

∑
kx,qx∈BZ

f nml
kx,qx,kx−qx

a†
kx−qx,n

a†
qx,makx,l .
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f nml
kx,qx,kx−qx

is the precursor of our final vertex factor gnml
kxqx

,

f nml
kx,qx,kx−qx

= i√
2

∑
y

∑
(δx,δy)∈
nnn(y)

U∗
ny(kx − qx )U∗

m,y+δ (qx )
(
Ul,y+δy(kx )e−ikx

√
3δx −Uly(kx )e−i(kx−qx )

√
3δx

)
.

It is, however, not yet symmetric under exchanging (qx, m) ↔ (kx − qx, n). Therefore, we symmetrize Ĥ3,

Ĥ3 = D⊥
√

S√
Nx

√
S

∑
nml

∑
kx,qx∈BZ

f nml
kx,qx,kx−qx

a†
kx−qx,n

a†
qx,makx,l

= D⊥
√

S√
Nx

∑
nml

∑
kx,qx∈BZ

1

2

(
f nml
kx,qx,kx−qx

+ f mnl
kx,kx−qx,qx

)
︸ ︷︷ ︸

gnml
kx qx

a†
kx−qx,n

a†
qx,makx,l ,

where we swapped m ↔ n and shifted qx → kx − qx in the second summand (if kx − qx exceeds the Brillouin zone, we fold it
back by adding or subtracting 2π/

√
3, which is the size of the 1D Brillouin zone of the strip). Finally, we arrive at

gnml
kxqx

= i

2
√

2

2Ny∑
y=1

∑
(δx,δy)∈nnn(y)

(
e−i(kx−qx )

√
3δxU∗

ny(kx − qx )U∗
m,y+δy(qx )Ul,y+δy,s(kx )

− eiqx

√
3δxU∗

ny(kx − qx )U∗
m,y+δy(qx )Uly(kx ) + e−iqx

√
3δxU∗

n,y+δy(kx − qx )U∗
my(qx )Ul,y+δy(kx )

− ei(kx−qx )
√

3δxU∗
n,y+δy(kx − qx )U∗

my(qx )Uly(kx )
)
. (C1)

APPENDIX D: VALIDITY OF THE PERTURBATIVE
TREATMENT

We deem our perturbative approach valid if the self-energy
scale is much smaller than the scale of the LSWT energies
ε ∼ JS. We read off the self-energy scale from Eq. (10),

�̂ ∼ 2D2
⊥S

∑ |g|2
ω − ε − ε

∼ D2
⊥S

JS
= D2

⊥
J

.

Therefore, perturbation theory is naively valid if

D2
⊥

J2S
� 1.

For the largest interaction strength D⊥ = 0.4J
√

S studied in
this work, we have D2

⊥/(J2S) = 0.16, which is on the verge of
being much less than one. However, any two-loop correction
to the self-energy would only enter at order D4

⊥/(J4S2) =
0.0256, which is small enough to be reasonably neglected.

Furthermore, we need to check that D⊥ is small enough to
ensure a ferromagnetic ground state. In Sec. II, we found that
the model is a ferromagnet if

D =
√

D2
‖ + D2

⊥ � 0.7J.

Plugging in the value D‖ = 0.1JS, which we used throughout
this paper, we obtain

D2
⊥ � 0.48J2.

Using the maximal investigated interaction strength D⊥ =
0.4J

√
S, we find that the ground state is ferromagnetic for

S � 3. This condition is fulfilled for many candidate materials
of the honeycomb ferromagnet with DMI like CrI3, where the
magnetic Cr ion has spin S = 3/2 [26].

We remark that this analysis completely neglects the role
of the multimagnon density of states, which implicitly enter in

the self-energy expression at all orders via the corresponding
multimagnon propagators. For example, singularities in the
multimagnon densities of states could render the one-loop
approximation quantitatively inaccurate. However, we expect
that the nonuniversal nature of the breakdown mechanisms of
the edge mode will qualitatively remain the same.

