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The origin of the intraband term of the magnetocrystalline anisotropy (MCA) energy, which has been shown to
be present for layered systems without the inversion symmetry and be of similar magnitude as the interband term
[M. Cinal, Phys. Rev. B 105, 104403 (2022)], is investigated by considering a layered magnetic system perturbed
by the spin-orbit coupling (SOC) at zero temperature. It is revealed that the second-order intraband contributions
to the system band energy (the sum of the energies of occupied electron states), which are determined by the
squares of the first-order corrections to electron energies at the Fermi surface (FS), actually result from small
shifts of the FS sheets due to the SOC, the sheets being curves in the two-dimensional Brillouin zone. Thus,
the intraband contributions to the band energy of the perturbed system, and, consequently, to the MCA energy
defined as the difference of the band energies for two magnetization directions, come from the narrow stripelike
regions of the Brillouin zone between the perturbed and unperturbed FS sheets for consecutive energy bands. In
addition, the representation of the MCA energy as half the difference of the SOC energies for two magnetization
directions, often used for spatial decomposition of this energy, is reexamined. It is shown that such an alternative
representation, previously derived from the standard second-order perturbation-theory (PT) formula for the MCA
energy which does not contain intraband terms [V. Antropov, L. Ke, and D. Åberg, Solid State Commun. 194,
35 (2014)], is also valid in the absence of the inversion symmetry since the PT expansion of this representation
includes, in fact, the intraband terms, and exactly reproduces the present extended second-order PT formula for
the MCA energy. The theoretical findings are illustrated with the exemplary results for Co-based layered systems
with and without the inversion symmetry: the Co film, the Co/Cu and Cu/Pd bilayers, as well as the Pd/Co/Pd
trilayer.
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I. INTRODUCTION

One of the key properties of magnetic systems is the
magnetic anisotropy which determines the easy direction of
magnetization and is vital for understanding observed mag-
netic structures and magnetization dynamics. The two sources
of the magnetic anisotropy are the magnetic dipole-dipole
interaction and the spin-orbit coupling (SOC). The former
gives rise to the shape anisotropy determined by the sys-
tem geometry while the latter leads to the magnetocrystalline
anisotropy (MCA) which strongly depends on the electronic
structure. Thus, in ultrathin layered systems the MCA energy
depends not only on the type of interfaces and possible strain
inside the layers but also the thicknesses of the constituent
ferromagnetic and nonmagnetic layers. In particular, oscil-
lations of the MCA energy have been found in theoretical
calculations for Co, Fe, and Ni films [1–4], Co/X (X = Cu,
Pd, and Pt) bilayers [2,5,6] as well as X /Co/X (X = Cu,
Au, and Pd) trilayers [2,7–9]. The oscillatory thickness de-
pendence has been shown [3,7,8,10] to result from pairs of
quantum-well states, mainly built of d orbitals (s orbitals for
Cu layers), with energies close to the Fermi energy while the
oscillation periods are determined by the extremal dimensions
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of the Fermi surface of respective bulk materials as it was
originally found for the interlayer exchange coupling in fer-
romagnet/nonmagnet/ferromagnet systems [11]. The presence
of magnetic anisotropy oscillations and the predicted oscilla-
tion periods have been confirmed experimentally for magnetic
layers on vicinal substrates [5,12–15]. The systems including
a layer of Co in contact with a heavy metal, like Pd and Pt,
and having the structure inversion asymmetry (i.e., the lack of
the inversion symmetry) are currently of revived interest due
to a high efficiency in switching of their magnetization with
electric current via the spin-orbit torques and the presence of
finite Dzyaloshinskii-Moriya interaction which can stabilize
chiral magnetic structures like magnetic skyrmions (see, e.g.,
Refs. [16–22]).

The calculations of the MCA energy can be performed with
various methods. In the standard approach, known as the force
theorem (FT) [23,24], this energy is expressed as the differ-
ence of the system’s band energies (obtained by summing the
energies of occupied electron states) for two different magne-
tization directions, or the corresponding free energies at finite
temperature, which are found with the Hamiltonian including
the SOC within the framework of the density functional theory
(DFT). This approach gives results with almost perfect agree-
ment with the exact MCA energy defined as the difference of
the total energies of the interacting system obtained in self-
consistent-field DFT calculations (see, e.g., Refs. [25–27]).
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Note that the application of the FT in the calculations of the
MCA energy is not limited to layered structures since, in fact,
it is valid for any magnetic system.

The MCA energy can also be determined within the pertur-
bation theory (PT), in the second order for layered structures,
with the formula proposed by Bruno [28]; its derivation and
alternative forms are also discussed in Refs. [1,29] as well
as the Appendix C of Ref. [30]. The perturbation formula is
often used to investigate how the MCA is affected by electron
states of various symmetries [27,29,31–36] and to decompose
the MCA energy into terms coming from different pairs of
atomic layers [6,35]. In particular, the PT formula for the
MCA energy, combined with a realistic tight-binding (TB)
model, was used to reveal the above-mentioned mechanism
of the MCA oscillations versus Co and Pd thicknesses [3,7,8]
due to specific pairs of quantum-well d states. The use of TB
models, though giving a less accurate description of electronic
structure, allows for reliable investigating MCA, using both
the FT and the PT, for much larger systems than in the DFT
approach where calculation of the small MCA energies, with
typical values of 0.1–1 meV per surface atom, can become
computationally demanding due to the system size (see, e.g.,
Refs. [1,6,8,37–40].

Alternatively, the MCA energy of a layered system can be
expressed as half the difference of the total SOC energies for
two magnetization directions. Although the SOC energies are
found with the eigenstates of the full Hamiltonian including
the SOC, this method does not reproduce exactly the MCA
energy obtained with the FT using the energies of these states.
In fact, the derivation of the alternative formula for the MCA
energy is based, in fact, on the PT representation of this energy
[41]. The expression of the MCA energy as half the SOC
energy is particularly useful for defining the contributions of
different atoms or atomic layers to the MCA energy as it is
implemented in some DFT codes, like the Vienna ab initio
simulation package (VASP) [42–44]. However, it should be
noted that such a spatial decomposition of the MCA energy
is not unique since a different pattern of its layer-resolved
contributions is obtained with the method based on the layer-
projected density of states (DOS) [6].

The form of the usually applied second-order PT expres-
sion for the MCA energy [1,27–29,32,45], given by a sum
of interband contributions, coming from pairs of occupied
and unoccupied electron states, has recently been reexam-
ined [6]. It has been shown that the second-order intraband
terms, coming from individual electron states with energies
very close to the Fermi energy, must also be included. Since
the intraband terms vanish in the presence of the inversion
symmetry this extension is relevant only for systems without
the inversion symmetry. In fact, the inclusion of the intraband
terms is crucial for such systems as it was demonstrated
for Co/Pd bilayers where the net intraband and interband
contributions to the MCA energy are of similar magnitude
though have the opposite signs so that they largely cancel
out. The intraband terms of the MCA energy have also been
identified, in a system-specific form, for a simple model of
a heavy-metal/ferromagnetic-metal bilayer represented as a
two-dimensional square lattice and described with a one-band
TB model including the interfacial SOC in the Rashba-type
form [46].

The presence of the intraband term of the MCA energy for
an arbitrary layered system has been previously established
using the PT expansion of the free energy at finite tempera-
ture T [6,9,47]. However, such a formal derivation of the PT
formula for the MCA energy does not provide a clear picture
of the physical mechanism of how the MCA intraband term
arises. In this paper, the origin of this term is investigated
in depth. By considering the band energy of the perturbed
system in its ground state (i.e., at T = 0) it is examined how its
second-order intraband term composed of squares of the first-
order corrections to electron energies is related to the changes
of the Fermi surface (FS) due to the SOC perturbation. As
a result, the form of the intraband contributions is explained
and a simple graphical interpretation of these contributions is
given. In addition, it is investigated whether the expression
for the MCA energy with half the SOC energy, previously
derived [41] from the PT formula for the MCA energy without
intraband terms, is also valid for systems without the inversion
symmetry where intraband terms need to be included in this
formula.

These theoretical findings are discussed in Sec. II, together
with the plots of the FS sheets for an exemplary Co/Pd bi-
layer system, while more details are given in Appendixes A
and B, the latter including an alternative derivation of the
MCA intraband term at T = 0. The theoretical discussion is
further supported in Sec. III by the results of the numerical
calculations of the MCA energy, and its intraband and in-
terband terms for a few selected Co-based layered systems
(films, bilayers, and trilayers), with and without the inversion
symmetry. A set of conclusions, regarding the present results
and their relation to some previous work on the MCA and the
magnetic damping due to the SOC, is formulated in Sec. IV.

II. THEORY

A. Magnetocrystalline anisotropy: Force theorem, perturbation
theory, and intraband terms

The energy E of a thin film including a ferromagnetic
layer depends on the direction M̂ of its magnetization. The
resultant magnetic anisotropy energy has two terms: the shape
anisotropy energy due to the magnetic dipole-dipole interac-
tion, favoring the in-plane magnetization direction, and the
MCA energy which originates from the SOC of both ferro-
magnetic and nonmagnetic layers. The spin-orbit interaction

HSO =
∑

l j

ξlL(r − Rl j ) · S =
∑

l

H (l )
SO (1)

depends on the spin S of an electron and its orbital angular
momentum L with respect to different atoms j located at the
positions Rl j in each atomic layer l while the SOC constants
ξl determine the strength of this interaction. According to the
FT [23], the MCA energy of a film with cubic structure and the
(001) or (111) surface at zero temperature can be expressed as
the difference Eb(M̂⊥) − Eb(M̂‖) of the system band energies,
i.e., the total energies of the occupied (occ) bands

Eb = 1

�2D

∫
dk

occ∑
m

εm(k) (2)
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for the magnetization direction M̂⊥ perpendicular to the film
surface (along the z axis) and the in-plane magnetization
M̂‖ (along the x or y axes). The electron energies εm(k),
labeled with the two-dimensional wave vector k and the band
index m, are the energies of the eigenstates |mk〉 of the
perturbed Hamiltonian H + HSO where H denotes the one-
electron Hamiltonian in the absence of the SOC (in fact, this
Hamiltonian describes the noninteracting Kohn-Sham system
which has the total energy Eb and represents the real inter-
acting system within the DFT). The dependence of the band
energy Eb on the magnetization direction M̂ in a ferromag-
netic system arises due to the fact that, although the spin-orbit
interaction operator HSO is fixed (independent of M̂), its ma-
trix elements depend on this direction [48] for the spin-state
basis |σ 〉 (σ =↑,↓) corresponding to the spin quantization
axis ζ along M̂ because the spin operator S is then represented
as (Sξ , Sη, Sζ ) = 1

2 h̄(σ1, σ2, σ3) with the Pauli matrices in the
rotated frame of reference Oξηζ [1,6]; h̄ is the Planck con-
stant.

