
PHYSICAL REVIEW B 109, 024428 (2024)

Achieving unidirectional propagation of twisted magnons in a magnetic nanodisk array

Zhixiong Li ,1 Xiansi Wang ,2 Xuejuan Liu,3,4 and Peng Yan 4,*

1School of Physics, Central South University, Changsha 410083, China
2School of Physics and Electronics, Hunan University, Changsha 410082, China

3College of Physics and Engineering, Chengdu Normal University, Chengdu 611130, China
4School of Physics and State Key Laboratory of Electronic Thin Films and Integrated Devices,

University of Electronic Science and Technology of China, Chengdu 610054, China

(Received 13 July 2023; revised 2 January 2024; accepted 4 January 2024; published 22 January 2024)

Twisted magnons (TMs) have great potential applications in communication and computing owing to the
orbital angular momentum degree of freedom. Realizing the unidirectional propagation of TMs is the key to
designing functional magnonics devices. Here we theoretically study the propagation of TMs in one-dimensional
magnetic nanodisk arrays. By performing micromagnetic simulations, we find that the one-dimensional nanodisk
array exhibits a few bands due to the collective excitations of TMs. A simple model of the exchange interaction
is proposed to explain the emerging multiband structure, and theoretical results agree well with micromagnetic
simulations. Interestingly, for a zigzag structure, the dispersion curves and propagation images of TMs show
obvious nonreciprocity for a specific azimuthal quantum number (l), which originates from a geometric effect
depending on the phase difference of TMs and the relative angle between two adjacent nanodisks. Utilizing this
feature, one can conveniently realize the unidirectional propagation of TMs with arbitrary nonzero l . Our work
provides important theoretical references for controlling the propagation of TMs.
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I. INTRODUCTION

Ever since the quantized orbital angular momentum
(OAM) states were originally introduced in photonics [1–5],
the peculiar twisted structure has been rapidly extended to
a broad field of electronics [6–10], acoustics [11–15], neu-
tronics [16–20], and spintronics [21–25]. In the magnetic
system, the magnons (quantized quasiparticle of spin wave)
carrying OAM are called twisted magnons (TMs) [21,22].
The research about the OAM states of magnons has attracted
growing interest owing to both the fundamental interest and
potential applications. By using the twisted phase structure
of TMs as individual information channels, it is possible to
realize the frequency-division multiplexing which can greatly
enhance the communication capacity of magnons [25]. It has
been proposed that the TMs can act as “magnetic tweezers” to
drive the rotation of spin texture (such as skyrmion) [21]. Very
recently, Wang et al. [26] showed that the magnonic frequency
comb emerges in the nonlinear interaction between TMs and
a magnetic vortex.

In magnonics or magnon spintronics [27–30], realizing the
unidirectional information propagation based on spin waves
(or magnons) is the key step for designing functional devices.
So far, the unidirectional magnons have been demonstrated by
various mechanisms [31], such as magneto-dipolar interaction
(Damon-Eshbach surface modes) [32,33], Dzyaloshinskii-
Moriya interactions [34,35], topological bands (magnon
edge state) [36–38], etc. However, these works are based
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on conventional magnons, and few studies have discussed
the unidirectional propagation of TMs, which are vital to
TM-based devices. Generally speaking, TMs only exist in
magnetic nanocylinders. On the one hand, Jiang et al. [21]
and Jia et al. [22] have theoretically studied the spectrum of
TMs in a single magnetic nanocylinder with a small aspect
ratio (radius relative to height). In such a configuration, it is,
however, difficult to excite the TMs with a specific l because
of the multiband structure. On the other hand, although the
intrinsic dynamics of TMs in a single magnetic nanocylinder
with a big aspect ratio (also known as a nanodisk) has been
investigated [25], the collective dynamics of TMs in nanodisk
arrays is rarely explored. The magnetic nanodisk array is an
ideal platform for studying the collective propagation of TMs
for the following reasons.

