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Signature of surface anisotropy in the spin-flip neutron scattering cross section
of spherical nanoparticles: Atomistic simulations and analytical theory
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We investigate the signature of magnetic surface anisotropy in nanoparticles in their spin-flip neutron
scattering cross section. Taking into account the isotropic exchange interaction, an external magnetic field, a
uniaxial or cubic magnetic anisotropy for the particle’s core, and several models for the surface anisotropy (Néel,
conventional, random), we compute the spin-flip small-angle neutron scattering (SANS) cross section from the
equilibrium spin structures obtained using the Landau-Lifshitz equation. The sign of the surface anisotropy
constant, which is related to the appearance of tangential- or radial-like spin textures, can be distinguished from
the momentum-transfer dependence of the spin-flip signal. The data cannot be described by the well-known
and often-used analytical expressions for uniformly magnetized spherical or core-shell particles, in particular
at remanence or at the coercive field. Based on a second-order polynomial expansion for the magnetization
vector field, we develop a novel minimal model for the azimuthally averaged magnetic SANS cross section. The
theoretical expression considers a general magnetization inhomogeneity and is not restricted to the presence of
surface anisotropy. It is shown that the model describes very well our simulation data as well as more complex
spin patterns such as vortexlike structures. Only seven expansion coefficients and some basis functions are
sufficient to describe the scattering behavior of a very large number of atomic spins.
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I. INTRODUCTION

Research on magnetic nanoparticles is to a large ex-
tent driven by potential and existing applications in areas
such as medicine, biology, and nanotechnology (see, e.g.,
Refs. [1–7] and references therein). In many of the more
application-oriented studies, the magnetization distribution
(spin structure) of the nanoparticles is assumed to be uniform,
i.e., the nanoparticles are considered to be in a single-domain
state, where all the atomic magnetic moments are held in
parallel by strong quantum-mechanical exchange forces. This
approximation might be justified in some cases, e.g., for ob-
taining an initial overall understanding of a certain physical
property or phenomenon, but there are also situations where it
fails. A prominent example is magnetic hyperthermia on iron
oxide nanoparticles [6], where the presence of microstructural
defects—and the ensuing correlated spin disorder—gives rise
to a strongly enhanced specific absorption rate as compared to
the case of defect-free particles [8]. Therefore understanding
the spin structure of nanoparticles is not only of relevance
from a fundamental science point of view but also from the
standpoint of technological applications.

From the foregoing discussion, one may realize that the
steady development of both observational and computational
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methods to elucidate the magnetic microstructure of nanopar-
ticles and to relate them to the macroscopic properties is an
important task. In this respect, we mention magnetic small-
angle neutron scattering (SANS), which is probably the only
experimental technique that is able to probe spin structures
on the here-relevant mesoscopic length scale (∼1 − 1000 nm)
and inside the volume of magnetic materials [9]. It is therefore
not surprising that numerous experimental SANS investiga-
tions on nanoparticle systems including ferrofluids have been
conducted to date [10,11]. An often reached conclusion is that
the magnetization distribution inside the nanoparticles is not
homogeneous but highly complex in the sense that a large
variety of nonuniform, canted, vortex-type, or core-shell-type
configurations are reported (e.g., Refs. [12–30]). Numerical
micromagnetic simulations play an increasingly important
role in this context since they are able to predict the spin
structures of nanoparticles and their related magnetic neutron
scattering cross section and real-space correlation function.
The magnetic ground state of a nanoparticle depends sensi-
tively on many factors such as the particle size and shape, the
presence of defects (e.g., vacancies, antiphase boundaries, sur-
face anisotropy) [8,31], or simply on the magnetic interactions
that are taken into account in the simulations. For instance,
using Monte Carlo simulations of a discrete atomistic spin
model, Köhler et al. [32] have numerically studied the in-
fluence of antiphase boundaries in iron oxide nanoparticles
on their spin structure. Instead of computing the magnetic
SANS cross section, these authors used the Debye scattering
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equation to indirectly relate the internal spin disorder to the
broadening of certain x-ray Bragg peaks. Vivas et al. [33,34]
carried out micromagnetic continuum calculations of the spin
structure of iron nanoparticles and related a vortex-type mag-
netization configuration to certain signatures in the magnetic
neutron scattering cross section and correlation function.

To further improve and advance the understanding of
magnetic SANS, and its theoretical description using mi-
cromagnetic theory, it is important to realize the enormous
complexity that is embodied in typical experimental SANS
procedures. Quite commonly, experimental SANS data are
presented as a plot of the azimuthally averaged scattering
intensity I as a function of the magnitude of the scattering
vector q = |q|. The azimuthal averaging is frequently car-
ried out along certain directions in q space, e.g., parallel
or perpendicular to an externally applied magnetic field or
over the full (2π ) angular range on the two-dimensional (2D)
detector. Although there is no principle difficulty in analyzing
2D SANS data (apart from an increased numerical effort),
most of the time the 1D I (q) data are analyzed, i.e., fitted
to a certain scattering model or Fourier-transformed to obtain
the correlation function. To finally arrive at the 1D I (q) data
involves a number of approximations and averaging processes
that we will discuss in the following.

A magnetic nanoparticle sample may be assumed to consist
of a 3D distribution of nanoparticles that are rigidly em-
bedded in some nonmagnetic matrix. The particles may be
of different sizes and shapes, each particle is characterized
by a certain magnetic anisotropy (e.g., of cubic and/or of
uniaxial symmetry), even the type of microstructural defect
or the surface anisotropy may vary between particles, and
for dense assemblies magnetodipolar interactions between the
particles are additionally important. For ferrofluids, which we
do not consider here, additional interactions (e.g., of hydro-
dynamic origin) may become important. The experimental
SANS cross section of such a system represents an average
over all these features (particle-size and shape distributions,
random easy-axis orientations of the particles, defects and
surface anisotropy, dipolar interaction,...). Moreover, in small-
angle approximation, the component of the scattering vector
along the incident neutron beam is much smaller than the
other two components, so that only correlations in the per-
pendicular plane are probed. Therefore, in the simulations,
the computed 3D SANS cross section needs to be projected
onto the plane of the 2D detector, which then yields the 1D
I (q) curves by azimuthal averaging. In the course of all these
steps, some information on the spin structure of the particles
is lost, both in the simulations as well as in the experimental
procedures.

Given the above-described enormous complexity involved
in obtaining and analyzing experimental scattering data, one
strategy to improve the current understanding is to systemat-
ically vary certain parameters in micromagnetic simulations
and to track down their signatures in the randomly aver-
aged scattering signal. This approach is followed in the
present work. We focus on the effect of strong surface
anisotropy in nanoparticles and study the scattering signa-
ture of different functional dependencies for the magnetic
behavior of the surface spins. Inspired by the obtained
results and the related discussion, we derive a generally

applicable analytical formula for the magnetic SANS cross
section.

More specifically, in this paper we employ atomistic simu-
lations using the Landau-Lifshitz equation (LLE) to scrutinize
the signature of surface anisotropy in magnetic nanoparticles
in their spin-flip (sf) SANS cross section. The latter cross
section can be routinely measured at many SANS beamlines
using polarized neutrons; it is only composed of the Fourier
components of the magnetization and possesses the advantage
that the (unwanted) nuclear coherent SANS contribution—
which can be quite large in nanoparticle systems—is absent.
Therefore the sf SANS cross section provides the most di-
rect access to the spin microstructure of nanoparticles. In
the simulations, we take into account the isotropic exchange
interaction, an external magnetic field, a uniaxial or cubic
magnetocrystalline anisotropy for the core of the nanoparti-
cles, and most importantly different models for the anisotropy
of the surface spins (Néel, conventional, random). As a central
result of this study, we introduce a novel multinanoparticle
power-series magnetization vector field model, which pro-
vides an analytical expression for the azimuthally averaged
magnetic SANS cross section. We emphasize that this analyti-
cal formula considers a general magnetization inhomogeneity,
and is not necessarily restricted to surface anisotropy as the
main mechanism to generate spin disorder. The theoretical
expression is fitted to atomistic and coarse-grained micromag-
netic simulation data.

The paper is organized as follows. In Sec. II, we pro-
vide information on the atomistic simulations using the LLE
(Sec. II A) and we display the expressions for the sf SANS
cross section (Sec. II B). The results of the numerical calcu-
lations are presented in Sec. III A, while Sec. III B provides a
detailed discussion of the failure of the often-used structural
core-shell-type form-factor models for the inhomogeneous
spin structure of nanoparticles. In Sec. IV and Appendix A,
we introduce a multiparticle power-series analysis of the
magnetic SANS cross section (involving all particles of an
assembly). The theoretical model is used to interpret the
present simulation data as well as scattering curves originating
from more complex structures such as vortices in spheres.
Section V summarizes the main findings of this study and
provides an outlook on future challenges. Appendix B shows
results for the effect of the core-anisotropy symmetry (cubic
versus uniaxial) on the sf SANS cross section. Reference
[35] to this paper features several videos that display the
SANS observables during the magnetization-reversal process
for different sign combinations of the cubic/uniaxial core and
surface anisotropy constants.