In numerical calculations, the integrals (1/�2D)
∫

dk over
the two-dimensional (2D) Brillouin zone (BZ) of the area �2D

are replaced with the finite sums (1/N2D)
∑

k over a grid of
N2D discrete k points which can also be viewed as imposing
periodic boundary conditions with N2D primitive unit cells
in each atomic plane. The number of k points required for
convergence of the MCA energy can be reduced [9] by consid-
ering the system of electrons with energies ε = εm(k) at finite
temperature T and using the Fermi-Dirac function f (ε) =
1/{1 + exp[(ε − εF)/kBT ]} for the occupation numbers of
electron states; εF is the Fermi energy (chemical potential) and
kB is the Boltzmann constant. Finite temperature T is intro-
duced here mainly as a computational tool used for smearing
the energy levels while other temperature-dependent effects,
like spin waves and the resulting reduction of the saturation
magnetization Ms, are not accounted for. Alternatively, the
convergence can be improved with other smearing methods, in
particular, the Methfessel-Paxton approximation of the step-
like occupation factor at zero temperature [49].

At finite temperature T , the MCA energy defined within
the FT approach is expressed with the free energy F = Eb −
T S of the system with the band energy Eb and the entropy S:

EMCA = EFT
MCA = F (M̂⊥) − F (M̂‖). (3)

This corresponds to describing the system in the canonical
ensemble, with the fixed number of electrons

N = 1

�2D

∫
dk

∑
m

f [εm(k)] (4)

while the Fermi energy εF = εF(M̂) found from the condition
(4) depends on the magnetization direction M̂. Further, it is
convenient to represent the free energy

F (M̂) = � + εFN (5)

with the grand potential [50]

�(M̂) = 1

�2D

∫
dk

∑
m

g[εm(k)], (6)

defined with the function g(ε) = −kBT ln{1 + exp[(εF −
ε)/kBT ]} [51] while still describing the system in the

canonical ensemble. For layered systems with one atom per
primitive unit cell, the above formulas define the MCA energy
and other respective quantities per one surface atom. Note
that the band energy Eb is also replaced with a free energy
F in other smearing methods; however, the corresponding
form of F is different, specific to the smearing method applied
[43,44].

For each electron state |mk〉 = |nkσ 〉per perturbed by the
SOC, its energy can be expanded up to the second order in
Hso as follows:

εm = εper
nσ = εnσ + δεnσ , (7)

where εnσ = εnσ (k) is the energy of the unperturbed state
|nσk〉 with spin σ (↑ or ↓), band index n, and the wave vector
k while the change of the unperturbed energy due to the SOC

δεnσ = ε (1)
nσ + ε (2)

nσ (8)

includes the first- and second-order corrections

ε (1)
nσ = 〈nkσ |HSO|nkσ 〉, (9)

ε (2)
nσ =

∑
n′σ ′ 	=nσ

|〈n′kσ ′|HSO|nkσ 〉|2
εnσ (k) − εn′σ ′ (k)

. (10)

This leads to the corresponding expansions of the free en-
ergy F = F0 + F (1) + F (2) and the grand potential � = �0 +
�(1) + �(2) where F0 = �0 + ε0N , F (1) = �(1), and F (2) =
�(2) (see the Appendix in Ref. [6]). For systems with the
inversion symmetry, the electron energy term ε (1)

nσ linear in the
SOC vanishes for each state nσ and so does the respective
correction F (1) to the free energy. However, the first-order
term F (1) vanishes also in the absence of the inversion sym-
metry for systems with collinear magnetic structure, due to
cancellation of possibly finite k and −k contributions (for
systems with noncollinear magnetic structures this term can
be finite which leads to the Dzyaloshinskii-Moriya interaction
[52]). Indeed, the matrix elements 〈nkσ |Hso|nkσ 〉 have op-
posite values for k and −k since for each eigenstate |nkσ 〉 of
the unperturbed Hamiltonian H with the wave function ψσ

nk(r)
there is another eigenstate |n,−k, σ 〉 with the same energy
and the wave function ψσ

n,−k(r) = [ψσ
nk(r)]∗ which gives the

opposite expectation value of L (see, e.g., Ref. [9]). Thus,
for layered systems with ferromagnetic layers, the dominant
correction to the free energy is of the second order in the SOC
[6,9,47]:

F (2)(M̂) = �(2)(M̂) = 1

2

1

�2D

∫
dk

×
∑
nσ

∑
n′σ ′

f0(εnσ (k)) − f0(εn′σ ′ (k))
εnσ (k) − εn′σ ′ (k)

× |〈n′kσ ′|HSO|nkσ 〉|2, (11)

where the occupation factors f0(εnσ) = f (εnσ ; εF = εF0) cor-
respond to the unperturbed system with the Fermi energy εF0.
As a result, the PT formula for the MCA energy of thin films
takes the form

EMCA = EPT
MCA = F (2)(M̂⊥) − F (2)(M̂‖). (12)

The expression (11) for F (2) includes both the off-
diagonal (interband) contributions nσ 	= n′σ ′ coming from
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the second-order corrections ε (2)
nσ to electron energies as well

as the diagonal (intraband) terms nσ = n′σ ′, proportional to
f ′
0(εnσ)|ε (1)

nσ |2, which comprise the squared moduli of the first-
order corrections ε (1)

nσ or rather their squares (ε (1)
nσ )2 since the

diagonal elements of the Hermitian operator HSO are real. The
latter contributions arise from the quadratic term in the power-
series expansion of the function g(ε = εnσ + δεnσ) = g0(ε =
εnσ + δεnσ − δεF) expressed with δεnσ , δεF = εF − εF0 and
the function g0(ε) = g(ε; εF = εF0), which corresponds to the
unperturbed system and has the derivatives g′

0(ε) = f0(ε) and
g′′

0(ε) = f ′
0(ε),

Thus, the second-order correction to the free energy

F (2) = F (2)
inter + F (2)

intra (13)

comprises both the interband term

F (2)
inter = 1

�2D

∫
dk

∑
nσ

f0(εnσ)ε (2)
nσ

= 1

2

1

�2D

∫
dk

∑
nσ

∑
n′σ ′ 	=nσ

f0(εnσ) − f0(εn′σ ′)

εnσ − εn′σ ′

× |〈n′kσ ′|HSO|nkσ 〉|2 (14)

and the intraband term

F (2)
intra = 1

2

1

�2D

∫
dk

∑
nσ

f ′
0(εnσ)

(
ε (1)

nσ

)2

= 1

2

1

�2D

∫
dk

∑
nσ

f ′
0(εnσ)|〈nkσ |HSO|nkσ 〉|2 . (15)

Note that the intraband term F (2)
intra is nonpositive since the

derivative f ′
0(εnσ) is negative for any energy εnσ ; this term can

be equal to 0 for a specific magnetization direction even in
the absence of the inversion symmetry and vanishes for any
systems that possess this symmetry (cf. Sec. III).

The detailed derivation of Eq. (11) is given in the Ap-
pendix of Ref. [6]. The same expression for F (2) = �(2) can
be obtained from the Dyson expansion for the perturbed Green
function [9] so that the intraband contributions are automat-
ically included in the MCA energy if it is calculated using
solely the Green functions, instead electron states and their
energies, as it is done, e.g., in Refs. [35,38,53].

The formula (11) remains valid if there are degenerate
states |nkσ 〉 at some k points (in particular, at high-symmetry
points and lines), though the decomposition of their contri-
butions into intraband and interband terms is then not unique
due to different possible choices of orthonormal eigenstates
forming a basis in a degenerate subspace of the Hamiltonian
H . However, as it is demonstrated in Ref. [6], the subsum of
all (both intraband and interband) second-order contributions
calculated within a degenerate subspace of dimension M,

M∑
i, j=1

f ′
0(εn jσ )|〈nikσ |HSO|n jkσ 〉|2, (16)

does not depend on the choice of its M orthonormal basis
states |n jkσ 〉 ( j = 1, . . . , M) of the same spin σ and with the
equal energies εniσ (k) = εn jσ (k); note that the factor f ′

0(εn jσ )
is the same for all these contributions. This subsum is reduced

to the sum of the intraband contributions from this subspace,
a part of F (2)

intra defined in Eq. (15), if the chosen basis states
diagonalize the matrix of the HSO perturbation operator within
the subspace. Thus, Eq. (16) uniquely defines the internal
contribution of a degenerate subspace to F (2) so that there
is no need for the mentioned diagonalization although it is
formally required in the PT approach in the case of degenerate
states. This is even more so because the sum of the remaining
interband contributions involving this degenerate subspace,
which come from its orthonormal basis states coupled to all
other states (from outside the subspace), is also invariant
with respect to the choice of this basis [6]. In view of these
findings, the ambiguity in the decomposition of F (2) can be
readily avoided if the full internal contribution from each
degenerate subspace, given by Eq. (16), is included solely
into the intraband term F (2)

intra so that this term is then uniquely
defined.