APPENDIX E: ON-SHELL APPROXIMATION
OF THE DECAY RATES

The general idea of the on-shell approximation is to obtain
a first-order approximation to the self-consistent solution of
the pole condition (15) by exploiting the fact that the self-
energy is small compared to the LSWT energies in the context
of the large-S expansion (“�̂/ε̂ ∼ 1/S”).

Firstly, we demonstrate that, at first order in 1/S, we can
usually neglect the off-diagonal self-energy terms. We split
up the self-energy into a diagonal and an off-diagonal part,
i.e., �̂ ≡ �̂diag + �̂offdiag. Next, for convenience, we define
a short-hand for the diagonal part of the interacting Green’s
function,

Ĝdiag(ω, kx ) ≡ ((ω + i0+)1̂ − ε̂kx − �̂diag(ω∗, kx ))−1.

With this, we Taylor-expand the pole condition up to order
1/S,

0 = det
((

ε̃kx,n + i0+)
1̂ − �̂

(
ε̃∗

kx,n, kx
))

= det
(
Ĝ−1

diag

(
ε̃kx,n, kx

) − �̂offdiag
(
ε̃∗

kx,n, kx
))

= det
(
Ĝ−1

diag)
(
1 − Tr(Ĝdiag�̂offdiag) + O(1/S2)

)
.

Since the product of the diagonal matrix Ĝdiag and the
purely off-diagonal matrix �̂offdiag is traceless, the pole equa-
tion simplifies to det(Ĝdiag(ε̃kx,n, kx )) = 0. Dividing away the
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nonsingular factors of the determinant, we obtain

0 = ε̃kx,n − εkx,n − �̂nn
(
ε̃∗

kx,n, kx
) + O(1/S). (E1)

This last step is only possible if we assume that the renor-
malized energies are nondegenerate. If they are, however,
degenerate, we would need to take into account the off-
diagonal self-energy terms at higher order in 1/S, which
would remove the degeneracy by hybridization and level-
splitting. For the sake of simplicity, we neglect this effect
for the on-shell decay rates. However, when we address the
hybridization of edge modes on opposite sides of the system
through an effective non-Hermitian on-shell Hamiltonian, we
must keep the relevant off-diagonal terms (see Sec. V B).

Secondly, we note that the Eq. (E1) implies that the renor-
malized energies ε̃kx,n only differ from the LSWT energies
εkx,n by a term of subleading order in 1/S, i.e., (ε̃kx,n −
εkx,n)/εkx,n ∼ 1/S. Therefore, we can already obtain ε̃kx,n up
to order 1/S by doing one iteration step,

0 = ε̃kx,n − εkx,n − �̂nn
(
εkx,n + �̂∗

nn

(
ε̃kx,n, kx

)
, kx

) + O(1/S)

= ε̃kx,n − εkx,n − �̂nn
(
εkx,n, kx

) + O(1/S).

This yields the familiar result for the on-shell decay rate �os
kx,n

,

�kx,n = −2Imε̃kx,n = −2Im�̂nn
(
εkx,n, kx

)︸ ︷︷ ︸
�os

kx ,n

+O(1/S).

APPENDIX F: PERTURBATIVE ANALYSIS OF THE
y-RESOLVED SPECTRAL FUNCTION

To understand the origins of the delocalized spectral re-
sponse at the edge mode energies, we investigate which states
contribute to the propagation of an edge magnon. We first
derive the exact Lehmann representation of the y-resolved
spectral function based on the Lehmann representation of
the renormalized zero-temperature single-magnon Green’s
function,

Ĝnm(ω, kx ) =
∑

φ

〈0|akx,m|φ〉 〈φ|a†
kx,n

|0〉
ω − Eφ + i0+ ,

where n and m are LSWT band indices, and φ labels a com-
plete set of renormalized eigenstates of the full Hamiltonian
with energies Eφ . Using this, we find