II. ATOMISTIC DESCRIPTION OF THE NANOPARTICLE
SPIN STRUCTURE AND SPIN-FLIP SANS CROSS SECTION

A. Atomistic spin Hamiltonian

Details of the atomistic simulation methodology of mag-
netic neutron scattering can be found in Ref. [36]. Here, we
recall only the basic steps and relations in order to achieve
a self-contained presentation. Figure 1 sketches the basic
connection between atomistic or continuum micromagnetic
simulations and the magnetic SANS cross section.

024429-2



SIGNATURE OF SURFACE ANISOTROPY IN THE … PHYSICAL REVIEW B 109, 024429 (2024)

FIG. 1. Basic concept of the connection between micromagnetic
simulations and the magnetic SANS cross section.

A spherical many-spin nanomagnet is viewed as a crystal-
lite consisting of N atomic magnetic moments μi = μami,
where μa denotes the magnitude of the atomic magnetic mo-
ment and mi is a unit vector specifying its orientation. We
assume the spins to “sit” on a simple cubic lattice, so that
μa = Msa3, where Ms is the saturation magnetization of the
material and a the lattice constant. The spherical shape of the
nanomagnet is cut from a simple cubic regular grid, and its
radius R is defined as R = N−1

2 a, where the integer N is the

number of atoms on the side of the cubic grid. The magnetic
state of the nanomagnet is investigated within an atomistic
approach based on the following Hamiltonian [36]:

H = HEX + HZ + HA

= −1

2
J
∑

i, j∈n.n.

mi · m j − μaB0 ·
N∑
i=1

mi +
N∑
i=1

HA,i, (1)

where HEX is the nearest-neighbor (n.n.) exchange energy,
with J > 0 the exchange parameter, HZ denotes the Zeeman
energy with B0 the homogeneous externally applied magnetic
field, and HA represents the magnetic anisotropy energy. For
the core spins, we assume the anisotropy to be either of uniax-
ial (“u”) or cubic (“c”) symmetry, while for the surface spins
we adopt several models. More specifically, HA,i is expressed
as follows:

HA,i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Ku(mi · eA)2 or Kc

(
m2

i,xm2
i,y + m2

i,xm2
i,z + m2

i,ym2
i,z

)
, i ∈ core,

1

2
Ks

∑
j∈n.n.

(mi · ui j )
2 or − 1

2
Ks(mi · n)2, i ∈ surface,

(2)

where Ku, Kc, and Ks denote, respectively, the uniaxial or
cubic core and surface anisotropy constants, eA is a unit vector
along the easy axis of the core, ui j = (ri − r j )/‖ri − r j‖ is a
unit vector connecting the nearest-neighbor spins i and j, and
n is the unit normal vector on the surface of the spherical par-
ticle. The surface spins are defined as those spins which have
a coordination number less than six (simple cubic lattice). The
particular model with the ui j vectors is the one proposed by
Néel [37], while the expression involving the unit normal vec-
tor n on the surface is an often-used phenomenological way to
describe surface anisotropy effects. Additionally, we consider
the case of a random surface anisotropy, where we take the
ui j as random vectors. In the following, these three models
will be denoted as, respectively, the Néel model (NM), the
conventional model (CM), and the random surface anisotropy
model (RM). The anisotropy constants in Eq. (2) can assume
positive as well as negative signs. The magnetodipolar interac-
tion has been ignored in our simulations. This is motivated by
the numerical complexity of this energy term, in particular for
atomistic simulations (here, for a 8 nm diameter particle, the
number of spins is N = 11363), and by the expectation that it
is of minor relevance for smaller-sized nanomagnets [32,38].

The dynamics of each individual magnetic moment mi is
described by the Landau-Lifshitz equation (LLE) [39]:

dmi

dt
= −γ mi × Beff

i − α mi × (mi × Beff
i

)
, (3)

where γ is the gyromagnetic ratio and α denotes the damping
constant. The effective magnetic field Beff

i acting on spin
“i” is obtained as the functional derivative of H [Eq. (1)]
with respect to mi, i.e., Beff

i = −μ−1
a δH/δmi. The LLE is

then solved numerically by using the explicit Euler forward-
projection method [40]. At each value of the external field
and for given materials parameters, atomistic simulations of

the spin structure and of the ensuing magnetic neutron scat-
tering cross section were carried out for typically 256 random
orientations of the core-anisotropy axes of the particle with
respect to the field B0, which defines the z direction of a Carte-
sian laboratory coordinate frame. More specifically, once the
lattice orientation has been randomly selected, the easy-axis
orientation of the particle’s core and the distribution of the
surface anisotropy are fixed. The whole system (core plus
surface anisotropy) is then randomly rotated relative to B0.
The simulations were carried out by starting from a large
positive (saturating) field of about 10 T and then the field was
reduced in steps of typically 30 mT.

In our simulations we used the following parameters:
atomic magnetic moment of bcc iron μa = 2.22 μB (with
μB the Bohr magneton), lattice constant a = 0.287 nm, ex-
change constant J = 3.01 × 10−22 J/atom, damping constant
α = 3 × 1011 T−1 s−1, gyromagnetic constant γ = 1.76 ×
1011 T−1s−1, and an integration time step of ht = 5 fs. For
the uniaxial (Ku) and cubic (Kc) core anisotropy constants, we
used the value of Ku = Kc = +5.67 × 10−25 J/atom. Experi-
mental Ks values for nanoparticles and thin films can be found
in Refs. [7,41,42]. A value of Ks = 5.22 × 10−21 J/atom—
which we use in the simulations—has been estimated in
Ref. [43,44] for a 4-nm-sized fcc Cobalt particle. Note, how-
ever, that we vary the sign of Ks [compare to Eq. (2)].

For the calculation of the sf SANS cross section d�sf/d�

[see Eq. (5) below], it is necessary to compute the dis-
crete Fourier transform of all mi belonging to the spherical
nanomagnet. Using μi = μami, the discrete-space Fourier
transform is computed as:

M̃(q) = μa

(2π )3/2

N∑
i=1

mi exp (−iq · ri ), (4)
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FIG. 2. Sketch of the neutron scattering geometry. The neutron
optical elements (polarizer, spin flipper, analyzer) that are required to
measure the spin-flip SANS cross section are not drawn. The applied
magnetic field B0 ‖ ez is perpendicular to the wave vector k0 ‖ ex

of the incident neutron beam (B0 ⊥ k0). The momentum-transfer or
scattering vector q is defined as the difference between k0 and k1,
i.e., q = k0 − k1. SANS is usually implemented as elastic scattering
(k0 = k1 = 2π/λ), and the component of q along the incident neu-
tron beam, here qx , is much smaller than the other two components,
so that q ∼= {0, qy, qz} = q{0, sin θ, cos θ}. This demonstrates that
SANS probes predominantly correlations in the plane perpendicular
to the incident beam. For elastic scattering, the magnitude of q is
given by q = (4π/λ) sin(ψ ), where λ denotes the mean wavelength
of the neutrons and 2ψ is the scattering angle. The angle θ =
∠(q, B0) is used to describe the angular anisotropy of the recorded
scattering pattern on the 2D position-sensitive detector.

where ri is the location point of the ith spin and q represents
the wave vector (scattering vector). Equation (4) establishes
the relation between the outcome of the spin-configuration
simulations, namely the mi, and the sf SANS cross sec-
tion d�sf/d�.

B. Spin-flip SANS cross section

The quantity of interest in experimental SANS studies
is the elastic magnetic differential scattering cross section,
which is usually recorded on a 2D position-sensitive detector.
Progress in SANS instrumentation allows one to routinely
measure the spin-flip (sf) SANS cross section d�sf/d�,
which does not contain the nuclear coherent scattering signal.
For the most commonly used scattering geometry in magnetic
SANS experiments, where the applied magnetic field B0 ‖ ez

is perpendicular to the wave vector k0 ‖ ex of the incident
neutrons (see Fig. 2), d�sf/d� can be written as [9]

d�sf

d�
(q) = 8π3

V
b2

H(|M̃x|2 + |M̃y|2 cos4 θ

+ |M̃z|2 sin2 θ cos2 θ

− (M̃yM̃∗
z + M̃∗

y M̃z ) sin θ cos3 θ ), (5)

where V is the scattering volume, bH = 2.91 × 108 A−1 m−1

is the magnetic scattering length in the small-angle regime
(the atomic magnetic form factor is approximated by 1
since we are dealing with forward scattering), M̃(q) =
{M̃x(q), M̃y(q), M̃z(q)} represents the Fourier transform of the
magnetization vector field M(r) = {Mx(r), My(r), Mz(r)}, θ

denotes the angle between q and B0, and the asterisk “∗”

stands for the complex conjugate. Note that in the perpendicu-
lar scattering geometry, the Fourier components are evaluated
in the plane qx = 0 (compare to Fig. 2). In writing down
Eq. (5), we have ignored the polarization-dependent chiral
scattering term. This contribution has also been calculated in
our numerical procedure and, as expected, its magnitude is
found to be typically 2–3 orders of magnitude smaller than
the other terms in Eq. (5).