Nevertheless, such a modification of the intraband term
leads to its only slight adjustment since the internal contri-
butions from the degenerate subspaces effectively come from
a discrete set of k points and their immediate neighborhoods
(the later at finite T ) while the intraband contributions to F (2)

from nondegenerate states come from the curves in the two-
dimensional BZ representing different sheets of the FS (see
the next section) and the regions in their immediate vicinity,
also due to finite T . Indeed, the degenerate subspaces that can
give a significant internal contribution to F (2) must have the
energies very close to the Fermi energy, not farther than a few
kBT from εF , due to the presence of the factor f ′

0(εn jσ ) in
Eq. (16). As a result, if two or more electron energy bands
are degenerate along a whole high-symmetry line the internal
contribution of the corresponding degenerate subspace to F (2)

is non-negligible only in a very small region around the point
on this high-symmetry line where the degenerate bands cross
the Fermi energy. A similar conclusion could be drawn if there
was an accidental degeneracy of two energy bands outside the
high-symmetry lines. In this case, there would be contribu-
tions from the respective degenerate subspace only at and in
the very close vicinity of the general k point (or a few such
points) where the energy of the crossing bands is equal to the
Fermi energy.

The presence of the contributions from degenerate sub-
spaces is even more limited in layered systems without the
inversion symmetry which have a cubic structure and the
(001) surface, like the Co/X bilayers investigated in Sec. III.
Indeed, in such systems, there are no degenerate states even
on the high-symmetry lines, except at their ends which are
the high-symmetry points, 
, X , and M, where such states are
still present. To show this, let us consider the group Gk of
the wave vector k which includes all the symmetry operations
that transform k to itself or an equivalent wave vector k + G
in the BZ where G is a reciprocal lattice vector [54]. For a k
point inside one of the three high-symmetry lines, 
–M, 
–X ,
and X–M (excluding their ends), the respective symmetry
group Gk has only two elements, the identity transformation
E and the reflection σv in the plane perpendicular to the film
surface and parallel to the considered high-symmetry line.
Such a group has two irreducible representations, both one
dimensional, since the sum of the squares of the dimensions
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of all (inequivalent) irreducible representations of a group
is equal to the number of its elements [54]. Thus, for the
considered system, the electron states with the wave vectors
at the high-symmetry lines are nondegenerate, apart from the
high-symmetry points at the ends of these lines where the re-
spective symmetry groups Gk include more elements and have
both one- and two-dimensional irreducible representations.
However, even the degenerate subspaces at the high-symmetry
points can give negligible internal contributions to F (2) given
in Eq. (16) if their energies are not very close to the Fermi
energy.

B. Origin of intraband term of MCA energy: Perturbation
expansion of system band energy at T = 0

While the finite-temperature formulation is convenient in
the numerical calculations since the smearing of electron en-
ergies provides better convergence of the calculated MCA
energy (cf. Sec. III B below) the physical origin of its intra-
band term can be more efficiently investigated by considering
the system in its ground state, i.e., at zero temperature. It is
found that the intraband terms, which are finite for systems
without the inversion symmetry, are preserved in the T → 0
limit

lim
T →0

F (2)
intra = −1

2

1

�2D

∑
nσ

∫
dkδ(εnσ (k) − εF0)

(
ε (1)

nσ

)2
, (17)

where the derivative f ′
0(εnσ) becomes the negative of the

Dirac delta function δ(εnσ (k) − εF0); the order of the two
sums in this formula has been changed for the sake of
the following discussion. If the matrix element ε (1)

nσ =
〈nkσ |HSO|nkσ 〉, or rather its square, was assumed to be
constant throughout the BZ the intraband term of F (2) in
the T → 0 limit would be proportional to the DOS n(ε) =
(1/�2D)

∫
dk

∑
nσ δ(εnσ (k) − ε) at the Fermi level ε = εF0,

multiplied by the constant (ε (1)
nσ )2, a result similar to the one

obtained for a bilayer system in a simple one-band TB model
[46]. However, such an assumption does not hold for real sys-
tems described with the DFT or a multiple-orbital TB model
since the matrix element of HSO that defines ε (1)

nσ , Eq. (9),
strongly depends on the symmetry of electron states |nkσ 〉
as well as the wave vector k.

The function δ(εnσ (k) − εF0) vanishes outside the set of
k = ks points that satisfy the relation εnσ (k) = εF0 and thus
form a curve in the two-dimensional BZ. This curve is the
sheet Cnσ of the FS for band n of spin σ in the unperturbed
system; for simplicity, the single symbol Cnσ is used here even
if the relation εnσ (k) = εF0 defines a set a few separate curves
which could be alternatively treated as separate FS sheets. At
each point ks ∈ Cnσ , the gradient ∇kεnσ (ks) is perpendicular
to (the tangent of) the curve Cnσ so the electron energy can be
expanded in the vicinity of this curve as follows:

εnσ (k) − εF0 = ∇kεnσ (ks) · (k − ks) = |∇kεnσ (ks)|q⊥.

(18)

Here, the wave vectors lie on the line perpendicular to
Cnσ at ks and are represented as k = ks + q⊥e⊥ where
e⊥ = ∇kεnσ (ks)/|∇kεnσ (ks)| is the unit vector along the
gradient direction. With this expansion, the Dirac delta func-
tion becomes δ(εnσ (k) − εF0) = δ(q⊥)/|∇kεnσ (ks)| so, after

integration over q⊥, the two-dimensional integral over k in
Eq. (17) is reduced to the line integral along the curve Cnσ ,
i.e., the FS sheet of band nσ . As a result, in the T → 0
limit, the intraband contribution to F (2) is given by the sum
of contributions from different FS sheets:

lim
T →0

F (2)
intra = −1

2

1

�2D

∑
nσ

∫
Cnσ

ds
|〈nksσ |HSO|nksσ 〉|2

|∇kεnσ (ks)|

= −1

2

1

�2D

∑
nσ

∫
Cnσ

ds

[
ε (1)

nσ (ks)
]2

|∇kεnσ (ks)| , (19)

where ds = |dks|. This contribution accompanies the inter-
band term of F (2) at the T → 0 limit which takes the usual
form

lim
T →0

F (2)
inter = 1

�2D

∫
dk

occ∑
nσ

unocc∑
n′σ ′

|〈n′kσ ′|Hso|nkσ 〉|2
εnσ (k) − εn′σ ′ (k)

, (20)

including the sums over occupied (occ) and unoccupied (un-
occ) electron states. The latter term is equal to the contribution
to the perturbed band energy

E (2)
b = 1

�2D

∫
dk

occ∑
nσ

ε (2)
nσ (k) (21)

from the second-order corrections ε (2)
nσ to electron energies.

Thus, the expression for the MCA energy obtained with
Eq. (12) in the T → 0 limit differs from the usual second-
order PT formula E (2)

b (M̂⊥) − E (2)
b (M̂‖) for EMCA at T = 0

where the intraband terms are not present [1,28,29]. This dis-
crepancy originates from the implicit assumption, made in the
derivation of the latter formula, that all occupied unperturbed
electron states remain occupied after the SOC perturbation
is introduced so that the band energy, Eq. (2), calculated
with εm = εnσ + ε (1)

nσ + ε (2)
nσ is equal to E (0)

b + E (1)
b + E (2)

b =
E (0)

b + E (2)
b where E (0)

b = (1/�2D)
∫

dk
∑occ

nσ εnσ (k) is the
unperturbed band energy and the first-order correction E (1)

b =
(1/�2D)

∫
dk

∑occ
nσ ε (1)

nσ (k) vanishes due to cancellation of k
and −k contributions [ε (1)

nσ (−k) = −ε (1)
nσ (k)]. On the other

hand, no such assumption is made, or is even possible to
make, in the derivation of the expression for F (2) at finite T as
the occupations of electron states, unperturbed and perturbed,
are governed by the Fermi-Dirac function with the respective
Fermi energies εF0 and εF.

However, this assumption is, in fact, not valid also at
T = 0 since for metallic extended systems with continuous
electron energy spectrum some of the electron states which
are occupied become unoccupied upon the introduction of a
perturbation and, vice versa, some unoccupied states become
occupied. This concerns a fraction of states with energies
very close to the Fermi level. Thus, the band energy of the
perturbed system can be represented in the following way:

Eb = 1

�2D

∑
nσ

∫
Fnσ

dk εper
nσ (k)

= 1

�2D

∑
nσ

∫
F (0)

nσ

dk εper
nσ (k)+ 1

�2D

∑
nσ

∫
Fnσ −F (0)

nσ

dk εper
nσ (k)

− 1

�2D

∑
nσ

∫
F (0)

nσ −Fnσ

dk εper
nσ (k), (22)
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FIG. 1. (a), (b) Schematic of the sets F (0)
nσ and Fnσ of k points

with the occupied states in the energy band nσ obtained without and
with the SOC, respectively, and (c) the differences of the two sets;
(a) the FS sheet Cnσ for the band obtained without the SOC and (c) its
parts C<

nσ and C>
nσ defined in text; (d) the q⊥ axes perpendicular to

the sheet curve Cnσ at its three selected points. Plots are shown in a
quarter of a square two-dimensional BZ.

where, in each term, there is a two-dimensional integral over
k from the specified subsets of the BZ. The sets F (0)

nσ = {k :
εnσ (k) � εF0} and Fnσ = {k : ε

per
nσ (k) � εF} are defined as the

parts of the BZ with the occupied electron states from band nσ

in the unperturbed and perturbed system, respectively; the two
sets and their differences are schematically depicted in Fig. 1.
By representing the perturbed electron energies as

εper
nσ = εnσ + δεnσ = εnσ − εF0 + δεnσ + εF0, (23)

we can rewrite Eq. (22) as follows:

�2DEb =
∑
nσ

∫
F (0)

nσ

dk(εnσ + δεnσ)

+
∑
nσ

∫
Fnσ −F (0)

nσ

dk(εnσ − εF0 + δεnσ)

−
∑
nσ

∫
F (0)

nσ −Fnσ

dk(εnσ − εF0 + δεnσ)

+ εF0

[ ∑
nσ

∫
Fnσ −F (0)

nσ

dk 1 −
∑
nσ

∫
F (0)

nσ −Fnσ

dk 1

]
.

(24)

The first term is equal to E (0)
b + E (1)

b + E (2)
b = E (0)

b + E (2)
b ,

multiplied by �2D, where the linear term E (1)
b vanishes. The

expression in the square brackets in the last term also vanishes
since it is equal to the difference of the numbers (multi-
plied by �2D) of the occupied states,

∑
nσ

∫
Fnσ

dk 1 and∑
nσ

∫
F (0)

nσ
dk 1 , in the unperturbed and perturbed systems,

respectively, while both numbers are identical, equal to the
fixed number N of electrons in the system.