Ay(ω, kx )

= − 1

π
Im

⎛
⎝∑

nm

U†
yn(kx )

∑
φ

〈0|akx,m|φ〉 〈φ|a†
kx,n

|0〉
ω − Eφ + i0+ Umy(kx )

⎞
⎠

= − 1

π
Im

∑
φ

∣∣〈0|akx,y|φ〉∣∣2

ω − Eφ + i0+

=
∑

φ

∣∣〈0|akx,y|φ〉∣∣2
δ(ω − Eφ ), (F1)

where the δ function should be interpreted as a Lorentzian
in case Eφ is complex. Restricting ourselves to the one- and
two-magnon sectors, |φ〉 can be either a single-magnon state
or a two-magnon state. We express |φ〉 using standard per-
turbation theory. If |φ〉 is a renormalized single-magnon state

(momentum kx, band index n),

|φ〉 = √
Zkx,n a†

kx,n
|0〉 +

∑
qx,ab

Cnab
1,kxqx

a†
qx,aa†

kx−qx,b
|0〉

+
∑
m �=n

Cnm
2,kx

a†
kx,m

|0〉 + O(Ĥ3
3 ),

where Zkx,n is the quasiparticle weight of the state. The expan-
sion coefficients read

If |φ〉 is a renormalized two-magnon state (total momentum
kx),

|φ〉 = a†
qx,aa†

kx−qx,b
|0〉 + ∑

m Dmab
kxqx

a†
kx,m

|0〉 + O(
Ĥ2

3

)
,

where

Plugging these expressions for |φ〉 into Eq. (F1) and re-
stricting ourselves to frequencies ω inside the band gap near
the renormalized energy of the edge mode at the lower edge
ω ≈ Ekx,l , we find

Ay
(
ω ≈ Ekx,l , kx

)
≈

∣∣∣∣∣∣Uly

√
Zkx,l +

∑
m �=l

UmyC
lm
2,kx

∣∣∣∣∣∣
2

δ(ω−Ekx,l )

+
∑
qx,ab

∈band gap

∣∣∣∣∣∑
m

UmyDmab
kxqx

∣∣∣∣∣
2

δ
(
ω − εqx,a + εkx−qx,b

)
,

(F2)

where qx, ab ∈ band gap means that the energy εqx,a + εkx−qx,b

of the corresponding two-magnon state should be inside the
band gap. The first summand in Eq. (F2) is the coherent
response of the edge mode resonance. It is composed of the
original LSWT edge mode (wavefunction Uly) damped by
the wavefunction renormalization constant, and admixtures of
single-magnon bulk states (wavefunctions Umy). The second
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summand corresponds to the incoherent two-magnon back-
ground due to the hybridization of single-magnon edge and
two-magnon bulk states. Both contributions generate the spec-
tral response inside the bulk shown in Fig. 6.

Comparing the interacting y-resolved spectral function in
Eq. (F2) to the noninteracting one

A0
y (ω ≈ Ekx,l , kx ) = ∣∣Uly

∣∣2
δ(ω − Ekx,l ),

we see that the first nonvanishing correction to the coherent
(incoherent) part is proportional to Clm

2,kx
(Dmab

kxqx
), both of which

are of order O(Ĥ2
3 ) ∼ O(D2

⊥).

To single out the hybridization of the edge state (band
index l) with single-magnon bulk states (band indices m), we
can explicitly compute their overlaps Clm

2,kx
up to order O(D2

⊥).
Then, the quantity

∑
m∈bulk

∣∣Clm
2,kx

∣∣2 =
∑

m∈bulk

∣∣∣∣∣ �̂lm
(
εkx,l , kx

)
εkx,l − εkx,m

∣∣∣∣∣
2

(F3)

describes the percentage of single-magnon bulk states in the
renormalized edge mode wavefunction. Unsurprisingly, it de-
pends on the off-diagonal edge-bulk-coupling components of
the self-energy matrix.
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