The numerically computed sf SANS cross sections that are
shown in this paper correspond to the following average:

d�sf

d�
(q) =

〈
d�sf

d�
(q)

〉
EA

= 1

K

K∑
k=1

d�sf,k

d�
(q), (6)

where d�sf,k/d� represents (for fixed Ku, Kc, Ks, B0) the sf
SANS cross section for a particular easy-axis (“EA”) orienta-
tion of the particle core (referred to index “k”), and K = 256
denotes the number of random configurations (total number
of particles). Equation (6) implies the absence of interparticle
interactions.

It is often convenient to average the 2D SANS cross
section d�sf

d�
(q) = d�sf

d�
(qy, qz ) = d�sf

d�
(q, θ ) along certain di-

rections in q space, e.g., parallel (θ = 0) or perpendicular
(θ = π/2) to the applied magnetic field, or even over the
full angular θ range. In the following, we consider the 2π

azimuthally averaged sf SANS cross section

Isf (q) = 1

2π

∫ 2π

0

d�sf

d�
(q, θ ) dθ. (7)

The influence of a distribution of particle sizes on the mag-
netic SANS observables has been modeled using a lognormal
probability distribution function, which is defined as [45]

w(D) = 1√
2πD2 ln

(
1 + σ 2

μ2

) exp

⎛⎜⎝−
ln2
(

D
μ

√
1 + σ 2

μ2

)
2 ln
(
1 + σ 2

μ2

)
⎞⎟⎠,

(8)

where μ denotes the expectation value and σ 2 is the variance,
such that

μ =
∫ ∞

0
w(D)DdD > 0, (9)

σ 2 =
∫ ∞

0
w(D)(D − μ)2dD. (10)

The corresponding median μ∗ is determined by the following
relation:∫ μ∗

0
w(D)dD = 1

2
and μ∗ = μ2√

μ2 + σ 2
. (11)

For given values of μ and σ , the averaged sf SANS cross
section 〈. . . 〉 is computed as〈

d�sf

d�

〉
= 1

V

L∑
�=1

d�sf,�

d�
P�V�, (12)

V� = 4πR3
�

3
, (13)

V =
L∑

�=1

P�V�, (14)
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FIG. 3. Spin structures (snapshots) of 8 nm diameter nanoparticles at selected applied magnetic fields and for different sign combinations
of the cubic core (Kc) and surface (Ks) anisotropy constants. The images represent projections of the 3D spin structure into the plane y = 0.
Kc = +5.67 × 10−25 J/atom in all simulations and |Ks| = 5.22 × 10−21 J/atom, with the sign of Ks changing (see insets). NM = Néel model,
CM = conventional model, RM = random surface anisotropy model. (a)–(d) near saturation (B0 = 10 T); (e)–(h) at remanence (B0 = 0 T).
All spin structures were previously saturated along the z direction.

where P� denotes the probability (weight) related to the
particle-size class D� = 2R� (diameter) by

P� =
∫ D�+
D/2

D�−
D/2
w(D)dD. (15)

The d�sf,�/d� in Eq. (12) correspond to the randomly aver-
aged sf cross section of the size class �, computed according
to Eq. (6).

III. RESULTS AND DISCUSSION

A. Atomistic simulations: Spin structures and spin-flip SANS
cross section

Figure 3 shows examples for numerically computed spin
structures at remanence and saturation and for different
sign combinations of the cubic core (Kc) and surface (Ks)
anisotropy constants. The magnitudes of Kc and Ks are con-
stant in these simulations, only the sign of Ks changes. Near
saturation (B0 = 10 T, upper row in Fig. 3), the particles are
essentially uniformly magnetized, although some “wiggling”
of the spins near the surface occurs due to the strong surface
anisotropy. At lower fields (remanence, lower row in Fig. 3),
larger spin inhomogeneities appear throughout the volume
of the particle. It is seen that the spins near the surface of
the nanoparticle have a more radial orientation when Ks > 0,
while they are more tangentially oriented when Ks < 0. This
can be understood by inspecting the expression for the sur-
face anisotropy energy [Eq. (2)]; for Ks > 0, the mi ⊥ ui j

and mi ‖ n orientations are energetically preferred, whereas
mi ‖ ui j and mi ⊥ n for Ks < 0.

Figure 4 displays a spherical map of the normal component
of the spins at the surface, mn, corresponding to the spin

structures shown in Fig. 3. We compute mn as

mn(�i,�i ) = mi · ri

‖ri‖ , (16)

where the position vector ri is expressed using the spherical
coordinates �i,�i as

ri = ri{sin �i cos �i, sin �i sin �i, cos �i} for

0.94R � ri � R. (17)

mn(�i,�i ) may be interpreted as a fictitious magnetic surface
charge density on the spherical boundary surface in the direc-
tion that is specified by the polar angle �i and the azimuthal
angle �i. The images in Fig. 4 highlight, as described in
the following, the effects of changing the sign of Ks on the
spin textures at the surface of the nanoparticle. For more
radial-like surface spins, corresponding to Ks > 0, and for
both the NM and CM model [Figs. 4(a), 4(c) 4(e), and 4(g)],
we observe a relatively sharp separation of positive and nega-
tive mn(�i,�i ) values around the equatorial line (�i = 90◦).
Roughly speaking, the spins point radially outward in the
upper hemisphere (0◦ � �i � 90◦), while they point radially
inward in the lower hemisphere (90◦ � �i � 180◦). For the
case Ks < 0 [Figs. 4(b), 4(d) 4(f), and 4(h)], we find more
extended regions on this map where mn(�i,�i ) is close to
zero (corresponding to tangential textures). For instance, for
the CM model at zero field [Fig. 4(h)], there is nearly no radial
spin component; increasing the field to 10 T [Fig. 4(d)] gives
rise to radial components, since B0 is applied parallel to the z
direction (�i = 0◦,�i = 0◦). For the NM model and Ks < 0,
we obtain a more complex behavior: mn(�i,�i ) at zero field
[Fig. 4(f)] exhibits an “oscillatory” pattern of tangential and
radial surface spin regions, which changes with increasing
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FIG. 4. Alternative representation of the spin structure data shown in Fig. 3. Plotted is the normal component of the spins at the surface,
mn(�i, �i ) [Eq. (16)], for the Néel (NM) and conventional (CM) model at B0 = 10 T and at B0 = 0 T both for Ks > 0 and Ks < 0. �i and �i

denote, respectively, the polar and azimuthal angles. Same parameters and notation as in Fig. 3 (see insets).

field [Fig. 4(b)] to the expected structure that is dominated
by radially oriented spins.

In Figs. 5–8, we present the results for the 2D d�sf/d� and
for the azimuthally averaged sf SANS cross sections Isf (q);

FIG. 5. Numerically computed 2D spin-flip SANS cross sections d�sf/d� [Eq. (5)] at selected applied magnetic fields and for different
sign combinations of the cubic core (Kc) and surface (Ks) anisotropy constants (linear color scale, B0 ‖ ez ⊥ k0). Kc = +5.67 × 10−25 J/atom
in all simulations and |Ks| = 5.22 × 10−21 J/atom, with the sign of Ks changing (same notation as in Fig. 3, see insets). (a)–(e) near saturation
(B0 = 10 T); (f)–(j) at remanence (B0 = 0 T); (k)–(o) at the respective coercive field. The particle diameter is D = 2R = 8 nm.
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FIG. 6. 2π azimuthally averaged spin-flip SANS cross sections Isf (q) (data from Fig. 5) (log-log scales). (a) near saturation (B0 = 10 T);
(b) at remanence (B0 = 0 T); (c) at the respective coercive field. (d)–(f) display an enlarged region of the respective plots in (a)–(c). The
vertical dashed lines mark the first two minima of the form factor of a homogeneous sphere (Isf (q) ∼ [ j1(qR)/(qR)]2 with a first zero at
qsat

1
∼= 9/D = 1.125 nm−1 and a second zero at qsat

2
∼= 15.5/D = 1.9375 nm−1). The particle diameter is D = 2R = 8 nm.