(i) The desired lattice structure based on magnetic nan-
odisks can be fabricated within the reach of current
experimental techniques, for example, electron-beam lithog-
raphy [39–41].

(ii) It is convenient to excite TMs with arbitrary l in nan-
odisk arrays by means of the so-called spin-to-orbital angular
momentum conversion mechanism [25].

(iii) For two- or three-dimensional nanodisk lattices, one
may realize the chiral propagation of TMs with topological
features. It is thus naturally expected that the collective excita-
tions of TMs in nanodisks array can exhibit abundant physics
(unidirectional propagation, for instance), which should pro-
vide important theoretical references for designing functional
magnonic devices.

In this work, we study the collective dynamics of TMs
in one-dimensional magnetic nanodisk arrays. For a straight
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FIG. 1. (a) The illustration of a straight one-dimensional lattice
containing 101 magnetic nanodisks. A uniform static magnetic field
is applied along the z axis to perpendicularly magnetize the magnetic
moments. The TMs are excited at the center disk, marked by a black
arrow. (b) Zoomed-in details of one nanodisk. The red arrows denote
the local magnetization.

lattice, the system supports a few symmetric magnon bands
describing different collective excitation modes of TMs. A
simple exchange model is proposed to explain the emer-
gence of the multiband structure. Interestingly, for the zigzag
structure, the TM dispersion relations can exhibit visible
nonreciprocity. These asymmetric bands are explained by a
geometric effect: When the phase difference of TMs does not
match the geometric angle (θ ) [see Fig. 3(b)], the nonreciproc-
ity occurs. It allows us to realize unidirectional propagation of
TMs for any nonzero l by tuning θ . In addition, we find that
the propagation direction of TMs can be conveniently tuned
by changing the sign of l or the position of the excitation
field. Our results provide a simple and effective method to
control the propagation of TMs which should greatly promote
the development of twisted magnonics.

The paper is organized as follows. In Sec. II, we present
both micromagnetic simulations and theoretical analyses for
TM band structures in straight one-dimensional nanodisk lat-
tices. Section III focuses on the unidirectional propagation of
TMs in a zigzag nanodisk array. Discussion and conclusions
are presented in Sec. IV.

II. THE TM BAND STRUCTURES
FOR STRAIGHT LATTICE

We consider a straight one-dimensional lattice consist-
ing of 101 identical magnetic nanodisks with radius r = 50
nm and thickness d = 2 nm, as shown in Fig. 1. The dis-
tance between nearest-neighboring nanodisks is 2r, which
indicates that the TMs can interact with each other through
the exchange interaction. The material parameters of yt-
trium iron garnet are used [25]: The saturation magnetization
Ms = 1.92 × 105 A m−1, the exchange stiffness A = 3.1 ×
10−12 J m−1, and the Gilbert damping constant α = 10−3.
The magnetic moments are perpendicularly magnetized by
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FIG. 2. (a) Dispersion relations of TMs for the structure in
Fig. 1(a). The background color and dashed black lines represent
the simulation results and analytical formulas, respectively. (b) The
spatial distribution of FFT intensity for different TM modes which
correspond to the five bands emerging in panel (a). Here s denotes
the radial quantum number which gives the number of nodes along
the radial direction.

the external magnetic field H0 = 400 mT. The cell size is set
to be 2 × 2 × 2 nm3. The micromagnetic software package
MUMAX3 [42] is used to simulate the magnetization dynamics.
To excite the collective oscillation of TMs, we apply a sinc-
function magnetic field:

H(t ) = H1
sin[2π f0(t − t0)]

2π f0(t − t0)
[cos(lφ), sin(lφ), 0], (1)

with H1 = 40 mT, f0 = 15 GHz (cutoff frequency), and
t0 = 1 ns, confined to the disk located at the center of the
lattice, as labeled by the black arrow in Fig. 1(a). Here φ is the
polar angle. The spatiotemporal profiles of magnetizations in
all nanodisks are recorded every 20 ps and the total simulation
time is 200 ns.