The region Fnσ − F (0)
nσ = {k : k ∈ Fnσ , k /∈ F (0)

nσ } in the
two-dimensional BZ is determined with the relation

0 < εnσ (k) − εF0 � δεF − δεnσ (k) (25)

and has the shape of a narrow stripe

Fnσ − F (0)
nσ ={k = ks + q⊥e⊥ : ks ∈ C>

nσ , 0 < q⊥ � w⊥(ks)}
(26)

attached to one side of the FS sheet curve Cnσ , or rather its
part C>

nσ where δεF − δεnσ (ks) > 0 [see Fig. 1(c)]. The width
of this stripe

w⊥(ks) = δεF − δεnσ (ks)

|∇kεnσ (ks)| + [∇kδεnσ (ks)]⊥

= δεF − δεnσ (ks)

|∇kεnσ (ks)| [1 + O(δεnσ)] (27)

varies with ks ∈ C>
nσ and can be determined from the relation

(25) using the linear expansion (18) and a similar expansion
for the electron energy correction

δεnσ (k) = δεnσ (ks) + ∇kδεnσ (ks) · (k − ks) = δεnσ (ks)

+ [∇kδεnσ (ks)]⊥ q⊥. (28)

The scalar term [∇kδεnσ (ks)]⊥ = [∇kδεnσ (ks)] · e⊥(ks), lin-
ear or quadratic in SOC (in the absence or presence of the
inversion symmetry, respectively), leads to a minor correction
O(δεnσ) in the square brackets in Eq. (27) for w⊥.

The two-dimensional integration over the stripe-shaped
region Fnσ − F (0)

nσ in the second term of Eq. (24) can now
be done in two steps, by first integrating over q⊥ across the
stripe, i.e., over the interval 0 < q⊥ < w⊥(ks) at each point
ks ∈ C>

nσ , followed by the line integral along the curve C>
nσ .

The integral over q⊥ of the function εnσ (k) − εF0 + δεnσ (k)
expressed with Eqs. (18) and (28) is equal to

1

2
|∇kεnσ |w2

⊥ + w⊥δεnσ = 1

|∇kεnσ |
[

1

2
(δεF − δεnσ)2

+ (δεF − δεnσ)δεnσ

]

= 1

2|∇kεnσ |
[
(δεF)2 − (δεnσ)2],

(29)

where all quantities are calculated at the points k = ks from
C>

nσ and the terms including [∇kδεnσ ]⊥ are neglected since
they are of the third or higher orders in the SOC.

A similar calculation can be done for the region F (0)
nσ −

Fnσ = {k : k ∈ F (0)
nσ , k /∈ Fnσ } including the wave vectors

that satisfy the relation

δεF − δεnσ (k) < εnσ (k) − εF0 � 0. (30)

This region is also a narrow stripe

F (0)
nσ − Fnσ = {k = ks + q⊥e⊥ : ks ∈ C<

nσ ,w⊥(ks) < q⊥�0}
(31)

attached to the part C<
nσ of the the FS sheet Cnσ where δεF −

δεnσ (ks) < 0 [see Fig. 1(c)]. The width of the stripe is equal to
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|w⊥(ks)| = −w⊥(ks), with w⊥ defined by the same formula
as in Eq. (27). The integration of εnσ (k) − εF0 + δεnσ (k) over
w⊥ < q⊥ � 0 then gives

−1

2
|∇kεnσ |w2

⊥ − w⊥δεnσ = − 1

2|∇kεnσ |
[
(δεF)2 − (δεnσ)2],

(32)

where all quantities are calculated at the k = ks points from
C<

nσ . The obtained formula is identical to the result for the
Fnσ − F (0)

nσ set, Eq. (29), except for the difference in sign.
The formulas for the contributions from the Fnσ − F (0)

nσ and
F (0)

nσ − Fnσ sets can be easily interpreted in a geometrical way
as shown in in Fig. 2 where these contributions are represented
as the difference of the areas of two triangles or the area of a
trapezoid, respectively.

Note that, for some of the bands, the set F (0)
nσ − Fnσ can

be empty and will then not contribute in Eq. (24). This hap-
pens if δεF − δεnσ (ks) is positive at every point ks ∈ Cnσ so
that the FS sheet of band nσ has no C<

nσ part while a finite
contribution to Eb comes from the nonempty set Fnσ − F (0)

nσ

associated with C>
nσ = Cnσ . In the opposite case, with negative

δεF − δεnσ (ks) at each ks ∈ Cnσ , it is the set F (0)
nσ − Fnσ that

contributes while the other set is empty. There is also the third
possibility where both the sets exist for a specific band nσ

since δεF − δεnσ (ks) has different signs in different parts of
the sheet Cnσ as illustrated in Fig. 1(c).

In a general case, with contributions from both these sets
included in Eq. (24), the third term in this equation comes with
the negative sign, so that its second and third terms, coming
from the Fnσ − F (0)

nσ and F (0)
nσ − Fnσ regions, respectively,

have effectively the same form of the integral over q⊥, given
by Eq. (29), while the corresponding line integrals are along
the curves C>

nσ and C<
nσ . As the two curves together constitute

the whole FS sheet Cnσ of band nσ , the sum of the second
and third terms in Eq. (24) is given by the line integral along
Cnσ . The form of the integrated expression (29) can be further
simplified by noting that the change of the Fermi energy δεF

is of the second order in the SOC, regardless of the presence
or absence of the inversion symmetry, as shown within the
finite-temperature approach in Ref. [6] and for T = 0 in Ap-
pendix A in this work. The term (δεF)2 ∼ O(H4

so) can be then
neglected in Eq. (29) while (δεnσ)2 can be replaced with its
leading contribution (ε (1)

nσ )2 so that the sum of the second and
third terms in Eq. (24) results in the following second-order
term of the band energy:

E (2′ )
b = −1

2

1

�2D

∑
nσ

∫
Cnσ

ds

[
ε (1)

nσ (ks)
]2

|∇kεnσ (ks)|

= −1

2

1

�2D

∑
nσ

∫
Cnσ

ds
|〈nksσ |HSO|nksσ 〉|2

|∇kεnσ (ks)| (33)

given by the sum of line integrals along the different FS sheets
Cnσ .

Thus, we obtain the PT expansion of the band energy at
T = 0:

Eb = E (0)
b + E (1)

b + E (2)
b + E (2′ )

b (34)

which includes, apart from the usual interband term E (2)
b

given by Eq. (21), another second-order contribution E (2′ )
b

FIG. 2. Geometrical interpretation of the contributions to the sys-
tem band energy Eb from the perturbed energy band nσ in the two
stripe-shaped subsets of the BZ, (a) Fnσ − F (0)

nσ and (b) F (0)
nσ − Fnσ

[see Fig. 1 and Eq. (24), its second and third terms]. The visualized
contributions, given by Eqs. (29) and (32), are the integrals of εper

nσ =
εnσ + δεnσ over the intervals (a) 0 < q⊥ < w⊥ and (b) −|w⊥| <

q⊥ < 0 of the axes perpendicular to the FS sheet Cnσ at the points
(a) ks ∈ C>

nσ for δεnσ < 0 < δεF and (b) ks ∈ C<
nσ for 0 < δεF < δεnσ ,

respectively. The q⊥ axis crosses the FS sheet at q⊥ = 0. The stripe
width is equal to (a) w⊥ [Eq. (27)] or (b) its negative −w⊥, and, in
case (a), is the sum of w′

⊥ = |δεnσ |/|∇kεnσ | and w′′
⊥ = δεF/|∇kεnσ |

at k = ks. The zero-energy level is chosen at the Fermi energy
εF0 = 0.

which comes from the change of state occupations near the
Fermi level due the SOC perturbation. This additional term,
which comprises (ε (1)

nσ )2, is finite only for systems without
the inversion symmetry, where the first-order corrections ε (1)

nσ

do not necessarily vanish, and has exactly the same form
as the T → 0 limit of the intraband term of F (2) = �(2)

[Eq. (19)]. Thus, the above-raised concern about the apparent
discrepancy between the T → 0 limit of F (2) and the second-
order term of Eb at T = 0 is resolved. The same result for
the band energy at T = 0 is obtained from the power-series
expansion of the occupation factors θ (εF − ε

per
nσ ) = θ [εF0 −
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FIG. 3. FS sheets for (a) minority-spin and (b) majority-spin electrons in (001) fcc Co(2 ML)/Pd(2 ML) in the absence of the SOC found
using a realistic tight-binding model [6,8,9]. The plotted sheets are determined as the set of k points where there are electron states with
energies closer than 0.003 eV from the Fermi energy. The k′

x and k′
y axes are along the (110) and (110) axes, respectively.

εnσ + (δεF − δεnσ)] in the perturbed system (θ is the unit step
function); this alternative derivation is given in Appendix B.
However, such a direct approach does not give a good insight
into the origin of the intraband term of the MCA energy while
the discussion presented in this section clearly reveals the
mechanism of how this term arises.

This discussion can also be illustrated with an exemplary
plots of the actual FS sheets for a thin Co/Pd bilayer with
and without the SOC; see Figs. 3 and 4. It is found that the
pattern of the FS sheets behaves according to the presented
above description in most of the BZ so that the FS sheet
curves slightly change their shapes and positions upon the

introduction of the SOC and the regions where the occupation
of states from a specific energy band changes are narrow
stripes of a variable width. The shape of the FS sheets is
modified by the SOC in a more significant way close to the
center of the BZ where the bands are flatter which results in
smaller gradients ∇kεnσ and thus larger stripe widths |w⊥|,
according Eq. (27). Note that the curves of the unperturbed
FS sheets shown in Fig. 3 do not cross each other or stick
together at some k points, even on the high-symmetry lines
and at the high-symmetry points. This means that there are no
degenerate states of the same spin at the Fermi level in the
investigated Co(2 ML)/Pd (2 ML) bilayer which supports the

FIG. 4. (a), (b) FS sheets obtained with the SOC included (blue and green lines) for (001) fcc Co(2 ML)/Pd(2 ML) bilayer with the
magnetization along the (100) axis. The sheets are coloured according to the dominating spin component in the respective electron states,
with the spin-projected occupation number larger than 0.5 for minority spin (blue lines) or majority spin (green lines). For comparison, the FS
sheets found without the SOC (dark grey lines) for (a) minority-spin and (b) majority-spin electrons are also drawn. The sheets in one quarter
of the BZ are shown.
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theoretical arguments for the absence of such states in layered
systems of a cubic structure and the (001) surface, presented
in the last paragraph of Sec. II A.

