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Proximity-induced nonlinear magnetoresistances on topological insulators
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We employ quadratic-response Kubo formulas to investigate the nonlinear magnetotransport in bilayers
composed of a topological insulator and a magnetic insulator, and predict both unidirectional magnetoresistance
and nonlinear planar Hall effects driven by interfacial disorder and spin-orbit scattering. These effects exhibit
strong dependencies on the Fermi energy relative to the strength of the exchange interaction between the spins of
Dirac electrons and the interfacial magnetization. In particular, as the Fermi energy becomes comparable to the
exchange energy, the nonlinear magnetotransport coefficients can be greatly amplified and their dependencies on
the magnetization orientation deviate significantly from conventional sinusoidal behavior. These findings may
not only deepen our understanding of the origin of nonlinear magnetotransport in magnetic topological systems
but also open new pathways to probe the Fermi and exchange energies via transport measurements.
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I. INTRODUCTION

Topological-insulator (TI)-based magnetic heterostruc-
tures are appealing systems for exploring the interplay
between magnetism and band topology. These hybrid sys-
tems are characterized by the coexistence of strong spin-orbit
coupling (SOC), sizable magnetic exchange interaction, and
Dirac surface states with spin-momentum locking. More-
over, it has been demonstrated that the Fermi level of the
TI layer in these systems can be finely tuned with respect
to the Dirac point [1–4]. These properties are remarkable
in their own rights, and a blend of them makes these sys-
tems even more intriguing. A multitude of linear-response
transport phenomena have attracted considerable attention,
including quantum anomalous Hall [5–10], topological Hall
[11–13], spin-transfer torque [14–16], and various novel mag-
netoresistance effects [17–19], which may potentially lead to
applications in many areas, ranging from classical information
storage and processing [20] to quantum computation [21,22].

Going beyond linear responses, TI-based magnetic het-
erostructures also allow magnetotransport that violates On-
sager’s reciprocity in principle, owing to the lack of both
time-reversal and inversion symmetries. Corrections to linear
magnetoconductivities have been observed in a few TI-based
magnetic heterostructures [23–28]—ensuing the discovery of
unidirectional magnetoresistance (UMR) effects in metallic
and semiconducting magnetic bilayers [29,30]. Such nonlin-
ear magnetoconductivities are odd under the reversal of either
the direction of the applied electric field E or that of the mag-
netization (whose direction will be denoted by a unit vector m
hereafter); i.e., σ (2)(−m, E) = σ (2)(m,−E) = −σ (2)(m, E),

*mxm1289@case.edu
†shulei.zhang@case.edu

which are distinctly different from their linear-response coun-
terparts and hence hold fascinating prospects for adding new
functionalities in future spintronic devices.

To date, studies of nonlinear transport in magnetic lay-
ered structures have mainly been focused on controlling the
corresponding magnetotransport coefficients by varying the
magnetization vector with an external magnetic field. And,
more specifically, the reported dependencies of the nonlinear
current on the magnetization direction can be cast into the
simple form [28–46]

j(2)
1 = σ

(2)
‖,1 m · (z × E)E + σ

(2)
⊥,1(m · E)z × E, (1)

where the unit vector z denotes the interface normal, and σ
(2)
‖,1

(σ (2)
⊥,1) is a transport coefficient that characterizes the strength

of the nonlinear current longitudinal (transverse) to the ap-
plied electric field, which is denoted by j(2)

‖,1 (j(2)
⊥,1). Here, the

superscript 2 and the subscript 1 indicate that the nonlinear
current is of second order in the applied electric field and first
order in the magnetization. The tunability of these nonlinear
transport coefficients upon the shift of the Fermi level, how-
ever, has remained unexplored.