The dispersion relation of TMs is obtained by calculating
the spatiotemporal fast Fourier transformation (FFT) of the
averaged (over the whole disk) magnetization x component
〈mx〉 (or y component). For every azimuthal (OAM) quantum
number l , we can calculate the spectrum. To get the full band
structure, we sum the spectra for l = 0, 1, 2. Figure 2 shows
the results, from which we can clearly see that the system
exhibits five separate dispersion curves below 15 GHz, as
marked by the arabic numbers 1–5 shown in blue. Besides,
by analyzing the spatial distribution of the FFT intensity for
these bands, we can identify five different TM modes, as
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shown in Fig. 2(b). Interestingly, we find that the signs of
the group velocity are opposite when l is even (bands 1, 3,
and 4) and odd (bands 2 and 5) for the same wave vector
k. Moreover, there are some additional inconspicuous bands
in Fig. 2 which may come from the hybridization between
different TMs because the frequencies of these states are very
close.

To explain the emerging multiband structure of TMs, we
propose a theoretical model which is similar to the framework
of the massless Thiele’s equation [43]. Here the dynamics
of TMs can be described by an analogous Thiele’s equa-
tion based on the following facts. At first, due to the distinctive
mode profile of TMs (see Fig. 2), it is reasonable to use a
wave-packet description. Then we consider the position of the
peak (or trough) to represent the TMs in nanodisks because of
the circular symmetry, as denoted by the blue ball in Fig. 1(a)
[here (l, s) = (2, 0)]. At last, we envision that the steady-state
magnetization of the nanodisk only depends on the position of
TMs.

Assuming the displacement vector of TMs from the disk
center as U j = (u j, v j ) defined by the position of the am-
plitude maximum of TMs with a constant phase in the jth
nanodisk, we obtain the dynamic equation characterizing TMs
as

Gẑ
dU j

dt
+ F j = 0, (2)

where G is a gyroscopic coefficient. The conservative force
can be expressed as F j = −∂W/∂U j . Here W denotes the total
potential energy:

W =
∑

j

KU2
j/2 + Wd + Wz + We. (3)

The first term on the right-hand side of Eq. (3) originates from
the confinement of the disk boundary, while the terms Wd ,
Wz, and We represent the potential energy from magnetostatic,
Zeeman, and exchange interactions, respectively.

Then we consider the excitation of TMs, i.e., m =
(mx, my, 1), with m2

x + m2
y � 1, and with m being the unit

vector of the local magnetic moment. It is straightforward
that the Zeeman energy −μ0Ms

∫
H0ẑ · mdr = −Nμ0MsH0

is a constant. Here, μ0 is vacuum permeability and N is the
number of magnetic moments. Moreover, the magnetostatic
energy is approximately considered as a constant, which orig-
inates from the fact that the change of magnetostatic energy
is much smaller than the exchange energy when TMs are
excited. On the one hand, we have performed the dispersion
relation of TMs when magnetostatic energy is excluded (TMs
are coupled only by exchange interaction). In this case, we
find that the shapes of the band structures are almost the
same as those when considering dipolar interaction. The only
change is that the position of the band center shifts towards
higher frequency. On the other hand, we have identified that
the dipolar interaction cannot efficiently couple TMs when we
artificially leave a physical gap between nearest-neighboring
nanodisks even as short as 1 nm. We therefore conclude that
the exchange interaction dominates the collective dynamics of
TMs in a nanodisk array.

The exchange coupling between adjacent disks is mediated
through the magnetic moments in the vicinity of the contact

TABLE I. The fitting parameters for different TM modes.