The calculation of the MCA intraband terms using the
line integrals along the FS sheets curves is computationally
cumbersome, or even hardly doable. Indeed, the numerical
implementation of such a method is not straightforward, in
particular, because one needs to determine a large number
of the FS sheets which is considerable even for very thin
systems (Fig. 3) and grows linearly with increasing the film
thickness. Thus, the finite-temperature formulation based on
Eq. (11) is much more convenient in the actual calculations of
the MCA energy within the PT approach. The integration over
k is then performed over the whole BZ, for both intraband and
interband terms of this energy.

Note, however, it is still possible to calculate the MCA
energy at T = 0 without determining the troublesome line
integrals along the FS sheets, by applying the triangle method
[55,56] which is the two-dimensional counterpart of the tetra-
hedron method [57,58] used for three-dimensional crystals.
The two-dimensional BZ is then divided into a triangular
grid and the integrals over k, like those in Eqs. (17) and
(20), are calculated analytically for each triangle after the
energies εnσ (k) and the accompanying factors, like |ε (1)

nσ (k)|2,
are approximated by the linear interpolation inside the triangle
based on values of these quantities at the triangle corners.
In particular, the intraband term E (2′ )

b is calculated by a
straightforward modification of the analytical expression for
the orbital-projected DOS given in Ref. [56]. In this way,
the intraband term of the MCA energy at T = 0 can be rep-
resented by a sum over the grid nodes. The interband term
E (2)

b of the band energy at T = 0, defined in Eq. (20), can
also be calculated with the triangle method using the analyti-
cal expression for the integral of θ [εF0 − εnσ (k)]θ [εn′σ ′ (k) −
εF0][εnσ (k) − εn′σ ′ (k)]−1 over a triangle which was reported
in Ref. [1] and successfully applied for ferromagnetic films
of Fe, Co, and Ni therein. However, the use of the triangle
method in calculation of E (2)

b requires extra care in numer-
ical implementation, especially when the energies at two or
three corners are equal or close to one another. In addition, a
much larger number of k points is needed for convergence
of the MCA energy calculated with this method at T = 0
compared to the finite-temperature approach based on Eq. (11)
at T = 300 K [9]. Thus, the latter approach is preferable in
the numerical calculations of the MCA energy with the PT.
The triangle method can also be used to obtain convergent
values of the MCA energy with the FT at T = 0. In doing so,
the band energy, expressed as Eb = ∫ εF

−∞ εn(ε)dε, is found by
integrating the analytical formula obtained for the DOS n(ε)
[55].

C. Representation of MCA energy with SOC energy including
intraband terms

The MCA energy can also be represented as half the differ-
ence of the SOC energies for the two magnetization directions

EMCA = 1
2�ESOC = 1

2 [ESO(M̂⊥) − ESO(M̂‖)], (35)

where the SOC energy

ESO(M̂) = 1

�2D

∫
dk

∑
m

f (εm(k)) 〈mk|HSO|mk〉 (36)

is calculated with the occupied states |mk〉 found by direct
diagonalization of the perturbed Hamiltonian H + HSO. This
method largely resembles the FT approach of Eq. (3) where
the MCA energy is expressed by the difference of the free en-
ergies F (M̂⊥) − F (M̂‖) which reduces to Eb(M̂⊥) − Eb(M̂‖)
at T = 0. However, the above representation of the MCA
energy with the SOC energy is not fully equivalent to the FT
approach and, in fact, the formula (36) is derived within the
PT framework.

The derivation given in Ref. [41] is based on the assump-
tion that the N-electron ground state of the system perturbed
by the SOC can be obtained within the PT as the perturbed N-
electron ground state of the unperturbed system. In fact, since
the MCA energy is defined with the system’s band energies,
the above assumption should be referred to the N-electron
ground state of the noninteracting Kohn-Sham system (with
and without the SOC) which is used to describe the real
interacting system within the DFT. The energy of this state is
the band energy Eb given by Eq. (2) and its N-electron wave
function is the Slater determinant built of the wave functions
of all occupied electron states. Thus, the electron states which
are occupied in the ground state of the unperturbed system
are assumed to remain occupied after the perturbation is in-
troduced. As result, the PT correction to the energy E (0)

b of
this system is given by the second-order interband term E (2)

b
built of the second-order corrections ε (2)

nσ to the energies of
these electron states, Eq. (21). However, as already shown
and discussed in detail above, such an assumption about the
occupations of electron states is not usually true for extended
metallic systems, like the presently investigated layered struc-
tures, and, as result, the second-order intraband term E (2)

b
does not represent the whole second-order contribution of the
SOC perturbation to the band energy Eb. Thus, for systems
without the inversion symmetry, where the finite intraband
contribution E (2′ )

b is present in addition to E (2)
b , the proof

of the relation (35) needs suitable amendments. This can be
readily done within the present finite-temperature formulation
as follows.

The SOC energy given by Eq. (36) can be expressed, up to
the second order in the SOC, with the first-order PT expan-
sions for the perturbed eigenstates

|mk〉=|nkσ 〉per=|nkσ 〉 +
∑

n′σ ′ 	=nσ

〈n′kσ ′|HSO|nkσ 〉
εnσ (k) − εn′σ ′ (k)

|n′kσ ′〉,

(37)

and their energies εm = ε
per
nσ = εnσ + ε (1)

nσ , alongside the fol-
lowing expansion of the occupation factors:

f (εm) = f (εper
nσ ) = f (εnσ + ε (1)

nσ ) = f0(εnσ + ε (1)
nσ − δεF)

= f0(εnσ) + f ′
0(εnσ)(ε (1)

nσ − δεF). (38)

The first-order term of Eso vanishes,

1

�2D

∫
dk

∑
nσ

f0(εnσ (k))〈nkσ |HSO|nkσ 〉 = 0, (39)
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with 〈nkσ |HSO|nkσ 〉 = 0 for systems with the inversion sym-
metry or due to the cancellation of k and −k contributions if
this symmetry is absent, as it is explained above (in fact, this
term is equal to F (1) = �(1) = 0). The shift δεF = εF − εF0 of
the Fermi energy present in Eq. (38) is of the second order
in the SOC [6] so that it contributes to ESO in Eq. (36) only
in the third and higher orders. Thus, the remaining terms in
the expansion of the SOC energy are of the second order
and give the following PT representation of this energy with
unperturbed states and their energies:

ESO = 1

�2D

∫
dk

∑
nσ

f
(
εper

nσ (k)
) per〈nkσ |HSO|nkσ 〉per

= 1

�2D

∫
dk

∑
nσ

∑
n′σ ′

f0(εnσ (k)) − f0(εn′σ ′ (k))
εnσ (k) − εn′σ ′ (k)

× |〈n′kσ ′|HSO|nkσ 〉|2 = 2 F (2). (40)

The intraband contributions (nσ = n′σ ′), equal to
f ′
0(εnσ)|〈nkσ |HSO|nkσ 〉|2, come from the term f ′

0(εnσ)ε (1)
nσ

in the expansion (38), multiplied by 〈nkσ |HSO|nkσ 〉 = ε (1)
nσ ,

so they arise in a similar way as in the PT expansion of the
free energy F = F0 + F (2) where the same intraband terms
1
2 f ′

0(εnσ)(ε (1)
nσ )2 result from the expansion of the function

g(εper
nσ ) = g(εnσ + ε (1)

nσ + ε (2)
nσ ) up to the second order (see the

Appendix in Ref. [6]).
Thus, according to Eqs. (11), (12) and (35), (40), half of

the SOC energy difference �ESO/2 reproduces the leading
(second-order) term in the PT expansion of the MCA energy,
including the finite intraband terms present in the absence of
the inversion symmetry. However, the higher-order terms of
the two quantities can still differ so the alternative representa-
tion of the MCA energy with Eq. (35) derived using the PT is
not expected to exactly reproduce the reference values of this
energy obtained with the FT.

III. RESULTS

A. Intraband and interband terms of MCA energy for Co film
and Co/X layered systems with X = Cu and Pd

The theoretical discussion on the intraband terms of the
MCA energy presented in the previous section is now sup-
plemented with the numerical results for a few exemplary
magnetic layered systems. The selected systems have the
fcc structure and include a ferromagnetic Co layer with the
thickness up to 22 monolayers (ML); some of the systems
possess the inversion symmetry while others do not. The
calculations of the MCA energy are mainly done within the
finite-temperature formulation (Sec. II A) at T = 300 K using
a realistic tight-binding (TB) model of electronic structure.
The applied TB model includes the shifts of onsite orbital
energies to make each atomic layer electrically neutral and is
described in detail in Refs. [3,8,9]. The assumed values of the
SOC constants for Co, Cu, and Pd are ξCo = 0.085 eV, ξCu =
0.1 eV and ξPd = 0.23 eV, respectively [59]. The MCA ener-
gies are determined with the accuracy of 0.01 meV/(surface
atom), both in the FT and PT approaches, which, at T =
300 K, is reached by summing contributions from the num-
ber N2D = 3600–6400 of k points from the whole BZ. The
convergence of integration over the BZ and selected results

FIG. 5. MCA energy obtained with the PT formula (14) includ-
ing only interband contributions (black squares) for the (001) fcc
(a) Co film and (b) Pd(8)/Co/Pd(8 ML) trilayer compared with the
MCA energy found for these systems with the FT (pink circles).

for other temperatures, including T = 0, are discussed in
Sec. III B. Note that the same scheme of thermal smearing is
applied in the MCA calculations with the FT and PT since the
expression for F (2), Eq. (11), is derived by the perturbation
expansion of the free energy F , which is used to define the
MCA energy with the FT in Eq. (3).