In this work, we theoretically investigate nonlinear mag-
netotransport in magnetic bilayers consisting of a TI and a
ferromagnetic-insulator (FI) layer, as shown schematically
in Fig. 1. A formal evaluation of Kubo formulas in the
quadratic-response regime is performed to explore the magne-
toconductivities of interest. Within this quantum approach, we
find a UMR effect and a nonlinear planar Hall effect (NPHE)
that are driven purely by extrinsic spin-orbit scattering at
the interface. More interestingly, perhaps, unconventional de-
pendencies of the nonlinear currents on the magnetization
orientation emerge, which differ from those given by Eq. (1)
and feature terms that are of higher order in the magnetiza-
tion. Following a symmetry analysis of the nonlinear response
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FIG. 1. Schematics of the TI/FI bilayer system and the topological surface state (TSS). (a) In-plane rotation of the magnetization, which
leads to a rigid shift of the Dirac cone and thus the Fermi contour. (b) and (c) Out-of-plane rotations of the magnetization, which gap the
system. In this case, in addition to a shift, the radius of the Fermi contour is decreased as the magnetization is rotated out of the bilayer plane.
Here, βi j (i, j = x, y, z) is the angle between the i axis and the magnetization as it sweeps the i j plane.

function, the details of which are presented in Appendix A, the
general nonlinear current may be expressed as

j(2)
‖ = j(2)

‖,1[1+ι‖(m · e)2 +κ‖(m · z × e)2 +λ‖(m · z)2],

(2a)

j(2)
⊥ = j(2)

⊥,1[+ι⊥(m · e)2 +κ⊥(m · z × e)2 +λ⊥(m · z)2],

(2b)

where e is the unit vector along the electric field. Here, ι‖,⊥,
κ‖,⊥ and λ‖,⊥ are dimensionless quantities that characterize
the strengths of the contributions cubic in the magnetization
and are, in general, functions of disorder and the exchange
energy. Intriguingly, when the Fermi and exchange energies
become comparable, the nonlinear magnetoresistances may
be considerably amplified and the contributions of the cubic
terms become relatively large, leading to strong deviations
in the angular dependencies. These new features may then
be used to obtain insights about the position of the Fermi
level or the strength of the interfacial exchange interaction
via transport measurements, as a simple alternative to optical
schemes such as ARPES.

II. DISORDER SCATTERING IN TI SURFACE STATES

Let us commence with a minimal model for the surface
states on a TI adjacent to a FI layer, which may be expressed
as

Ĥqq′ = Ĥ0
q δqq′ + V̂qq′, (3a)

Ĥ0
q = σ̂ · hq + �exσ̂zmz, (3b)

where hq = h̄vF q × z − �exz × (z × m), with q the in-plane
momentum, vF the Fermi velocity, �ex the proximity-induced
exchange energy, and m = (mx, my, mz ) the unit magnetiza-
tion. For the impurity potential V̂qq′ , we assume it consists
of contributions from scalar point scatterers, Ûqq′ , as well as
from the SOC of the random structural defects [47], Ŵqq′ , as
[48–53]

V̂qq′ = Ûqq′ + Ŵqq′, (4a)

Ûqq′ = U 0
qq′ σ̂0, (4b)

Ŵqq′ = 1
2W 0

qq′ σ̂ · (q + q′) × z. (4c)

And we assume the white noise distribution for the dis-
order potentials, 〈U 0

qq′ 〉 = 0, 〈U 0
qq′U 0

q′q〉 = nIU 2
0 , 〈W 0

qq′ 〉 = 0,

and 〈W 0
qq′W 0

q′q〉 = nαW 2
0 , where 〈· · ·〉 denotes the impurity

average, and nI and nα are the densities of the scalar and
SOC scatterers, while U0 and W0 measure the strengths of the
disorder interactions.

III. SCATTERING TIME AND QUADRATIC RESPONSE

In this section, the nonlinear magnetotransport coefficients
in the system under consideration are examined by evalu-
ating quadratic Kubo formulas, which–diagrammatically—
correspond to triangle diagrams of response theory [54–57], as
shown in Fig. 2. This is an essential diagrammatic approach,
as UMRs and nonlinear Hall effects cannot be captured by the
two-photon bubble diagrams of linear response theory.