Figs. 5 and 6 present the results for a monodisperse particle
ensemble (D = 8 nm), Fig. 7 compares the Isf (q) of indi-
vidual particles to the randomly averaged Isf (q), and Fig. 8
shows the effect of polydispersity on Isf (q). Near saturation
at B0 = 10 T (upper row in Fig. 5), we observe for all sur-
face anisotropy models the characteristic sin2 θ cos2 θ angular
anisotropy of d�sf/d� due to longitudinal magnetization
fluctuations [compare Eq. (5)]. At remanence (B0 = 0 T, mid-
dle row), this anisotropy is still prevalent in all the scattering
images, but, depending on the surface anisotropy model and
the sign of Ks, we observe some variations in its overall shape.
Compared to the data at 10 T, we now find large scattering
contributions along the horizontal and vertical directions on
the detector (except for the CM model). When the external
field is further reduced to the respective coercive field (char-
acterized by a zero net magnetization of the particle ensemble,
lower row), we see that the anisotropy of the pattern exhibits
maxima along the horizontal field direction, except for the
CM case with Ks < 0 [Fig. 5(n)]. We also emphasize that the
randomly averaged magnetic SANS cross section of a particle
ensemble is generally anisotropic, even at remanence or in the
demagnetized state [46].

The azimuthally averaged Isf (q) near saturation [Figs. 6(a)
and 6(d)] surprisingly reveal a shift of the form-factor minima
to both larger and smaller momentum transfer q: for Ks > 0
we observe a shift to larger q, while for Ks < 0 we see a
shift to smaller q; these trends remain present in the data also

at lower fields. For the case of a random surface anisotropy
(RM), this shifting feature is weak. Naively, one may argue
that the very slight deviation from a uniform magnetization
due to the presence of surface spin disorder [even at 10 T,
compare Fig. 3(a)–3(d)] gives rise to a smaller effective “mag-
netic particle size” and a concomitant shift of the minima in
Isf (q) to larger q. Since this picture does not become visible
in our data we cannot argue that an arbitrary inhomogeneous
spin structure generally results in a shift of the extrema to
larger scattering vectors. The origin of this observation re-
mains unknown to us. Moreover, we see in Fig. 6 that the
form-factor oscillations for our unimodal particle system are
damped in the presence of a strong surface anisotropy. Ignor-
ing the shift of the minima, this behavior somehow mimics
the effect of instrumental smearing or of a particle-size distri-
bution function; in other words, the different spin structures
[which result from different energies in Eq. (1)] result in an
intrinsic smearing effect in the sf SANS cross section, even
for particles of the same size and shape (compare Fig. 7 be-
low). The difference between positive and negative Ks values
becomes most pronounced at remanence and at the coercive
fields [Figs. 6(b), 6(c), 6(e), and 6(f)]. For tangential-like spin
structures (Ks < 0), both the NM and CM models result in
a more peak-like functional dependence of Isf (q) around the
first maximum [compare, e.g., the dashed red and blue curves
in Fig. 6(e)], whereas for radial-like structures (Ks > 0), we
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FIG. 7. [(a)–(d)] Selected real-space spin structures at B0 = 0 T
for the NM model with Ks > 0 (D = 2R = 8 nm). These structures
differ in the their orientations of the core-anisotropy axes relative
to B0 ‖ ez. (e) Normalized 2π azimuthally averaged spin-flip SANS
cross sections Isf (q) of the four spin structures shown in (a)–(d) along
with the Isf (q) (avg) of an ensemble of 256 randomly oriented parti-
cles (see inset) (log-log scale) [compare the definition of the sf SANS
cross section, Eq. (6)]. See also the corresponding movie in Ref. [35].

see a more shoulderlike behavior of Isf (q) [compare, e.g., the
solid red and blue curves in Fig. 6(f)].

As discussed in the introduction, the fact that each nanopar-
ticle of an assembly has its own (random) orientation of the
magnetic easy axis of magnetization relative to the laboratory
coordinate system gives rise to an averaging procedure over
the corresponding distribution. This is illustrated in Fig. 7,
which depicts four selected remanent spin structures and their
corresponding contribution (weight) to the azimuthally av-
eraged sf SANS cross section Isf (q) of an ensemble of 256
randomly oriented particles. All materials parameters are the
same in these simulations, except that the core-anisotropy di-
rection and the corresponding distribution of the Néel surface
anisotropy are different (since the lattice is rotated). As can
be seen, the four spin structures in Fig. 7 are substantially
different and exhibit different functional q dependence. As
discussed in the previous paragraph, even in the absence of
a particle-size distribution function, this gives rise to a kind of
intrinsic broadening effect on Isf (q) (see Fig. 6).

The additional smearing effect of a lognormal particle-size
distribution is summarized in Fig. 8. At B0 = 10 T [Figs. 8(a)
and 8(b)], we observe the expected behavior, namely, that

FIG. 8. Effect of a particle-size distribution function (psd) on
Isf (q) for the NM model and for Ks > 0 and Ks < 0 (log-log scales).
[(a) and (b)] Near saturation (B0 = 10 T) and [(c) and (d)] at re-
manence (B0 = 0 T). The vertical dashed lines mark the first two
minima of the form factor of a homogeneous sphere with a diam-
eter of D = 2R = 8 nm (Isf (q) ∼ [ j1(qR)/(qR)]2 with a first zero
at qsat

1
∼= 9/D = 1.125 nm−1 and a second zero at qsat

2
∼= 15.5/D =

1.9375 nm−1). The mean particle diameter is μ = 8 nm and the
width σ of the distribution is varied (see inset).

the form-factor oscillations become progressively damped and
washed out. Switching the sign of Ks does (at 10 T) not change
this observation, except that the minima shift into different
directions on the q axis (as discussed previously, see Fig. 6).
However, at zero field [Figs. 8(c) and 8(d)], the change of the
sign of Ks becomes noticeable in Isf (q). For Ks > 0 (radial-
like spin structures), the polydispersidy brings no significant
effect, since the Isf (q) curves are already fully damped in
the monodisperse case due to the Néel surface anisotropy
(compare Fig. 6), while for Ks < 0 (tangential-like structures),
we again observe the usual smearing behavior. These find-
ings are qualitatively similar for the CM model (data not
shown).

B. How to analyze the magnetic SANS cross section?

Quite frequently, azimuthally averaged magnetic SANS
data (or sector averages along the horizontal or vertical direc-
tions on the detector) are analyzed by decomposing the cross
section into a set of noninterfering spheres or core-shell parti-
cles. This represents a purely structural/geometrical approach
that is not adapted to the inhomogeneous spin microstrucure
of nanoparticles; in other words, there is no physical model
behind this procedure. We have also tried to fit the simulation
data in Fig. 6 to the sphere and core-shell form factors with
and without a distribution of sizes. While some of the satu-
rated data could obviously be satisfactorily described in this
way, the data at remanence and at the coercive field (where
the largest spin deviations occur) could not be fitted to these
models using realistic parameters.

To demonstrate that core-shell-type models cannot account
for the existing spin inhomogeneity (at low fields) within
nanoparticles exhibiting surface anisotropy, we have plotted
in Fig. 9 the average spin-misalignment angle as a function of
the applied field. This figure requires some explanation that
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FIG. 9. Results for the shell-averaged deviation angle of an indi-
vidual nanoparticle (NM model with Ks > 0, D = 8 nm). [(a)–(c)]
Real-space spin structures at B0 = 10 T, remanence (B0 = 0 T),
and at the coercive field (see insets); [(d)–(f)] the corresponding
deviation angles ηi,k [Eq. (19)]; and [(g)–(i)] the radial profiles of
the shell-averaged deviation angles η j,k [Eq. (22)].

we are providing in the following. Denoting by “i” the atomic
spin index and by “k” the particle index, we introduce the
following quantities:

mk = 1

N

N∑
i=1

mi,k, (18)

ηi,k = arccos

(
mi,k · mk

‖mk‖
)

, (19)

ρi,k = ‖ri,k‖
R

, (20)


 j =
{
ρi,k ∈ R

∣∣∣ j − 1

J � ρi,k <
j

J , j = 1, 2, . . . ,J
}
,

(21)

η j,k = 1

N j

∑
ρi,k∈
 j

ηi,k, (22)

η j = 1

K

K∑
k=1

η j,k . (23)

At a given external field B0, the vector mk represents the
average magnetization of particle k, which contains a total of
N spins (the same for all particles, since we consider only
the monodisperse case). The quantity ηi,k denotes the angle
of deviation between the local spin i in particle k relative to
the unit vector along the average magnetization of particle
k. ρi,k is the normalized radial distance from the origin (in
particle k) to the spin i, and 
 j describes the decomposi-
tion of a given spherical particle (with radius R) into a total

number of J shells (intervals) with a shell thickness of 1/J .
η j,k is the shell-averaged deviation angle of particle k, where
N j denotes the number of spins within the jth shell of the
kth particle. Finally, η j [Eq. (23)] denotes the shell-averaged
deviation angle averaged over the ensemble of K particles.
The latter quantity is also displayed in Ref. [35]. For the
following discussion, the average deviation angle η j,k , which
can be interpreted as a measure for the spin inhomogeneity
of particle k, is of relevance; η j,k = 0◦ corresponds to the
uniform single-domain state.