TM mode (l, s)

(0, 0) (1, 0) (2, 0) (0, 1) (3, 0)

C1/2π (GHz) 5.11 6.80 9.13 10.66 12.51
C2/2π (GHz) −0.18 0.55 −0.54 −0.38 0.73

points. Different U j will generate different magnitudes of
magnetization oscillation near the edge. A minimum model
of the coupling between adjacent disks is thus the isotropic
exchange term expressed as IU j · Uk . We therefore obtain the
total exchange energy

We =
∑

k∈〈 j〉
IU j · Uk, (4)

with I being the isotropic coupling coefficient. It is noted that
the coupling coefficient I depends on the integral indexes l and
s of the TM modes. Then the total potential energy becomes
the following:

W = W0 +
∑

j

KU2
j/2 +

∑

k∈〈 j〉
IU j · Uk, (5)

where W0 = Wd + Wz denotes the constant term of energy, and
〈 j〉 is the set of nearest neighbors of j.

Substituting Eq. (5) into Eq. (2) and assuming ψ j = u j +
iv j , we obtain the eigenequation

dψ j

dt
+ iC1ψ j + iC2(ψ j−1 + ψ j+1) = 0, (6)

with parameters C1 = K/G and C2 = I/G. Then we consider
the plane-wave expansion of ψ j = φ exp(−iωt )exp[i( jk ·
a)], where k is the wave vector, a = ax̂ is the basis vector with
a = 100 nm representing the lattice constant. We thus obtain
the following dispersion relation of TMs:

ω = C1 + 2C2cos(k · a). (7)

Then we use the formula (7) to fit the dispersion curves
of TMs obtained from micromagnetic simulation. The dashed
black lines in Fig. 2 show the best fit of the numerical data,
from which we can clearly see that the theoretical curves agree
well with simulations for small values of l or s (bands 1, 2,
and 3). However, for larger values of l or s (bands 4 and 5),
there exists an obvious discrepancy between theoretical values
and micromagnetic results, which may come from the fact that
the form of exchange energy (4) is too simple to accurately
describe the interaction between TMs with high values of l (or
s). The fitting parameters C1 and C2 for different values of l or
s are summarized in Table I. Overall, C1 and C2 are sensitive
to l and s: (i) the parameter C1 is always positive, while C2

is negative (positive) when l takes an even (odd) number, and
(ii) with the increase of l (s) for fixed s (l), the magnitude
of C1 and C2 increases. The sign and magnitude of C2 can be
understood by using the theoretical model (see Appendix A
for details).
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FIG. 3. Schematic diagrams of (a) straight and (b) zigzag one-
dimensional nanodisk arrays. Black arrows denote the disks where
the excitation fields are applied. The angle θ = 2π/3 (formed by
lines connecting the centers of two adjacent disks) describes the
geometric shape of the zigzag structure. The band structures for
(c) straight and (d) zigzag structures with (l, s) = (2, 0). The red
lines represent the frequency ω/2π = 9.19 GHz. The temporal
Fourier spectra of the magnetization oscillation at disks 45 and 57
[as marked in panels 3(a) and (b)] for (e) straight and (f) zigzag
lattices.

III. UNIDIRECTIONAL PROPAGATION OF TMs

Next, we discuss the propagation characteristics of TMs
in a zigzag structure, as shown in Fig. 3(b). By changing the
value of θ , one can tune the geometric shape of the lattice.
We first choose θ = 2π/3 as an example. Interestingly, in this
case, the dispersion relations of TMs show obvious nonre-
ciprocity for l = 1 and l = 2 [see Figs. 3 and 4], which is
in sharp contrast to the straight structure. We focus on this
feature in this section.