It is confirmed that for a free-standing Co film and a
symmetric Pd/Co/Pd trilayer, which both have the inversion
symmetry, the intraband term of the MCA energy

EMCA,intra = F (2)
intra(M̂⊥) − F (2)

intra(M̂‖) (41)

vanishes and the standard PT formula [1,28,29] including only
the interband term

EMCA,inter = F (2)
inter(M̂⊥) − F (2)

inter(M̂‖) (42)

very well reproduces the exact EMCA calculated with the FT
(see Fig. 5). The situation is different for systems that lack the
inversion symmetry. A large discrepancy between the results
of the two methods is found for the Co/Pd(8 ML) bilayer
(Fig. 6) as the MCA energies given by such an incomplete PT
formula are about 1 meV/(surface atom) lower than the actual
MCA energies obtained with the FT. However, the inclusion
of the intraband term alongside the interband one comes as an
immediate remedy to this problem since the sum of the two
terms, leading to the full PT formula represented by Eqs. (11)
and (12), gives the total MCA energy in very good agree-
ment with the FT result. Even better agreement is reached
for the Co/Cu(8 ML) bilayer (Fig. 7). It is also shown that
the representation of the MCA energy as the half SOC energy
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FIG. 6. Intraband (red circles) and interband (blue circles) terms
of the total MCA energy (black squares) obtained within the PT
[Eqs. (15), (14), and (13), respectively] for the (001) fcc Co/Pd
(8 ML) bilayer compared with the MCA energy found with the FT
(pink circles).

difference 1
2�ESOC, Eq. (35), is almost exact for the Co film

and only slightly less accurate for the Co/Pd bilayer (Fig. 8),
thus providing a numerical confirmation that this represen-
tation is valid for systems with and without the inversion
symmetry, respectively, as argued theoretically in Sec. II C.

For both considered bilayers, the intraband term of the
MCA energy is of similar magnitude as its interband term
and the two terms largely cancel out when they are added to

FIG. 7. Intraband (red circles) and interband (blue circles) con-
tributions to the total MCA energy (black squares) obtained with the
PT for the (001) fcc Co/Cu(8 ML) bilayer compared with the MCA
energy found with the FT (pink circles).

FIG. 8. MCA energy EMCA of the (001) fcc (a) Co film and
(b) Co/Pd(8 ML) bilayer calculated as 1

2 �ESOC (black squares) with
Eq. (35) and compared to the exact EMCA (pink circles) obtained with
the FT using Eq. (3).

give the total value of this energy. The accuracy with which
the MCA energy found with the FT is reproduced by the
second-order PT formula is largely related to the strength of
the SOC perturbation. The agreement is almost perfect for the
Co film and the Co/Cu bilayer, and still very good for the
Co/Pd bilayer, while, as shown in Ref. [6], it is much worse for
the Co/Pt bilayer, comprising the Pt layer with a very strong
SOC. For the latter system, the PT formula predicts that the
oscillations of the MCA energy versus the Co thickness have
much larger amplitude than in the FT approach while the mean
value of this energy is roughly reproduced by the PT. This is
an interesting finding whose origin remains to be explained.

The very existence of the large second-order intraband
terms in the MCA energy for the Co/X bilayers is not con-
ditioned by the presence of the SOC in the nonmagnetic
layer of the metal X but results from the modification of the
electronic structure within the Co layer due to the presence
of this overlayer. Such a modification changes the effect of
the SOC in Co on the bilayer energy, or its free energy (in
particular, by leading to the finite diagonal matrix elements of
HSO), and, consequently, affects the MCA energy. To verify
this explanation, the MCA energy is also determined for a
Co/Pd bilayer system with no SOC in the Pd layer [Fig. 9(a)].
It is found that, for this system too, the intraband and interband
terms are both sizable and of very similar magnitude, though
smaller (around three times) than for the Co/Pd bilayer with
the normal SOC in Pd.

A similar test for the Co/Cu bilayer [Fig. 9(b)] shows that
the full quenching of the SOC in Cu has little effect on the
MCA energy, both its intraband and interband terms. This
happens because the matrix elements 〈n′kσ ′|Hso|nkσ 〉 that
significantly contribute in the PT formula (11) are weakly
affected by the strength of the SOC in Cu since the electron
states with energies around the Fermi level εF0 are localized
mostly within the Co layer, with very small amplitudes in-
side the Cu layer. Such a localization is confirmed by a very

024424-11



M. CINAL PHYSICAL REVIEW B 109, 024424 (2024)

FIG. 9. Intraband (red circles) and interband (blue circles) contri-
butions to the total MCA energy (black squares) obtained with the PT
[Eqs. (15), (14), and (13), respectively] for the (001) fcc (a) Co/Pd(8
ML) and (b) Co/Cu(8 ML) bilayers with no SOC in the Pd and Cu
layers (ξCu = 0 and ξPd = 0).

low layer-projected DOS in all Cu atomic layers for energies
higher than around εF0 − 1.5 eV (see, e.g., Ref. [60]), i.e.,
above the upper edge of the d band in bulk Cu. The localiza-
tion of electrons with such energies inside the Co layer means
that, for these electrons, the Co/Cu interface effectively works
as a potential wall of a finite height so that a quantum well
is formed in the Co layer. This results in large 2-ML-period
oscillations of the MCA energy versus the Co thickness for
the Co/Cu bilayer, in a similar way as for the Co film where
a similar quantum well is defined by the two Co/vacuum
interfaces [3].

The situation is different for Co/Pd bilayers where electron
states with energies close to εF0 can span over the whole
bilayer since the d band in Pd crosses the Fermi level. As
a result, modifying the SOC strength in Pd has a significant
impact on the matrix elements of HSO and, consequently, the
magnitude of the MCA energy and its both terms (intraband
and interband), though, still the intraband term does not vanish
for ξPd = 0, as noted above. It is also found that the presence
of the d states in Pd which the d states in Co with energies
around εF0 can hybridize with has also a strong effect on the
2-ML-period oscillations of the MCA energy with increasing
the Co thickness. In particular, the oscillation amplitude is
largely reduced in comparison with the Co/Cu bilayer and
the Co film. Nevertheless, since the oscillatory patterns of
the MCA energies have the clear 2-ML dominating period for
all investigated systems (Figs. 5–7) the MCA energy oscilla-
tions vs the Co thickness are expected to come from pairs of

quantum-well d states which are degenerate at the 
 point and
originate from the fcc Co bulk band of the �5 symmetry, just
as it has been shown for a freestanding Co film [3].

The obtained intraband term of the MCA energy EMCA,intra

[Eq. (41)] is positive for both Co/Cu and Co/Pd bilayers.
In fact, this is true for all the layered systems with a cubic
symmetry, the (001) surface and a collinear magnetization
that do not have the inversion symmetry since for such sys-
tems the second-order intraband term F (2)

intra of the free energy,
Eq. (15), is finite and negative for the in-plane magnetization
while vanishing for the out-of-plane magnetization (note that
F (2)

intra is nonpositive for any layered system and magnetiza-
tion direction). Indeed, if the magnetization is along the z
axis (M̂ = M̂⊥) the matrix element 〈nkσ |HSO|nkσ 〉 is equal
to ± 1

2 〈nkσ |Oz|nkσ 〉 where Oz(r) = ∑
l j ξlLz(r − Rl j ) [see

Eq. (1)]. For layered systems with the in-plane inversion sym-
metry, like the (001) fcc Co/X bilayers, the operator Oz(r)
remains unchanged under the respective transformation ρ =
(x, y) → (−x,−y) = −ρ and becomes equal to −Oz(r) if
this transformation is followed by the complex conjugation.
Since the unperturbed Hamiltonian H (r) is invariant under
each of the two transformations, the transformed states |nkσ 〉
are also eigenstates of H with the same energy εnσ (k). Thus,
for a nondegenerate state |nkσ 〉 at a general k point, the
combined action of these two symmetry operations on the
wave function ψσ

nk(r) = eikρuσ
nk(r), which leaves the Bloch

prefactor eikρ unchanged, gives the same wave function up
to a constant phase factor [ψσ

nk(−x,−y, z)]∗ = eiαψσ
nk(x, y, z),

where α = ασ
nk. In this way, by applying such a composed

symmetry operation, it can be shown that the real matrix
element 〈nkσ |Oz|nkσ 〉 = ∫

dr[ψσ
nk(r)]∗Oz(r)ψσ

nk(r) is equal
to −〈nkσ |Oz|nkσ 〉 so it must vanish and, as a result, we
obtain F (2)

intra = 0 for M̂ = M̂⊥. This conclusion does not hold
for the intraband term F (2)

intra with magnetization in the x
direction (M̂ = M̂‖) since the respective operator Ox(r) =∑

l j ξlLx(r − Rl j ) which defines the SOC for this direction
of the net spin remains unchanged after the two symmetry op-
erations are applied: [Ox(−x,−y, z)]∗ = Ox(−x,−y, z). The
above reasoning is based on similar arguments as those
used to show that the diagonal matrix elements of HSO and
the system’s orbital angular momentum (its all components,
in x, y, and z directions) vanish for systems with the full
(three-dimensional) inversion symmetry for any magnetiza-
tion direction (see Appendix A in Ref. [9] for more details).

B. Dependence of MCA energy on thermal smearing
and convergence of the Brillouin zone integration

Although the finite temperature is introduced to smear
the electron energy levels and thus improve the convergence
of the calculated MCA energies, such a smearing also leads
to some physical effects. In particular, it is found that the
amplitude of the MCA energy oscillations is reduced with
increasing the temperature [9] which is confirmed experimen-
tally for Fe and Co films [12,14]. To demonstrate the effect
of temperature, the MCA energy of the Co/Pd(8 ML) bilayer
is also calculated for finite temperatures lower than 300 K,
down to 50 K, with both the FT and PT using Eqs. (3) and
(12), respectively. In addition, a separate calculation of the
MCA energy with the two methods is done for the ground
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FIG. 10. MCA energy (diamonds, squares) of the (001) fcc
Co/Pd(8 ML) bilayer calculated with the (a) FT and (b) PT for finite
temperatures and T = 0. (b) The intraband (circles) and interband
(triangles) terms of the MCA energy. The results are obtained with
Nk = 70 that defines the number N2D = (2Nk + 1) × (2Nk + 1) of k
points used for the integration over the BZ.

state (T = 0), using the triangle method for integration over
the BZ in Eqs. (2), (17), and (20), as described in the last part
of Sec. II B.