Figure 9 shows the results for the shell-averaged devi-
ation angle η j,k of an individual nanoparticle (for the NM
model with Ks > 0). The results for η j,k for the other surface
anisotropy models are similar (data not shown). Displayed
are real-space spin structures for an individual particle near
saturation, at remanence, and at the (near) coercive field
[Figs. 9(a)–9(c)]; the subpanels (d)–(f) show the data for ηi,k

[Eq. (19)] and the subpanels (g)–(i) display η j,k [Eq. (22)].
While the ηi,k represent the 3D distribution of the local spin
deviation angles in the unit sphere, the shell-averaged spin
deviation angles η j,k are of highest relevance for the following
discussion.

In the case close to saturation [B0 = 10 T, Fig. 9(g)], the
η j,k indicate an approximate core-shell-like behavior, where
the η j,k

∼= 0◦ are constant inside the core of the nanoparti-
cle (up to r/R ∼= 0.75), and then increase with a parabolic
functional dependence towards the particle surface. At lower
fields, the spin inhomogeneities spread towards the center of
the nanoparticle, such that we cannot discern anymore a sharp
core-shell-like transition [47]. In fact, at remanence [Fig. 9(h)]
we find a parabolic η j,k (r/R) dependence that extends over
the whole particle, and even becomes more nonlinear at the
coercive field [Fig. 9(i)]. These results then suggest that it
is not possible/permissible to fit such low-field data to a
set of noninterfering core-shell particles, which represents a
structural model that is not adapted to the nonuniform three-
dimensional spin distribution within nanoparticles.

To further illustrate this, we present in Fig. 10 a model fit of
the η profiles [Eq. (23)] along the hysteresis loop. As a model,
we use the following piecewise polynomial function:

η(ξ = r/R) =
{
η0, 0 � ξ � Rc

η0 + η1(ξ − Rc)2, Rc � ξ � 1
, (24)

which consists of a constant part with magnitude η0 (defined
for ξ � Rc) and a parabolic part with prefactor η1 (defined for
ξ � Rc). Rc is the reduced core radius, which reflects the idea
of a core-shell nanoparticle. It can be seen in Fig. 10 that in
most cases Eq. (24) describes the averaged radial behavior of
the system, except for the regime of magnetization reversal
(finite interval around the coercive field), where a description
using a higher-order polynomial (degree >2) might be more
appropriate. We emphasize that the reduced core radius Rc
is continuously changing with the field [Fig. 10(c)], simi-
lar to what has been reported by Zákutná et al. [27]. This
observation in conjunction with the fact that the simulation
data [Fig. 10(a)] do not exhibit a step-function profile (ex-
cept approximately at the highest field) demonstrates that a
core-shell-type model is not suitable for the analysis of the
corresponding scattering data.

In the following, we develop a novel power-series mag-
netization vector field model that provides an analytical
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FIG. 10. Results of the fit analysis for η(ξ ), the shell-averaged
deviation angle averaged over the ensemble of K particles [Eq. (23)]
(for the NM case with Ks < 0). (a) Simulation data for η(ξ =
r/R) (dots) are shown for three selected applied fields B0 =
{3, 0, −0.44} T and are fitted to Eq. (24) (solid lines). It is seen
that at the coercive field (regime of magnetization reversal), the
second-order model Eq. (24) fails. (b) Average magnetization mz(B0)
along the hysteresis loop. [(c) and (d)] Field dependence of Rc and
of the root-mean-square error (RMSE) between the model fit and the
simulation data. The dots in (b)–(d) correspond to the three cases
shown in (a).

expression for the azimuthally averaged sf SANS cross sec-
tion Isf (q) of nanoparticles (and any magnetic SANS cross
section in general). This approach takes into account arbitrary
spin inhomogeneity and particle shape and is not necessarily
restricted to the presence of surface anisotropy as the main
mechanism to generate intraparticle spin disorder.

IV. MULTIPARTICLE POWER-SERIES ANALYSIS
OF THE MAGNETIC SANS CROSS SECTION

In the discussion of magnetic SANS from nanoparticles,
several features need to be distinguished: (i) the particle-size
distribution (including the particle-shape distribution), (ii) the
spatial distribution of the particles within the sample, and (iii)
the total magnetization vector field of the sample (includ-
ing all particles). Based on an analytical calculation of the
magnetic SANS cross section from nanoparticles with Néel
surface anisotropy [48], which provided an explicit expres-
sion for the 2D magnetic SANS cross section beyond the
superspin model, we introduce here a power-series analysis of
a multiparticle system taking into account arbitrary intrinsic
magnetization distributions. As shown in Appendix A, by
using this method we are able to derive an analytical ex-
pression for Isf (q) up to the second-order spatial dependence
of the magnetization vector field M(r). The expression for
Isf (q) may be used for the analysis of experimental neutron
data. By way of illustration, we use our power-series model
(up to the second order) to fit the SANS results from the
atomistic simulations of nanoparticles with different types of
surface anisotropy as well as from micromagnetic continuum
simulations of larger nanoparticles with inherent vortex-type
spin configurations [34].

The final result for the azimuthally averaged sf SANS cross
section Isf (q) for the perpendicular scattering geometry is

given by (see Appendix A):

Isf (q) =
6∑

k=0

Ik
sf gk (qR), (25)

where the Ik
sf are constant prefactors, and the radially sym-

metric functions gk (qR) are given by Eqs. (A28)–(A34). In
the perfectly saturated state, the higher-order coefficients in
Eq. (25) vanish and the remaining zeroth-order term is given
by the well-known homogeneous sphere form factor:

Isf (q; B0 → ∞) = I0,sat
sf g0(qR)

= I0,sat
sf

[
sin(qR) − qR cos(qR)

(qR)3

]2

. (26)

Equation (25) is one of the central results of this paper. It
represents an easy-to-use fit function for azimuthally averaged
magnetic SANS cross sections of ensembles of monodisperse
and dilute spherical particles with up to 8 free fit parame-
ters (R and Ik

sf , k = 0, . . . , 6); Isf (q) depends linearly on Ik
sf ,

but nonlinearly on the sphere radius R. We emphasize that
although Eq. (25) has been derived for the purely magnetic
sf SANS cross section, it is equally well applicable to the
purely magnetic SANS cross section that might be obtained
by means of unpolarized SANS measurements: as shown,
e.g., in Refs. [9,26], subtracting the nuclear and magnetic
unpolarized SANS cross section at saturation from the nuclear
and magnetic unpolarized SANS at a lower field (assuming a
field-independent nuclear scattering) results in a purely mag-
netic (difference) SANS cross section that is closely related
to the sf SANS (just a different combination of the magnetic
Fourier components). Likewise, Eq. (25) is also applicable to
any magnetic SANS cross section measured in the parallel
scattering geometry. The coefficients Ik

sf may in these cases
simply take on different values.

As discussed in Appendix A, the coefficients Ik
sf may gener-

ally depend on the temperature, the applied magnetic field, on
the magnetic interactions (e.g., symmetric and antisymmtric
exchange, magnetic anisotropy, magnetodipolar interaction),
and in particular on the radius R of the nanoparticle. There-
fore, in the presence of a particle-size distribution function
w(R), the Ik

sf become functions of R. One may then either
assume certain distribution functions for the Ik

sf (e.g., Gaus-
sian), but this would lead to an unreasonably large number of
free fitting parameters. Instead, a more practical approach is
to carry out a fitting procedure over w(R) and to interpret the
Ik
sf as ensemble-averaged quantities, which then implies that

they are uniformly distributed over the particle sizes.
To verify that Eq. (25), which is based on a second-order

polynomial expansion of the magnetization vector field, may
be used to explain different features in the magnetic SANS
cross section, we have fitted the free parameters in Eq. (25)
to several selected simulation data. Figure 11 displays the
atomistic simulation results for Isf (q) for the NM and CM
models at remanence (open circles) along with the fits to
Eq. (25) (solid lines). It can be seen that the second-order
model [Eq. (25)] describes the sf data very well; some small
deviations occur at the largest momentum transfers q. As
predicted, the coefficients I0

sf , I1
sf , I2

sf , I4
sf are all positive,

while the I3
sf , I5

sf , I6
sf can take on positive as well as negative
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FIG. 11. Fits of the model function Eq. (25) (solid lines) to the sf
simulation results of monodisperse ensembles of spherical nanopar-
ticles with different types of surface anisotropy (◦) (D = 8 nm,
B0 = 0 T). The coefficients Ik

sf are given in units of cm−1 and the
radius R is given in units of nm. In (a) and (b), we show the cases with
Ks < 0 and in (c) and (d), we display the results with Ks > 0. For the
fit analysis, we have used the Levenberg-Marquardt algorithm.

values. The radii R are all very close to 4 nm, except for the
CM model with Ks > 0, where the numerical minimization
algorithm finds R ∼= 3.6 nm, which is significantly smaller
than the true geometrical size. This result might be related
to the featureless Isf (q) curve for this case. By switching the
sign of Ks, we see for both NM and CM models that the
signs of the coefficients I3

sf , I5
sf , I6

sf are switched (compare
Appendix A). Furthermore, we note that for the cases Ks < 0,
the coefficient I4

sf is numerically equal to zero (approaching
zero from above).