Figures 3(c) and 3(d) show the band structures of TM with
(l, s) = (2, 0) for straight and zigzag lattices, respectively.
Here the excitation fields with the form of Eq. (1) are applied
to disk 51 (the center disk). One can clearly see that the FFT
strength of dispersion curves are symmetric for +k and −k
in the straight lattice, while they shows a visible asymmetric
feature for the zigzag case. Besides, we plot the spectra of the
magnetization (mx) oscillation at disks 45 and 57 [as marked
in Figs. 3(a) and 3(b)], as shown in Figs. 3(e) and 3(f), from
which one can identify again the existence of nonreciprocity
for TM propagation in the zigzag lattice. Moreover, the TMs
with (l, s) = (1, 0) also exhibit similar behaviors, as plotted in
Fig. 4. The band structures [Figs. 4(a) and 4(b)] and the disk
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FIG. 4. The band structures for (a) straight lattice and (b) zigzag
lattice with (l, s) = (1, 0). The corresponding spectra of the mag-
netization oscillation at disks 45 and 57 for (c) straight lattice and
(d) zigzag lattice.

spectra [Figs. 4(c) and 4(d)] clearly show that the propagation
of TMs [(l, s) = (1, 0)] is nonreciprocal (reciprocal) for the
zigzag (straight) shape. However, for l = 0 and l = 3, the
dispersion relations are symmetric in both zigzag and straight
lattices (see Appendix B for details). Besides, we also checked
that the TMs exhibit similar behaviors (reciprocal and non-
reciprocal propagations) when dipolar interaction is removed
(not shown here). It is worth noting that the difference of
the FFT power intensity of the unidirectional TM disper-
sion relation [see Figs. 3(d) and 4(b)] is not very significant,
which may be for the following reasons. On the one hand,
the number (101) of nanodisks is still too small to show the
unidirectional propagation of TMs. On the other hand, the
damping coefficient adopted is too small (10−3), which allows
a finite extension of the forbidden TM modes.

To further visualize the nonreciprocal propagation of TMs,
we choose one representative frequency: f1 = 9.19 GHz for
(l, s) = (2, 0), as marked by red lines in Fig. 3. We then
simulate the dynamics of TMs by the excitation field

B(t ) = B0sin(2π f1t )[cos(lφ), sin(lφ), 0], (8)

with B0 = 1 mT applied at the center disk, indicated by the
black arrows in Fig. 5. Figure 5(b) shows the propagation of
TMs in the zigzag structure, from which one can clearly ob-
serve the unidirectional propagation of TMs. For comparison,
we also plot the propagation images of TMs in the straight
lattice, as shown in Fig. 5(a), which shows a symmetric
spread. Interestingly, we find that for the zigzag structure, the
propagation direction of TMs can be reversed by changing the
sign of l [see Fig. 5(c)] or the position of the excitation field
[see Fig. 5(d)].

The physical mechanism of the symmetric and asymmet-
ric TM dispersion relations can be explained as a geometric
effect. For l = 0, because the phase structure of TMs is sym-
metric along any radius direction (see Fig. 2), the propagation
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FIG. 5. The spatial distribution of TM intensity in one-dimensional (a) straight and [(b)–(d)] zigzag nanodisk arrays. Here l = 2 in panels
(a), (b), and (d), and l = −2 in panel (c). Black arrows denote the disk where the driving field B is applied. The simulation time t = 10 ns.
The red arrows represent the rotation direction of the TM in the source disk and arabic numbers 1–3 are marked for better illustration.

of TMs is thus symmetric for both straight and zigzag lattices,
as shown in Fig. 7. It is noteworthy that this conclusion always
holds for any θ (here the condition π/3 < θ � π should be
satisfied to guarantee that there is no overlap between neigh-
boring nanodisks. If θ = π/3, each disk is tangental to the
four surrounding disks and the system is no longer a simple
one-dimensional structure). For l �= 0, we define β = π/l to
represent the angle between the nearest-neighbor azimuthal
nodes of the TM. At first, we must stress the fact that the
TM can spread to an adjacent disk only when the contact
point is not at the node of the TM. Considering that the TM
is excited in a nanodisk, when the left contact point is (not)
located at the node of the TM, the right contact point is also
(not) located at the node, if θ is an integer multiple of β.
In this case, the dispersion relation is symmetric. However,
if θ is not an integer multiple of β, the two contact points
of the nanodisk cannot be located at the nodes of the TM
simultaneously, the band structure of the TM thus becomes
asymmetric. These conclusions can be used to explain our
results. On the one hand, for the straight lattice, i.e., θ = π , no
matter what value l takes, θ is always an integer multiple of β.
Therefore, the dispersion relations for all l are reciprocal (see

FIG. 6. The illustration of the collective oscillation distribution
in the disk array for TM modes (a) (l, s) = (0, 0), (b) (1, 0), (c) (2,
0), (d) (0, 1), and (e) (3, 0) when k = 0 and k = π/a.