The self-energy in the Born approximation is given by


R/A
qσ (ε) =

∑
q′σ ′

〈
V σσ ′

qq′ V σ ′σ
q′q

〉
G0,R/A

q′σ ′ (ε), (5)

where
∑

q ≡ ∫
d2q/(2π )2 and G0,R/A

qσ (ε) = (ε − εqσ ± iδ)−1

is the retarded/advanced Green’s function of the unper-
turbed system Ĥ0

q , with the eigenvalue εqσ = σ
√

h2
q + �2

exm2
z

for the band σ (= ±). The scattering time is given by
τqσ (ε) = h̄/2�qσ (ε), with the scattering rate defined as
�qσ ≡ −Im
R

qσ . Upon introducing the change of variables
ηh ≡ hq/ε and ηex ≡ �ex/ε, as detailed in Appendix B,

FIG. 2. Diagrammatic structure of the quadratic response. Panels
(a) and (b), along with their j ↔ k counterparts, are the four triangle
diagrams that give rise to the UMR and NPHE. The red (blue)
arrowed lines represent retarded (advanced) dressed electron Green’s
functions, while purple shaded areas indicate dressed vertices. The
vertices are labeled by the spatial index of their external photons,
while propagators are labeled by their energies.
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we find

τqσ = h̄

2�I

[
1 + σηexmz cos θh + �α

�I
Fσ (ηh, ηex; m)

]−1

,

(6)
where �I ≡ nIU 2

0 ε/(2h̄vF )2 and �α ≡ nαW 2
0 ε3/(2h̄vF )4 are

the scalar and SOC disorder self-energy coefficients, respec-
tively, and θh = cos−1(ηexmz/

√
η2

h + η2
exm2

z ). The dimension-
less band-dependent function Fσ —whose explicit form is
presented in Appendix B—is a rather complicated function
of the Fermi velocity, exchange energy, and orientation of the
magnetization. As we discuss below, this nontrivial angular
dependence of the scattering time on the magnetization direc-
tion plays an important role in explaining the unconventional
angular dependencies of the nonlinear magnetoresistances.

The quadratic conductivity tensor is obtained by evaluating
the four triangle diagrams shown in Fig. 2. Together, their con-
tributions to the nonlinear dc conductivity may be succinctly
expressed as [56]

σ i jk = e3h̄2

π
Im

∑
qσ

∂ω

[
V i

qσ (εF , εF + h̄ω)GR
qσ (εF + h̄ω)

]
ω=0

× v j
qσ GR

qσ (εF )VkF
qσ GA

qσ (εF ) + ( j ↔ k). (7)

Here εF is the Fermi energy and GR/A
qσ (ε) = (ε − εqσ ±

i�qσ )−1 is the disorder-dressed electron Green’s function. The
(bare) velocity operator is defined as v̂q = ∂qĤ0

q /h̄, with ∂ i
q ≡

∂/∂qi, which—in the chiral basis of Bloch eigenstates—leads
to the diagonal terms vqσ = ∂qεqσ /h̄. Vqσ (ε, ε′), which is
presented in Appendix C, is the disorder-averaged velocity
vertex function, where ε and ε′ are, respectively, the energies
of the incoming and outgoing propagators to the vertex in
question and VF

qσ ≡ Vqσ (εF , εF ).

IV. ANGULAR DEPENDENCIES

Without loss of generality, let us set the electric field along
the x direction, e = x. Then it suffices to calculate the σxxx and
σyxx elements of the conductivity tensor. To characterize the
nonlinear transport, we introduce the longitudinal and trans-
verse UMR coefficients ζ

(2)
‖ = ζ (2)

x and ζ
(2)
⊥ = ζ (2)

y , where

ζ
(2)
i ≡ σix(Ex ) − σix(−Ex )

σDEx

 −2σixx

σD
(8)

to leading order in the electric field. Here σi j = ji/Ej denotes
the linear conductivity tensor and σD = e2/[4π h̄(ηI + ηα )] is
the Drude conductivity, with ηI ≡ �I/εF and ηα ≡ �α/εF the
dimensionless disorder coefficients.

Plots of the UMR coefficients for various angular sweeps
of the magnetization are presented in Fig. 3. As shown by
the blue curves in Figs. 3(a) and 3(b), we see that as the
Fermi level approaches the exchange energy, i.e., when ηex

is closer to one, the strength of the longitudinal nonlinear
magnetoresistance ζ

(2)
‖ is significantly amplified and can be

as large as one to two orders of magnitude stronger than when
ηex is smaller (see the dashed green and dotted pink curves).
Furthermore, qualitatively, the angular dependencies of the
longitudinal UMR coefficient increasingly deviate from the
conventional sinusoidal behavior as ηex is increased.