The field dependence of the fitting parameters for the NM
model with Ks < 0 is presented in Fig. 12. It can be seen that
the coefficients Ik

sf and the radius R (with the exception of
I4
sf ) behave approximately mirror symmetrically with respect

to positive and negative applied fields. For increasing field
strength (|B0| → ∞), the parameters I1

sf to I6
sf tend to zero (as

expected), indicating that the internal magnetization structure
becomes progressively more uniform, approaching the satu-
rated case that is given by Isf (q) = I0,sat

sf g0(qR) [Eq. (26)].
Note the apparent field dependence of the fit value for R,
which is a consequence of the numerical fit with the second-
order model (the fluctuation in R is in the 1 Å regime). The
results of fitting for the field dependencies of the coefficients
Ik
sf and for the radii R are qualitatively similar for the other

surface anisotropy models.
Atomistic simulations, in particular of systems with larger

particle sizes, do not allow for the inclusion of the mag-
netodipolar interaction, which is due to the related high
numerical cost [32]. Recent micromagnetic simulations have
shown that the dipolar energy is responsible for the formation

FIG. 12. Field evolution of the fitting parameters Ik
sf and R in

Eq. (25). Spin flip data of the NM model with Ks < 0 and D =
8 nm are analyzed. The lowest right panel shows the correspond-
ing normalized magnetization curve mz(B0). The coefficients Ik

sf are
normalized to the maximum value of I0

sf , the particle radius R is in
units of nanometers.

of vortex-type spin structures in spherical Fe nanoparticles
[33,34]. Figure 13(a) shows as an example a vortex structure
in a 34-nm-sized cubic Fe particle at remanence. The typical
discretization volume in such micromagnetic computations is
2 × 2 × 2 nm, which allows one to compute, in a reasonable
time, the randomly averaged magnetic SANS cross section of
particles with sizes up to a few hundreds of nanometers. The
results in Fig. 13(b) demonstrate that the low-q part of the sim-
ulated scattering curve is very well described by the analytical
model [Eq. (25)], but that deviations occur at larger q. While
the positions of the extrema at the large q are reproduced, their

FIG. 13. (a) Vortex spin structure in a single spherical Fe
nanoparticle at remanence (B0 = 0 T, D = 34 nm). The particle has
previously been saturated along the z direction. (b) (◦) Azimuthally
averaged sf SANS cross section Isf (q) of a corresponding ensemble
of randomly oriented particles and fit to Eq. (25) (solid line) (log-log
scale).
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fine details are not. The value for the particle size is recovered
correctly. The vortex structure in Fig. 13 is an example of a
highly inhomogeneous spin texture. Even for this situation,
our model is able to provide a reasonable description of the
main features.

V. CONCLUSIONS AND OUTLOOK

The signature of surface anisotropy in magnetic nanopar-
ticles in their spin-flip (sf) small-angle neutron scattering
(SANS) cross section has been investigated by means of atom-
istic simulations. Taking into account the isotropic exchange
interaction, an external magnetic field, a uniaxial or cubic
magnetic core anisotropy, and various models for the surface
anisotropy (Néel, conventional, random), we have computed
the sf SANS cross section from the obtained equilibrium spin
structures using the Landau-Lifshitz equation of motion. The
sign of the surface anisotropy constant Ks is related to the
appearance of tangential-like (Ks < 0) or radial-like (Ks > 0)
spin textures. These can be distinguished in the azimuthally
averaged sf signal via their dependence on the momentum-
transfer vector q. The scattering data cannot be described
by the well-known and often-used analytical expressions for
uniformly magnetized spherical or core-shell particles, in par-
ticular at remanence or at the coercive field. Even if all the
particles have the same size and shape, their spin structures are
generally different due to the fact that their anisotropy axes are
differently oriented with respect to the external magnetic field.
This gives rise to a kind of intrinsic spin-structure-related
smearing effect in the SANS cross section. Inspired by these
facts, and based on a second-order power-series expansion of
the magnetization vector field, we have developed a novel and
easy-to-implement minimal model for the azimuthally aver-
aged magnetic SANS cross section [Eq. (25)]. We emphasize
that the theory is valid for an arbitrary spin inhomogeneity and
is not restricted to the specific case of surface anisotropy. It has
been shown that Eq. (25) describes very well our simulation
data as well as more complex spin patterns such as vortex-like
structures. In this way, it has become possible to describe the
behavior of a very large number of atomic spins (11363 spins
in an 8 nm-sized particle times 256 different easy-axis ori-
entations) by only seven expansion coefficients Ik

sf and some
basis functions gk (qR).

Regarding future studies, of course, one could include
high-order terms in the power-law expansion for the mag-
netization [Eq. (A6)] or a particle-size distribution function.
However, this would significantly increase the number of
free parameters in the model (Ik

sf ) and would very likely
not provide further insights into the problem. Rather, one
should focus on the physical interpretation of the Ik

sf within the
second-order approach. For instance, one could systematically
analyze the field dependence of the Ik

sf for the different signs
and strengths of the surface anisotropy constants Ks, study
their behavior for different Ks/Kc and Ks/Ku ratios (here, we
use a rather large value of Ks/Kc

∼= 9206), or one could im-
plement more realistic lattice structures (e.g., of spinel type)
with complex exchange interactions. Moreover, deviations
from the spherical particle shape will result in the appearance
of dipolar shape anisotropy (e.g., for elongated ellipsoids or
platelets). This energy term could change the balance between

the various cubic, uniaxial, and surface anisotropy contribu-
tions and may result in additional signatures in the sf SANS
cross section. Taking into account the dipolar interaction on an
atomistic level is numerically very costly, so that approxima-
tion techniques, such as the “macrocell” approach embedded
in the VAMPIRE software package [49], might be used. Another
interesting study would be the comparison of the outcome of
atomistic and coarse-grained micromagnetic computations for
the sf SANS cross section. From the sample synthesis point of
view, it would be desirable to prepare oriented nanoparticle
assemblies, where the magnetic easy axes of the particles
all point into the same direction. This in conjunction with a
uniform particle-size distribution will significantly facilitate
the scattering-data analysis since the corresponding averages
over these features can be straightforwardly carried out.

We also refer the reader to Ref. [35], where several videos
are provided that show the magnetization curve, real-space
spin structure, particle-ensemble-averaged deviation angle, as
well as the 2D and 1D sf SANS cross sections during the
magnetization-reversal process. These quantities are shown
for different sign combinations of the cubic/uniaxial core
and surface anisotropy constants. Additionally, we show a
movie that, starting from a single nanoparticle, highlights the
stepwise built-up of the randomly averaged sf SANS cross
section corresponding to a total of 256 particles with different
(random) orientations of both the core-anisotropy axes and the
related surface anisotropies.
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APPENDIX A: MULTIPARTICLE POWER-SERIES
ANALYSIS OF THE MAGNETIC SANS CROSS SECTION

1. Magnetization power-series expansion, Fourier
cross-correlation matrix, and magnetic SANS cross section

We consider an ensemble of magnetic nanoparticles rigidly
embedded in a nonmagnetic and homogeneous matrix. The
global magnetization vector field of the system, M(r) =
{Mx(r), My(r), Mz(r)}, is generally a discontinuous function,
since M vanishes in the space between the particles; r =
{x, y, z} is the position vector in the laboratory frame. For
the formulation of this discontinuous behavior, we use the
indicator function (or particle shape function with particle
index ν)

Sν (r′
ν ) =

{
1, r′

ν ∈ V ′
ν

0, r′
ν /∈ V ′

ν

, (A1)

where V ′
ν ⊂ R3 denotes the set of points within the ν-th par-

ticle volume with reference to the local particle frame, and
r′
ν = {x′

ν, y′
ν, z′

ν} represent the local coordinates (see Fig. 14).
The transformation between the global point set Vν and the
local point set V ′