Fig. 2). On the other hand, for the zigzag structure considered
in our paper, i.e., θ = 2π/3, the situation is different. When
l = 1 and β = π , then θ = 2π/3 is not an integer multiple
of β. Naturally, the dispersion relation is asymmetrical for
(l, s) = (1, 0) [see Fig. 4]. We can do a similar analysis for
l = 2: In this case, β = π/2, and again, θ is not an integer
multiple of β, the dispersion relation is thus asymmetric for
(l, s) = (2, 0) [see Fig. 3]. However, when l = 3 and β =
π/3, we have θ = 2β, and therefore, the band structure is
reciprocal for (l, s) = (3, 0) [see Figs. 7(i) and 7(l)]. Here the
spectra show a little nonreciprocity which originates from the
fact that the software MUMAX3 is based on the finite difference
method, and the position of contact is thus not a strict point.
At last, it is worth noting that the propagation direction of
the unidirectional TMs depends on both the sign of l and
the position of the excitation field [we use P = 1 (P = −1)
to denote the excitation field located at the lower (upper)
disks]. Concretely, when sgn(l )sgn(P) = 1 (or −1), the TMs
propagate leftward (or rightward).

The propagation direction of nonreciprocal TMs can be
explained as a “ratcheting effect,” i.e., the energy (or oscil-
lation) propagates along the direction of TM rotation. For
l = 2 [see Fig. 5(b)], the rotation direction of the TM in the
source disk (marked by arabic number 1) is clockwise, the
left contact disk (marked by arabic number 2), therefore, can
receive the information of magnetization oscillation, while the
right contact disk cannot. Notably, here the rotating TMs can
be acting as gears, and for the external meshing system, the
adjacent gears rotate in opposite directions. Thus, the rotation
direction of the TM in disk 2 changes to anticlockwise, and
naturally, the oscillation can spread to disk 3 (the rotation
direction of the TM turns into clockwise again). As a result,
the TMs exhibit unidirectional propagation to the left. For
l = −2 and the case where the excitation source is located on
the lower disk [see Figs. 5(c) and 5(d)], we can do a similar
analysis.

Based on the above analysis, we can easily infer that
when one contact point is located at the node, if the other
contact point is located at the peak (or trough), the nonre-
ciprocity of TMs reach the maximum. In this case, θ = (2n +
1)π/2l , with n = 0, 1, 2, 3 . . . (note the condition π/3 < θ �
π should be satisfied simultaneously). We, therefore, can
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FIG. 7. The band structures for [(a)–(c)] straight and [(g)–(i)] zigzag lattices with different values of l or s as marked in the images. The
corresponding spectra of the magnetization oscillation at disks 45 and 57 for [(d)–(f)] straight and [(j)–(l)] zigzag lattices.

realize the unidirectional propagation of TMs for any nonzero
l by tuning θ .

IV. DISCUSSION AND CONCLUSION

The research about the twisted magnonics is still in the
very initial stage, and a lot of questions need to be answered
and new phenomena need to be discovered. For example, by
constructing the Su-Schrieffer-Heeger [44] and Haldane [45]
models based on magnetic nanodisks, we can realize the topo-
logical edge states of TMs, which may have great potential
for designing topologically protected high-capacity commu-
nication devices. Besides, the interaction between TMs and
various spin textures (for example, skyrmion, vortex, and do-
main wall, etc.) also deserves careful investigation, which may
lead to peculiar phenomena, for example, magnetic frequency
combs [26].