FIG. 3. Angular dependencies of the UMR coefficients as the
magnetization direction is varied in the xy, yz, and xz planes (the xz
scan for ζ

(2)
‖ and yz scan for ζ

(2)
⊥ vanish due to symmetry constraints

and hence are not shown here). Parameters used: εF = 0.5 eV, vF =
5 × 1014 nm/s [58], and ηI = 0.01.

Quantitatively, the situation is similar for the NPHE; as
shown by the blue curves in Figs 3(c) and 3(d), the transverse
UMR coefficient ζ

(2)
⊥ is larger when the Fermi level is closer

to the exchange energy. Qualitatively, however, as ηex is in-
creased, the NPHE no longer reaches its maximal absolute
value at the expected angles βxz, βxy = 0, π (see the pink
curves), which is when the magnetization is entirely along
the x axis; instead, there is an emergent bifurcation of the
peaks and troughs such that the maximal absolute values of the
NPHE are obtained when the magnetization is only partially
along the x axis [59].

Further analysis reveals that the angular profiles of both the
UMR and NPHE are also sensitive to the ratio of the scalar
to SOC disorder present in the system, r ≡ ηI/ηα (see Ap-
pendix D for details). To capture the angular dependencies of
the nonlinear responses, combining Eqs. (2) and (8), the corre-
sponding UMR coefficients with the magnetization direction
being varied in the three orthogonal planes are expressed as

ζ
(2)
‖

∣∣
mx=0


 f‖(ηex, r) cos βyz + g‖(ηex, r) cos3 βyz, (9a)

ζ
(2)
⊥

∣∣
my=0 
 f⊥(ηex, r) cos βxz + g⊥(ηex, r) cos3 βxz (9b)

for the out-of-plane sweeps of the magnetization and

ζ
(2)
‖

∣∣
mz=0


 h‖(ηex, r) sin βxy + k‖(ηex, r) sin3 βxy, (10a)

ζ
(2)
⊥

∣∣
mz=0 
 h⊥(ηex, r) cos βxy + k⊥(ηex, r) cos3 βxy (10b)

for the in-plane sweep, where the functions on the right-
hand side—which, in general, depend on ηex and r—are
given by

f‖(ηex, r) = −2σ
(2)
‖,1

σD
(1 + λ‖), (11a)
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TABLE I. Transport coefficients for the cubic contributions to the
UMR and NPHE at r = 0.2 and for different values of ηex. For the
rest of the parameters used, see the caption of Fig. 3.

ηex a‖ b‖ a⊥ b⊥

0.3 0.03 0.30 −0.20 −0.47
0.6 0.09 1.92 −0.59 −0.85

g‖(ηex, r) = −2σ
(2)
‖,1

σD
(κ‖ − λ‖), (11b)

h‖(ηex, r) = −2σ
(2)
‖,1

σD
(1 + ι‖), (11c)

k‖(ηex, r) = −2σ
(2)
‖,1

σD
(κ‖ − ι‖), (11d)

and

f⊥(ηex, r) = −2σ
(2)
⊥,1

σD
(1 + λ⊥), (12a)

g⊥(ηex, r) = −2σ
(2)
⊥,1

σD
(ι⊥ − λ⊥), (12b)

h⊥(ηex, r) = −2σ
(2)
⊥,1

σD
(1 + κ⊥), (12c)

k⊥(ηex, r) = −2σ
(2)
⊥,1

σD
(ι⊥ − κ⊥). (12d)

To quantify the deviations of the UMR coefficients from
sinusoidal behavior for various sweeps of the magnetization,
we introduce the dimensionless ratios a‖ ≡ g‖/ f‖, b‖ ≡ k‖/h‖,
a⊥ ≡ g⊥/ f⊥, and b⊥ ≡ k⊥/h⊥. The values of these ratios
for ηex = 0.3 and ηex = 0.6 are presented in Table I, from
which it is evident that the cubic terms play an increas-
ingly important—and even dominant—role as the exchange
and Fermi energies become comparable. It is worth men-
tioning that for even higher values of ηex, as indicated by
the blue curves in Fig. 3, the UMR coefficients become
increasingly nonlinear in the magnetization, such that higher-
order terms in the magnetization must also be taken into
account.