It is found [Fig. 10(b)] that the intraband term EMCA,intra

of the MCA energy is very similar for all temperatures, being
only slightly shifted at finite temperatures compared to T = 0.
The shift is almost independent of the Co thickness, it is
around 0.2 meV/(surface atom) at T = 300 K and decreases
as the temperature gets smaller so that the term EMCA,intra

at T = 50 K is almost equal to its value in the ground state
(T = 0). The effect of smearing the electron energies by fi-
nite temperature is different for the interband term EMCA,inter.
While this effect is almost negligible for some Co thicknesses
the value of EMCA,inter significantly changes (grows) with de-
creasing the temperature for other Co thicknesses and the
change is the stronger the lower temperature is. This leads
to the oscillations of the total MCA energy which, evidently,
come mostly from its interband term, especially at low tem-
peratures. The effect can be attributed to quantum-well states
which cross the Fermi energy in a regular manner as the
thickness of the Co layer grows and couple to other states
which also lie close to εF. In fact, such a mechanism of the
MCA oscillations has been previously [3] established for free-
standing Co films where pairs of quantum-well d states with
closely lying energies, degenerate at the 
 point, are present
and cross εF.

Oscillations with the amplitude which grows with decreas-
ing the temperature are also present in the MCA energy
obtained with the FT [see Fig. 10(a)]. However, while the
values of EMCA obtained for the Co/Pd(8 ML) bilayer with
the FT and PT nearly coincide at T = 300 K, their oscillatory
patterns become increasingly different as the temperature gets
lower. The oscillation amplitude of EMCA(NCo) is significantly
smaller for the MCA energies found with the FT than for those
obtained with the PT. This could be explained by assuming
that, at lower temperatures, the validity of the PT approach
to the MCA is compromised at lower strengths of the SOC
perturbation so that the significant discrepancy between the
FT and PT results, previously found for the MCA energies of
the Co/Pt bilayers at T = 300 K [6], also occurs for the Co/Pd
bilayers, with the weaker SOC, but only at temperatures of
T = 100 K and lower. Although this explanation is plausible,
the origin of such a discrepancy and the conditions for the
validity of the PT approach in the MCA calculations need
further investigation.

To test how the finite temperature improves the conver-
gence of the MCA energy, the integration over the BZ is
done using various numbers N2D = (2Nk + 1) × (2Nk + 1) of
k points which form a square grid with Nk divisions along the

–X line (at T = 0 each grid cell is divided into two triangles
to apply the triangle method). The improvement is clearly seen
in the FT results for a Co/Pd bilayer in Fig. 11(a) where the
variation of EMCA versus Nk is largest for T = 0 and becomes
smaller with increasing the temperature. At T = 300 K, the
accuracy of 0.01 meV/(surface atom) is reached with Nk =
30–40 while a much finer k-point grid with Nk = 70–100 is
needed to obtain this accuracy level at T = 50 K and T = 0.
A similar convergence trend is found for the MCA energies
calculated for the Co/Pd bilayer with the PT [Figs. 11(b) and
11(c)]; however, for some Co thicknesess, the MCA energy
does not fully converge even with Nk = 100 (N2D ≈ 40 000)
at T = 50 K and T = 0. In particular, although the variation
of EMCA at T = 0 is a quite moderate in the whole consid-
ered interval of 20 � Nk � 100 and even much weaker than
for T = 50–150 K in the range 20 � Nk � 50, it does not
necessarily settle down within the 0.01 meV/(surface atom)
margin for larger Nk up to 100.

IV. CONCLUSIONS

The presented theoretical analysis of how the band energy
of a layered system is perturbed by the SOC at zero temper-
ature gives a very good insight into the origin of intraband
contributions to this energy and, consequently, to the MCA
energy defined as the difference of the band energies for
two different magnetization directions. The net second-order
intraband term of the band energy, which accompanies its
usual interband term of the same order, is finite only for
systems without the inversion symmetry and determined by
the electron states at the FS. More specifically, this term is
given, at T = 0, by the sum of line integrals over all FS sheets
which are curves in the two-dimensional BZ. It is revealed that
such a form of the intraband term results from the changes of
the FS due to the SOC. This perturbation leads to small shifts
of the FS sheet curves which result in additional contributions
to the system band energy from the narrow stripelike regions
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FIG. 11. MCA energy obtained for the (001) (a), (b) fcc Co(6
ML)/Pd(8 ML) and (c) Co(5 ML)/Pd(8 ML) bilayers with the (a) FT
and (b), (c) PT at various temperatures versus the number N2D =
(2Nk + 1) × (2Nk + 1) of k points used for the integration over the
BZ.

of the BZ between the perturbed and unperturbed FS sheets.
In the leading order, both the width of each stripe at a specific
k point of the respective FS sheet and the deviation of the
energy of the corresponding band nσ from the Fermi level
near this point within the stripe are proportional to the first-
order correction ε (1)

nσ to the electron energy εnσ at the k point
and vary along the stripe. As a result, the net contribution
from the stripe to the system energy is proportional to the
line integral of the square of ε (1)

nσ , multiplied by the inverse of
the band slope which also affects the FS stripe width. These
findings, visualized with the relevant schematic illustrations
shown in Figs. 1 and 2, clearly explain the mechanism of
how the second-order intraband terms arise in the system band
energy and, thus, also the MCA energy.

The reported results of the numerical tests prove that the
inclusion of the intraband terms in the PT expression for
the MCA energy, which are finite for systems without the
inversion symmetry, is vital for Co/X bilayers with both mod-
erate (X = Cu) and strong (X = Pd) SOC in the nonmagnetic
layer. Indeed, the intraband term of the MCA energy has the
magnitude comparable to its interband term and, in fact, both

terms have much larger magnitude than the MCA energy itself
since they largely cancel out each other. This is true even if
the strength of the SOC is artificially reduced to zero in the
nonmagnetic layers of X = Cu and Pd. Thus, the presence of
the MCA intraband term is primarily due to the lack of the in-
version symmetry in the atomic structure of a specific system,
and is not the result of an asymmetrical spatial distribution
of the SOC inside the system. Nevertheless, the magnitude
of this term can be strongly affected, in a similar way as the
interband term, by the SOC of a nonmagnetic layer with the
d states at the Fermi level, as this is the case for the Co/Pd
bilayer.

Further, it is confirmed that the known representation of
the MCA energy as half the difference of the SOC energies
for two magnetization directions is also valid for systems
without the inversion symmetry since its PT expansion re-
produces, in the leading order, the extended PT formula for
the MCA energy with finite intraband terms included. This
alternative approximate, yet very accurate, representation of
the MCA energy, was previously [41] derived by assuming
that the ground state of the perturbed system is the perturbed
ground state of the unperturbed system so that all occupied
electron states remain occupied after the SOC perturbation
(a one-electron interaction) is applied. This assumption was
also made in the original derivation of the PT expression
for the MCA energy in Ref. [28] and leads to the formula
including only the interband contributions coming from the
second-order corrections to the electron energies. However,
such an assumption about the ground state is not generally
true for extended systems (like the considered bilayers) with
continuous energy spectrum since the occupations of some
of electron states close to the Fermi level can change upon
introducing the SOC perturbation so that the ground state
of the perturbed system is then, in fact, one of perturbed
excited states of the unperturbed system. Here, we refer to
many-electron states (ground and excited) of noninteracting
(Kohn-Sham) systems considered in the DFT and these states
are the Slater determinants formed of occupied one-electron
states.

The questioned assumption was also used, though in a
different form, in the state-tracking technique [61] where the
choice of the set of occupied electron states in the presence
of the SOC is done by maximizing the total projection of
the states from this set onto the set of occupied unperturbed
states. This technique was proposed to ensure convergence
of the MCA energies computed with the FT at T = 0; how-
ever, its efficiency has been demonstrated only for systems
with the inversion symmetry, like Co and Fe films as well as
Pd/Co/Pd and Cu/Co/Cu symmetric trilayers [61–63]) where
the MCA energy intraband term, neglected due to the men-
tioned assumption, vanishes anyway. Thus, the validity of the
state-tracking approach needs to be reconsidered for systems
without the inversion symmetry where such a term is finite and
comes from the electron states whose occupancy has changed
upon the introduction of the SOC perturbation.

Another key quantity which, apart from the MCA energy,
describes magnetic systems and includes both interband and
intraband contributions due to the SOC is the Gilbert damping
constant determined within the Kamberský model [64,65].
However, significant differences between the two quantities
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exist. The contributions to the damping constant are given by
the squared moduli of the matrix elements of the spin-orbit
torque operator between the perturbed electron states |mk〉 so
that the intraband contributions, corresponding to the diagonal
elements, do not vanish even for systems with the inversion
symmetry, like bulk crystals and thin films of ferromagnetic
metals of Fe, Co, and Ni [65,66]. This is not the case for
the MCA energy whose intraband contributions vanish in the
presence of the inversion symmetry because they are deter-
mined with the diagonal matrix elements of the SOC operator
between the unperturbed electron states |nkσ 〉.

Let us also note that, although the system band energy
(or the free energy) includes a finite second-order intraband
term for layered systems without the inversion symmetry, the
first-order term of this energy vanishes even in the absence
of such a symmetry provided that the system magnetization
has a collinear (ferromagnetic) configuration since, in this
case, the first-order corrections to the energies of electrons

with opposite wave vectors (k and −k) cancel out. However,
such a cancellation does not take place in systems with a
noncollinear magnetization (like chiral magnetic structures)
where the first-order terms of their band energies are finite and
this gives rise to the Dzyaloshinskii-Moriya interaction [52].