ν is then obtained by V ′
ν = {r − aν : r ∈ Vν}

(with the inverse transformation: Vν = {r′
ν + aν : r′

ν ∈ V ′
ν }),

where aν = {ax
ν, ay

ν, az
ν} is a constant shift vector that points

from the origin of the global r coordinate system to the origin
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FIG. 14. Sketch illustrating the relationship between the global
unprimed (r) laboratory coordinate system and the local primed (r′

ν)
system of particle ν with magnetization Mν (r′

ν ) and shape function
Sν (r′

ν ). aν is a constant shift vector that points from the origin of the
global r coordinate system to the origin of the local r′

ν system. For
simplicity, the z coordinate specifying the third space dimension has
been ignored.

of the local r′
ν system. The corresponding linear coordinate

transformation is then given by r′
ν = r − aν , while the vol-

ume vν of the ν-th particle is obtained via integration of the
corresponding shape function:

vν =
∫
R3

Sν (r′
ν )d3r′

ν . (A2)

To account for an inhomogeneous magnetic microstructure,
we describe the Cartesian magnetization vector field com-
ponents Mμ

ν (with μ ∈ {x, y, z}) for the ν-th particle as the
product of its shape function and a power series:

Mμ
ν (r′

ν ) = Sν (r′
ν )

∞∑
k,m,n=0

Mμ

ν,(k,m,n)x
′k
ν y′m

ν z′n
ν , (A3)

where Mμ

ν,(k,m,n) are arbitrary constant expansion coefficients,
which may depend on temperature, applied magnetic field,
and the type of material. The global Cartesian magnetization
vector field components Mμ then follow as the sum over the
individual magnetization components Mμ

ν shifted by aν :

Mμ(r) =
K∑

ν=1

Mμ
ν (r − aν ) (A4)

=
K∑

ν=1

⎡⎣Sν (r−aν )
∞∑

k,m,n=0

Mμ

ν,(k,m,n)

(
x−ax

ν

)k(
y−ay

ν

)m(
z−az

ν

)n⎤⎦,

(A5)

K being the number of particles in the assembly. For the
further derivations, we prefer the Einstein and multiindex
notation. Using these notation concepts, Eq. (A5) reads

Mμ(r) = Sν (r − aν )Mμ
ν,α(r − aν )α, (A6)

where α = (k, m, n) represents a multi-index. The zero-order
case of α = (0, 0, 0) corresponds to the situation of an en-

semble of uniformly magnetized nanoparticles. Higher-order
terms in this series take into account the local spatial nonuni-
formities in M.

For the computation of the magnetic SANS cross section,
the next step is to perform the spatial Fourier transform

M̃μ(q) = 1

(2π )3/2

∫
R3

Mμ(r) exp(−iq · r)d3r. (A7)

Instead of direct integration, we can use the shift and deriva-
tion theorem of Fourier theory, such that the Fourier transform
of Eq. (A6) can be expressed as

M̃μ(q) = i|α|Mμ
ν,α exp(−iq · aν )∂αS̃ν (q), (A8)

where i is the imaginary number (i2 = −1).
In the sequel, the derivative ∂α, with α = (k, m, n), will

denote the |α|-th order mixed partial derivative

∂α ≡ ∂k

∂qk
x

∂m

∂qm
y

∂n

∂qn
z

, (A9)

with |α| = k + m + n being the sum of components of the
multi-index α = (k, m, n). Likewise, the compact sum

∑
α

should be understood as the triple sum
∑

k

∑
m

∑
n. S̃ν (q) is

the Fourier transform of the indicator function defined by

S̃ν (q) = 1

(2π )3/2

∫
R3

Sν (r) exp(−iq · r)d3r. (A10)

Next, introducing the following Fourier cross-correlation
functions �̃ικ : R3 → C [50] with ι, κ ∈ {x, y, z} (“∗” stands
for the complex conjugate),

�̃ικ (q) = [M̃ ι(q)][M̃κ (q)]∗ (A11)

= i|α|−|β|M ι
ν,αMκ

μ,β exp(−iq · [aν − aμ])∂αS̃ν (q)∂βS̃∗
μ(q),

(A12)

we rewrite the sf SANS cross section for the perpendicular
scattering geometry [see Fig. 2 and Eq. (5)] as follows:

d�sf

d�
(q)

= 8π3

V
b2

H(�̃xx(q)+�̃yy(q) cos4 θ+�̃zz(q) sin2 θ cos2 θ

− [�̃yz(q) + �̃zy(q)] sin θ cos3 θ ), (A13)

with q = q{0, sin θ, cos θ}. In the following discussion, we
focus on the second-order approximation and we neglect in-
terparticle interaction effects.

2. Second-order approximation for a dilute ensemble
of spherical nanoparticles

For a dilute (aν = aμ) and monodisperse (̃Sν = S̃μ = S̃)
ensemble of spherical nanoparticles (with radius R), the
Fourier cross-correlation functions simplify to [9]

�̃ικ (q) = i|α|−|β|M ι
μ,αMκ

μ,β∂
αS̃(q)∂βS̃(q), (A14)

where q =
√

q2
x + q2

y + q2
z , and

S̃(q) = 3Vs

(2π )3/2

j1(qR)

qR
with Vs = 4πR3

3
. (A15)

024429-13



ADAMS, SINAGA, KACHKACHI, AND MICHELS PHYSICAL REVIEW B 109, 024429 (2024)

j1(z) = sin z/z2 − cos z/z is the first-order spherical Bessel
function. In this special case of spherical nanoparticles (where
S̃ = S̃∗), the Fourier transform of the indicator function be-
comes real-valued, such that it is obvious that only terms
with |α| − |β| = 2u (with u ∈ Z) contribute to Eq. (A14).1

In the study of Adams et al. [46], the zero-order case of
Eq. (A14), which reflects a dilute and monodisperse ensemble
of uniformly magnetized spherical nanoparticles, was studied
in the context of the Stoner-Wohlfarth model. In this situation,
the cross-correlation matrix can be written as

�̃ικ (q) = �ικ
0 [̃S(q)]2 with �ικ

0 = M ι
ν,(0,0,0)M

κ
ν,(0,0,0).

(A16)

The real-space cross-correlation matrix �ικ
0 is a function of

the applied magnetic field, such that the 2D magnetic SANS
cross section exhibits different types of angular anisotropies,
even for randomly averaged ensembles at remanence or at the
coercive field [46].

Now, taking into account spin inhomogeneities up to the
second polynomial order in the expansion of the magnetiza-
tion [Eq. (A6)], Eq. (A14) becomes

�̃ικ (q) = �ικ
0 S̃2 + �ικ

1,lm

[
∂ S̃

∂ql

][
∂ S̃

∂qm

]

+ �ικ
2,lmnp

[
∂2S̃

∂ql∂qm

][
∂2S̃

∂qn∂qp

]
−Cικ

02,lmS̃

[
∂2S̃

∂ql∂qm

]
,

(A17)

where we have defined the combinations of polynomial mag-
netization coefficients as

�ικ
0 = M ι

ν,�0
Mκ

ν,�0
, (A18)

�ικ
1,�m = M ι

ν,��
Mκ

ν,�m
, (A19)

�ικ
2,�mnp = M ι

ν,(��+�m )M
κ
ν,(�n+�p), (A20)

Cικ
02,�m = M ι

ν,�0
Mκ

ν,(��+�m ) + M ι
ν,(��+�m )M

κ
ν,�0

, (A21)

and we use the following �i symbol for booking the multi-
indices of the magnetization coefficients:

�i =

⎧⎪⎪⎨⎪⎪⎩
(0, 0, 0), i = 0
(1, 0, 0), i = x
(0, 1, 0), i = y
(0, 0, 1), i = z

. (A22)

We note that the new � and C coefficients include the sum
over the ensemble of nanoparticles. This is seen from the
fact that the index ν occurs only on the right-hand side of
Eqs. (A18)–(A21) but not on the left-hand side. Since (for
a spherical particle) the Fourier transform of the indicator

function S̃ depends only q =
√

q2
x + q2

y + q2
z , we can express

the partial derivatives of S̃ in Eq. (A17) (using the chain rule)

1This follows from the fact that the SANS cross section is a real-
valued quantity.

up to the second order as

S̃(q) = 3Vs

(2π )3/2

j1(qR)

qR
,

∂ S̃

∂qα

= q̂α S̃′,

∂2S̃

∂qα∂qβ

= q̂α q̂β S̃′′ + (δαβ − q̂α q̂β )
S̃′

q
, (A23)

where q̂l = ql/q (with l = x, y, z), δαβ is the Kronecker delta
symbol, and the prime denotes the derivative with respect
to the radial coordinate, i.e., S̃′ = dS̃/dq and S̃′′ = d2S̃/dq2.
Using the results from Eq. (A23), we can rewrite Eq. (A17) as
follows:

�̃ικ (q) = �ικ
0 S̃2 + �ικ

1,�mq̂�q̂mS̃′2

+ �ικ
2,�mnp

[
q̂�q̂mS̃′′ + (δ�m − q̂�q̂m)