V. DISCUSSION AND CONCLUSION

In order to understand the physical origin of the unconven-
tional angular dependencies of the UMR and NPHE, we note
that this occurs for larger values of ηex. In systems where the
Fermi energy is fixed, it often suffices to consider terms only
to first order in the magnetization, which typically leads to
sinusoidal angular dependencies. In TIs, however, the tunabil-
ity of the Fermi level implies that higher-order terms in the
magnetization are expected to play an important role when
ηex ∼ 1, thereby necessitating the cubic magnetization terms
in Eq. (2).

This is in contrast to nonlinear magnetotransport phenom-
ena driven by hexagonal warping or particle-hole asymmetry
[60,61]. In the case of warping, the sixfold symmetric

deformation of the Fermi contour arises from the addition of
a cubic-in-momentum term to the Dirac Hamiltonian, while
particle-hole asymmetry adds a k2 term to the Hamiltonian.
Thus, both effects are dominant in the limit of high Fermi
energy, i.e., when ηex � 1, thereby enabling a simple way to
distinguish their contributions from the ones presented in this
work.

Another nonlinear transport effect which is stronger in
the low Fermi energy limit is that generated by current-
induced spin polarization. However, the contribution of this
effect to the nonlinear transport can be distinguished from
the mechanism predicted here by noting that current-induced
spin polarization can only produce a longitudinal quadratic
response with no quadratic planar Hall counterpart. This may
readily be understood by noting that the emergence of a
NPHE requires the magnetization to be parallel to the applied
current, which, in turn, is perpendicular to the spin polar-
ization. As a result, the magnetization cannot influence the
spin polarization and no quadratic Hall response is generated
[23,52,62,63].

In addition, in terms of magnitude, the UMR coefficient
strengths that we predict here are on the order of 10–100
nm/V and are thus one to two orders of magnitude larger
than the bilinear magnetoresistance effect predicted in non-
magnetic TIs [52]. This can be attributed to the fact the
proximity-induced exchange interaction is much stronger than
the Zeeman interaction for typical experimental magnetic field
values, and suggests that TI/FI bilayers are generally a better
platform for obtaining sizable nonlinear magnetotransport ef-
fects.

Yet another quadratic transport effect that can arise in
TI/FI bilayers is the intrinsic nonlinear Hall effect generated
by the Berry curvature dipole [64]. However, this relies on an
out-of-plane magnetization, in contrast to the NPHE predicted
in this work, which only arises when the magnetization has an
in-plane component. Furthermore, the absence of a longitudi-
nal UMR generated by the Berry curvature dipole provides an
additional means to distinguish it from the effects predicted
here.

A final point worth mentioning is that the minimal model
we consider here for the Dirac surface states is quite general
and is not limited to TI/FI bilayer systems. Thus, it is natural
to expect that the nonlinear transport effects predicted in this
work should, in principle, also arise in generally magnetized
TI systems, including intrinsic magnetic TIs [65,66], magnet-
ically doped TIs [67–69], as well as in single TI layers in the
presence of an applied magnetic field.

In conclusion, based on a formal evaluation of nonlinear
Kubo formulas in the low-temperature limit, we have pre-
dicted a UMR and NPHE in a bilayer comprised of a TI and
a FI which require no modification of the Dirac Hamiltonian,
but instead arise solely from extrinsic disorder scattering at
the interface. Several key features and unique transport sig-
natures have been identified, which enable the electric and
magnetic tuning of the nonlinear magnetoresistance effects.
We expect that this work will stimulate further theoretical and
experimental studies of quantum transport in the nonlinear
response regime, paving the way for potential future quantum
spintronic applications.
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APPENDIX A: SYMMETRY ANALYSIS
OF NONLINEAR RESPONSES

In this section, we derive the general form of the nonlinear
current, j (2)

i = σi jkE jEk , to third order in the magnetization
for the TI/FI bilayer system described by Eq. (3). To this
end, consider the magnetization expansion of the quadratic
conductivity tensor:

σ i jk = σ
i jkl
1 ml + σ

i jklm
2 mlmm + σ

i jklmn
3 mlmmmn. (A1)