APPENDIX A: CORRECTION TO FERMI ENERGY DUE
TO SPIN-ORBIT COUPLING IN PERTURBATION THEORY

The change δεF = εF − εF0 of the Fermi energy due to the
SOC can be determined from the condition that the number of
electrons N remains unchanged upon the introduction of the
perturbation. It can be achieved by expanding the occupation
factor f (εm) = f (εnσ + δεnσ) = f0(εnσ + δεnσ − δεF) in the
power series of δεnσ − δεF in the expression that defines N in
Eq. (4) and, subsequently, determining δεF from the resulting
equation. This leads to the formula [6]

δεF =
[ ∫

dk
∑
nσ

f ′
0(εnσ)ε (2)

nσ + 1

2

∫
dk

∑
nσ

f ′′
0 (εnσ)

[
ε (1)

nσ

]2

]/∫
dk

∑
nσ

f ′
0(εnσ), (A1)

once terms of the third and higher orders in the SOC are neglected. Thus, we conclude that the change of the Fermi energy δεF

(its leading term) is of the second order in the SOC, both in the presence of the inversion symmetry (leading to ε (1)
nσ = 0), and its

absence (with finite ε (1)
nσ possible).

This conclusion also holds at T = 0 which provides justification for neglecting the term (δεF)2 in Eqs. (29) and (32). Indeed,
in the T → 0 limit, Eq. (A1) takes the form

lim
T →0

δεF =
[ ∫

dk
∑
nσ

δ(εnσ − εF0)ε (2)
nσ + 1

2

∫
dk

∑
nσ

δ′(εnσ − εF0)
[
ε (1)

nσ

]2

]/∫
dk

∑
nσ

δ(εnσ − εF0), (A2)

where the integration over the BZ can be reduced to the set of the FS sheets Cnσ due to the presence of the Dirac delta function.
For each point ks ∈ Cnσ , this function can be represented as

δ(εnσ (k) − εF0) = δ(q⊥)

|∇kεnσ (ks)| (A3)

for the points k = ks + q⊥e⊥ along the q⊥ axis parallel to the gradient ∇kεnσ = |∇kεnσ |e⊥ at ks and thus perpendicular to
the tangent of the curve Cnσ ; see Eq. (18). This provides immediate results for the integrals over q⊥ in the terms involving the
function δ(εnσ (k) − εF0) (but not its derivative) in Eq. (A2). Furthermore, by differentiating Eq. (A3) with respect to q⊥ we find

δ′(εnσ (k) − εF0) = δ′(q⊥)

|∇kεnσ (ks)|∂εnσ /∂q⊥(ks)
= δ′(q⊥)

|∇kεnσ (ks)|2 (A4)

since, for the assumed orientation of the q⊥ axis, the derivative ∂εnσ /∂q⊥(ks) is positive and equal to |∇kεnσ (ks)|. The integral
over q⊥ of the above expression multiplied by [ε (1)

nσ ]2 can then be done by integration by parts and includes factor ∂ε (1)
nσ /∂q⊥

which can also be represented as ∇kε
(1)
nσ · e⊥. As a result, we arrive at the following expression for the shift of the Fermi energy

due to the SOC at zero temperature:

lim
T →0

δεF =
∑
nσ

∫
Cnσ

ds

[
ε (2)

nσ

|∇kεnσ (ks)| − ε (1)
nσ [∇kε

(1)
nσ · e⊥]

|∇kεnσ (ks)|2
]/ ∑

nσ

∫
Cnσ

ds
1

|∇kεnσ (ks)| , (A5)

where all terms are finite and the shift itself is of the second
order in the SOC. Note that the denominator (after dividing it
by �2D) in Eqs. (A2) and (A5) is equal to the DOS n(εF0) at
the Fermi level in the unperturbed system.

However, as it was noted in the case of the MCA energy,
a formula like above, including the sum over many sheets of
the FS is computationally very cumbersome and the finite-
temperature expression (A1) should be used instead if one

wants to calculate the shift of the Fermi energy within the PT
approach. Alternatively, one could perform the calculations
of δεF at T = 0 by applying the triangular method [1,56]
to calculate the integrals over the two-dimensional wave k
for each energy band nσ in Eq. (A2). However, this method
is still more complex than the finite-temperature approach
using Eq. (A1) which is the most convenient way for such
a calculation with the PT.
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APPENDIX B: ALTERNATIVE DERIVATION
OF SECOND-ORDER INTRABAND TERM OF MCA

ENERGY AT T = 0

The occupied band energies of the unperturbed and per-
turbed systems at T = 0 can be expressed with the electron
energies εnσ , ε

per
nσ and the corresponding Fermi energies εF0,

εF using the unit step function θ :

E (0)
b = 1

�2D

∫
dk

∑
nσ

θ (εF0 − εnσ)εnσ , (B1)

Eb = 1

�2D

∫
dk

∑
nσ

θ
(
εF − εper

nσ

)
εper

nσ . (B2)

The change of the band energy due to the SOC perturbation at
T = 0 can then be represented as follows:

�2D
(
Eb − E (0)

b

) =
∫

dk
∑
nσ

θ
(
εF − εper

nσ

)(
εper

nσ − εF0
)

−
∫

dk
∑
nσ

θ (εF0 − εnσ)(εnσ − εF0) (B3)

after subtracting the term∫
dk

∑
nσ

θ
(
εF − εper

nσ

) −
∫

dk
∑
nσ

θ (εF0 − εnσ) = 0 (B4)

multiplied by εF0. This term vanishes because it is equal (after
dividing it by �2D) to the difference of the numbers of occu-
pied electron states in the perturbed and unperturbed systems
while these numbers are identical since they are equal to the
fixed number of electrons N in the system.

Further, the occupation factor, with ε
per
nσ = εnσ + δεnσ and

εF = εF0 + δεF, can be expanded in a power series with linear
and quadratic terms included:

θ
(
εF − εper

nσ

) = θ (εF0 − εnσ) + δ(εF0 − εnσ)(δεF − δεnσ)

+ 1
2δ′(εF0 − εnσ)(δεF − δεnσ)2 (B5)

which, multiplied by ε
per
nσ − εF0 = εnσ − εF0 + δεnσ in

Eq. (B3), leads to

�2D
(
Eb − E (0)

b

) =
∫

dk
∑
nσ

θ (εF0 − εnσ)δεnσ +
∫

dk
∑
nσ

δ(εF0 − εnσ)(εnσ − εF0)(δεF − δεnσ)

+ δεF

∫
dk

∑
nσ

δ(εF0 − εnσ)δεnσ −
∫

dk
∑
nσ

δ(εF0 − εnσ)(δεnσ)2

+ 1

2

∫
dk

∑
nσ

δ′(εF0 − εnσ)(εnσ − εF0)(δεF − δεnσ)2 + 1

2

∫
dk

∑
nσ

δ′(εF0 − εnσ)δεnσ (δεF − δεnσ)2. (B6)

The second term on the right-hand side vanishes since the Dirac delta function satisfies the relation xδ(x) = 0 (here for x =
εF0 − εnσ ), the third term with δεnσ represented with ε (1)

nσ only also vanishes due to the cancellation of k and −k contributions.
The remaining part of the third term (including ε (2)

nσ ) and the last term can be both neglected as they are of the third or higher
orders in the SOC. As a result, the above expression is reduced to the sum

�2D
(
Eb − E (0)

b

) =
∫

dk
∑
nσ

θ (εF0 − εnσ)δεnσ −
∫

dk
∑
nσ

δ(εF0 − εnσ)(δεnσ)2

+ 1

2

∫
dk

∑
nσ

δ′(εF0 − εnσ)(εnσ − εF0)(δεF − δεnσ)2 (B7)

which can be further simplified by dividing its last term into
the following three parts:

1

2
(δεF)2

∫
dk

∑
nσ

δ′(εF0 − εnσ)(εnσ − εF0)

− δεF

∫
dk

∑
nσ

δ′(εF0 − εnσ)(εnσ − εF0)δεnσ

+ 1

2

∫
dk

∑
nσ

δ′(εF0 − εnσ)(εnσ − εF0)(δεnσ)2 (B8)

and noting that the first part, including (δεF)2 = O(H4
SO), can

be neglected while the second part, with δεnσ ≈ ε (1)
nσ again

vanishes due to the cancellation of the k and - k contributions.

Thus, the following expression is obtained:

�2D(Eb − E (0)
b ) =

∫
dk

∑
nσ

θ (εF0 − εnσ)δεnσ

−
∫

dk
∑
nσ

δ(εF0 − εnσ)(δεnσ)2

− 1

2

∫
dk

∑
nσ

δ′(εF0 − εnσ)(εF0 − εnσ)

× (δεnσ)2. (B9)

Now, we can again make use of the general relation xδ(x) = 0
which after differentiating with respect to x gives the formula
xδ′(x) = −δ(x) which allows for rephrasing the last term. In
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this way, we arrive at the following expression:

Eb − E (0)
b = 1

�2D

∫
dk

∑
nσ

θ (εF0 − εnσ)δεnσ

− 1

2

1

�2D

∫
dk

∑
nσ

δ(εF0 − εnσ)(δεnσ)2 (B10)

which after the substitution δεnσ = ε (1)
nσ + ε (2)

nσ and neglecting
terms of the third and higher orders takes the form

Eb − E (0)
b = 1

�2D

∫
dk

∑
nσ

θ (εF0 − εnσ)ε (1)
nσ

+ 1

�2D

∫
dk

∑
nσ

θ (εF0 − εnσ)ε (2)
nσ

− 1

2

1

�2D

∫
dk

∑
nσ

δ(εnσ − εF0)
(
ε (1)

nσ

)2

= E (1)
b + E (2)

b + E (2′ )
b , (B11)

where the relation δ(x) = δ(−x) with x = εF0 − εnσ has been
also applied. Since the first-order term vanishes, E (1)

b = 0, this
finally shows that the change of the band energy of layered
systems is the sum of the second-order interband and intra-
band terms:

Eb − E (0)
b = E (2)

b + E (2′ )
b . (B12)

The intraband term E (2′ )
b has exactly the same form as

in Eq. (17) derived in Sec. II B by taking the T → 0 limit
of F (2)

intra and can be further represented by the sum of the
line integrals over all FS sheets as in Eq. (33) obtained by
the calculation of Eb at T = 0 based on Eq. (22). Although
the derivation presented in this Appendix is mathematically
rigorous, the physical origin of the extra second-order term
E (2′ )

b , due to intraband contributions, is much better elucidated
by the way this term is derived and interpreted in the main
text.
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