To conclude, we have studied the collective excitations
of TMs in one-dimensional magnetic nanodisk arrays. For
a straight lattice, by performing micromagnetic simulations,
we identified multiple symmetric bands which characterize
different collective modes of TMs. A theoretical model was
proposed to explain the band structure and the results agree
well with simulations. For the zigzag structure, we found
that the TM dispersion relations for l = 1 and l = 2 show

obvious nonreciprocity, which do not happen for l = 0 and
l = 3. The propagation characteristics (reciprocal or nonre-
ciprocal) of these bands result from a geometric effect: When
θ is (not) an integer multiple of β (= π/l), the dispersion
relation is symmetric (asymmetric). Utilizing this principle,
we can achieve unidirectional propagation of TMs with any
nonzero l . Our work provides a simple and effective method to
manipulate the propagation of TMs, which should be helpful
for designing useful TM devices.
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APPENDIX A: THE DISCUSSION ABOUT THE SIGN
AND MAGNITUDE OF PARAMETER C2

From Eq. (7), we know that the parameter C2 determines
the shape of the band structures. On the one hand, for TM
mode (l, s) = (0, 0), when wave vector k = 0 (k = π/a),
the adjacent TMs oscillate in-phase (out-of-phase), as shown
in Fig. 6(a). The exchange energy of in-phase oscillation
is therefore lower than the out-of-phase oscillation, and the
band exhibits a downward concave shape, i.e., the sign of
C2 is negative. We can do a similar analysis on the TM
modes (l, s) = (2, 0) and (0, 1); please see Figs. 6(c) and 6(d).
However, the situations are different for (l, s) = (1, 0) and
(3, 0), the magnetic moments near the contact point oscil-
late out-of-phase (in-phase) for k = 0 (k = π/a), as shown
in Figs. 6(b) and 6(e). The exchange energy for k = 0 is
therefore higher than that for k = π/a, and the dispersion
relation shows a upward convex shape, i.e., the sign of C2

is positive. On the other hand, as discussed above, a large
value of U j will lead to a strong exchange coupling. The
position of the amplitude maximum of TMs is close to the
center (boundary) of the disk for TM modes (l, s) = (0, 0)
and (0, 1) [(l, s) = (1, 0), (2, 0), and (3, 0)], the values of
I (or I/G, G is a positive coefficient) for (l, s) = (0, 0) and
(0, 1) thus are smaller than those for (l, s) = (1, 0), (2, 0),
and (3, 0). Besides, comparing TM modes (l, s) = (0, 0) and
(0, 1), we can see that the oscillation of the magnetic moment

at the boundary (or contact point) for mode (l, s) = (0, 1) is
stronger than that for mode (l, s) = (0, 0). As a result, the
coupling coefficient I for mode (l, s) = (0, 1) has a larger
value. Moreover, for TM modes (l, s) = (1, 0), (2, 0), and
(3, 0), it can be seen that the position of the amplitude maxi-
mum of the TM for mode (l, s) = (3, 0) is more localized to
the disk boundary compared to TM modes (l, s) = (1, 0) and
(2, 0); therefore, the magnitude of I for mode (l, s) = (3, 0)
is the largest one.

APPENDIX B: THE BAND STRUCTURES
FOR l = 0 AND l = 3

Figure 7 plots the dispersion relation and disk spectra for
l = 0 and l = 3 with the help of micromagnetic simulations.
One can clearly see that the propagations of TMs are ab-
solutely symmetric [see Figs. 7(a)–7(f)] in a straight lattice.
For the zigzag lattice, the bands and spectra show symmetric
characteristics for l = 0 [see Figs. 7(g), 7(h), 7(j), and 7(k)].
There exists a little nonreciprocity for l = 3 [see Figs. 7(i)
and 7(l)], which comes from the calculation errors because
of the finite difference method (also see related discussions in
the main text). We thus conclude that the propagations of TMs
are reciprocal for l = 0 and l = 3 in both straight and zigzag
structures.
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