S̃′

q

]

×
[

q̂nq̂pS̃′′ + (δnp − q̂nq̂p)
S̃′

q

]

− Cικ
02,�m

[
q̂�q̂mS̃′′ + (δ�m − q̂�q̂m)

S̃′

q

]
S̃. (A24)

In the above formulation, we see that the angular (q̂α) depen-
dence and the radial (q) dependence of the cross-correlation
functions are separated in the sense of a multiplication. This
is an important property that facilitates the further calcu-
lations, especially the azimuthal averaging of the magnetic
SANS cross section (see below). Furthermore, inspection of
Eq. (A23) shows that the shape function S̃ and its ordinary
derivatives with respect to the radial coordinate q also depend
on the radius R of the particle. Therefore it is convenient to
define the dimensionless function f (u = qR) such that the
shape function S̃ and its derivatives can be written as follows:

f (u) = j1(u)

u
= sin u − u cos u

u3
, S̃(q) = 3Vs

(2π )3/2
f (qR),

(A25)

f ′(u) = (u2 − 3) sin u + 3u cos u

u4
, S̃′(q) = 3VsR

(2π )3/2
f ′(qR),

(A26)

f ′′(u) = (12 − 5u2) sin u + u(u2 − 12) cos u

u5
,

S̃′′(q) = 3VsR2

(2π )3/2
f ′′(qR). (A27)

In order to write the cross-correlation matrix [Eq. (A24)] in
compact form, we introduce the following radial functions gk

and angular functions Gικ
k :

g0(u) = ( f (u))2, Gικ
0 (q̂) = h�ικ

0 , (A28)

g1(u) = ( f ′(u))2, Gικ
1 (q̂) = hR2�ικ

1,�mq̂�q̂m, (A29)

g2(u) = ( f ′′(u))2, Gικ
2 (q̂) = hR4�ικ

2,�mnpq̂�q̂mq̂nq̂p, (A30)

g3(u) = f ′(u) f ′′(u)

u
,

Gικ
3 (q̂) = hR4�ικ

2,�mnp(q̂�q̂m(δnp − q̂nq̂p) + q̂nq̂p(δ�m−q̂�q̂m)),
(A31)
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g4(u) = ( f ′(u))2

u2
,

Gικ
4 (q̂) = hR4�ικ

2,�mnp(δ�m − q̂�q̂m)(δnp − q̂nq̂p), (A32)

g5(u) = f (u) f ′′(u), Gικ
5 (q̂) = −hR2Cικ

02,�mq̂�q̂m, (A33)

g6(u) = f (u) f ′(u)

u
, Gικ

6 (q̂) = −hR2Cικ
02,�m(δ�m − q̂�q̂m),

(A34)

where h = (3Vs/(2π )3/2)2. This allows us to express
Eq. (A24) as the following sum:

�̃ικ (q) =
6∑

k=0

Gικ
k (q̂) gk (qR). (A35)

For completeness we provide the limit of the functions gi(u)
for u → 0:

lim
u→0

g0(u) = 1
9 lim

u→0
g1(u) = 0, (A36)

lim
u→0

gi(u) = 1
225 , i ∈ {2, 3, 4}

lim
u→0

gi(u) = − 1
45 , i ∈ {5, 6}. (A37)

The azimuthally averaged sf SANS cross section Isf (q) for
the perpendicular scattering geometry is then obtained by
a projection onto the 2D detector plane, i.e., setting q̂ =
{0, sin θ, cos θ} in Eq. (A35). Substituting Eq. (A35) for the
�̃ικ (q) into Eq. (A13) and carrying out an azimuthal average
[(2π )−1

∫ 2π

0 (. . . )dθ ], we obtain [Eq. (25) in the main text]

Isf (q) =
6∑

k=0

Ik
sf gk (qR), (A38)

where the Ik
sf are constant prefactors

Ik
sf = 1

2π

8π3b2
H

V

∫ 2π

0

(
Gxx

k + Gyy
k cos4 θ + Gzz

k sin2 θ cos2 θ

− (Gyz
k + Gzy

k

)
sin θ cos3 θ

)
dθ. (A39)

In the perfectly saturated state, the higher-order coefficients in
Eq. (A38) vanish and the remaining zeroth-order term is given
by:

Isf (q; B0 → ∞) = I0,sat
sf g0(qR) = I0,sat

sf

[
j(qR)

qR

]2

. (A40)

Equation (A38) is one of the central results of this paper. We
note that Eq. (A38) is applicable to smooth magnetization
inhomogeneities and not restricted to the case of surface-
anisotropy-induced spin disorder. It represents an easy-to-use

fit function for azimuthally averaged magnetic SANS cross
sections (of ensembles of monodisperse and dilute spherical
particles) with up to eight free fit parameters (R and the Ik

sf for
k = 0 . . . 6); Isf (q) depends linearly on the Ik

sf but nonlinearly
on the sphere radius R. We emphasize that although Eq. (A38)
has been derived for the purely magnetic sf SANS cross
section, it is equally well applicable to the purely magnetic
SANS cross section that might be obtained by means of unpo-
larized SANS measurements: as shown, e.g., in Refs. [9,26],
subtracting the nuclear and magnetic unpolarized SANS cross
section at saturation from the nuclear and magnetic unpo-
larized SANS at a lower field (assuming a field-independent
nuclear scattering) results in a purely magnetic (difference)
SANS cross section that is closely related to the sf SANS (just
a different combination of the magnetic Fourier components).
The coefficients Ik

sf may in this case simply take on different
values.

In general, the coefficients Ik
sf may depend on temperature,

applied magnetic field, and on the magnetic interactions (e.g.,
symmetric and antisymmtric exchange, magnetic anisotropy,
magnetodipolar interaction), and in particular on the radius R
of the nanoparticle. Therefore, in the presence of a particle-
size distribution function w(R), the Ik

sf become functions of
R. One may then assume certain distribution functions for
the Ik

sf (e.g., Gaussian), which would lead to an unreasonably
large number of free fit parameters. Instead, a more practical
approach may be to carry out a fitting procedure over w(R)
and to interpret the Ik

sf as ensemble-averaged quantities, which
then implies that they are uniformly distributed over the parti-
cle sizes.

FIG. 15. Effect of the symmetry of the core anisotropy (cubic
“Cu” versus uniaxial “Un”) on the azimuthally averaged spin-
flip SANS cross section for different combinations of the surface
anisotropy constant Ks. The cubic or uniaxial core anisotropy has
always a magnitude of +5.67 × 10−25 J/atom, while |Ks| = 5.22 ×
10−21 J/atom with the sign of Ks changing (see insets). (a) Normal-
ized magnetization curves mz(B0). (b) Azimuthally averaged Isf (q) at
remanence (log-log scale).
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The zero- and first-order coefficients I0
sf and I1

sf , as func-
tions of the correlation coefficients �, are given by

I0
sf = 9V 2

s b2
H

8V

(
8�xx

0 + 3�
yy
0 + �zz

0

)
, (A41)

I1
sf = 9V 2

s R2b2
H

16V

(
8�xx

1,yy + 8�xx
1,zz + �

yy
1,yy + 5�

yy
1,zz

+ �zz
1,yy + �zz

1,zz − 2�
yz
1,yz − 2�

yz
1,zy

)
. (A42)

We do not provide the higher-order coefficients due to
their complexity. Moreover, using the binomial inequal-
ity a2 + b2 � 2ab (∀a, b ∈ R), it can be shown that
the coefficients I0

sf , I1
sf , I2

sf , I4
sf are positive definite (∈

R+, including zero), while the I3
sf , I5

sf , I6
sf can take on

positive as well as negative real values. We have ad-
ditionally checked this result numerically by random
sampling.

APPENDIX B: EFFECT OF CORE-ANISOTROPY
SYMMETRY ON THE MAGNETIC SANS CROSS SECTION

Figure 15 displays the effect of the symmetry of the mag-
netic anisotropy in the core of the nanoparticles (cubic versus
uniaxial) on the magnetization curve and on the azimuthally
averaged spin-flip SANS cross section Isf (q). For a given sign
of the surface anisotropy constant Ks and surface anisotropy
model (Néel or conventional model), it is seen that changing
the symmetry of the core anisotropy from cubic to uniaxial has
only very little influence on the randomly averaged mz(B0)
and Isf (q). Only for the case “Cu-CM” and “Un-CM” does
one see a significant difference between the curves, which
might, however, be diminished in the presence of a distribu-
tion of particle sizes. We emphasize that the data in Fig. 15
is for a relatively large Ks value. Reducing the magnitude
of the surface anisotropy will result in more homogeneous
spin structures eventually approaching the Stoner-Wohlfarth
results (in the limit Ks → 0) [36,46].
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