Without loss of generality, let us set the electric field in the
x direction so that we need only evaluate σ xxx for the lon-
gitudinal current. Note that in the absence of the exchange
interaction, the system is even under the mirror reflection
transformation in the xz (yz) plane, Mxz (Myz), and thus so
are σ1, σ2, and σ3. Using the fact that the current and mag-
netization are polar and axial vectors, respectively, it is then
straightforward to verify that, upon imposing Mxz and Myz,
σ xxxx

1 = σ xxxz
1 = 0, while, in general, σ

xxxy
1 = 0. Similarly, for

the quadratic contribution, one can verify that only terms
∝ mxmz are allowed by reflection symmetry. However, given
the particle-hole symmetry and the quadratic dependence of
the disorder averages on mz [see Eq. (B3)], the terms linear
in mz do not contribute to the nonlinear response, and σ2,
therefore, plays no role in the nonlinear transport.

Moving on to the cubic contribution, one can verify that, in
addition to σ

xxxxyz
3 , terms containing even powers of my do not

contribute to j (2)
x . Thus, of the ten independent components of

σ
xxxi jk
3 , only three survive the symmetry requirements, namely

σ
xxxyxx
3 , σ

xxxyyy
3 , and σ

xxxyzz
3 . By an analogous argument for the

transverse current, one can show that only the independent
components σ

yxxx
1 , σ

yxxxxx
3 , σ

yxxxyy
3 , and σ

yxxxzz
3 may be nonva-

nishing. Therefore, the nonlinear current up to third order in
the magnetization may be expressed as

j (2)
x = j (2)

x,1

(
1 + ι‖m2

x + κ‖m2
y + λ‖m2

z

)
, (A2a)

j (2)
y = j (2)

y,1

(
1 + ι⊥m2

x + κ⊥m2
y + λ⊥m2

z

)
, (A2b)

where j (2)
x,1 = σ

xxxy
1 myE2

x , j (2)
y,1 = σ

yxxx
1 mxE2

x and the dimen-
sionless functions measuring the cubic contributions read

ι‖ = 3σ
xxxyxx
3

σ
xxxy
1

, (A3a)

κ‖ = σ
xxxyyy
3

σ
xxxy
1

, (A3b)

λ‖ = 3σ
xxxyzz
3

σ
xxxy
1

, (A3c)

and

ι⊥ = σ
yxxxxx
3

σ
yxxx
1

, (A4a)

κ⊥ = 3σ
yxxxyy
3

σ
yxxx
1

, (A4b)

λ⊥ = 3σ
yxxxzz
3

σ
yxxx
1

. (A4c)

Relaxing the orientation of the electric field to point in an
arbitrary direction in the xy plane, we arrive at Eq. (2), where
the functions ι, κ, and λ are now understood to be evaluated
with the relevant tensor components in the basis spanned by
e, z × e, and z.

APPENDIX B: SELF-ENERGY AND SCATTERING TIME

The unperturbed Hamiltonian, Eq. (3b), has eigenstates
given by

|uqσ 〉 =
( (

1+σ
2

)
cos θh

2 + (
1−σ

2

)
sin θh

2

eiφh
[(

1+σ
2

)
sin θh

2 − (
1−σ

2

)
cos θh

2

]
)

, (B1)

where φh is the azimuthal angle in the plane spanned by
hq, with cos φh = hxq/hq and sin φh = hyq/hq, while θh is

the polar angle, with sin θh = hq/
√

h2
q + �2

exm2
z . The velocity

operator is defined as v̂q = ∂qĤ0
q /h̄, with ∂ i

q ≡ ∂/∂qi, which,
in the chiral basis of Bloch eigenstates, leads to the diagonal
terms vqσ = ∂qεqσ /h̄, or

vx
qσ = −σvF sin θh sin φh, (B2a)

vy
qσ = σvF sin θh cos φh. (B2b)

In the chiral Bloch basis the disorder averages read

〈
V σσ ′

qq′ V σ ′σ
q′q

〉 = 〈
U σσ ′

qq′ U σ ′σ
q′q

〉 + 〈
W σσ ′

qq′ W σ ′σ
q′q

〉
, (B3a)〈

U σσ ′
qq′ U σ ′σ

q′q
〉 = 1

2 nIU
2
0 [1 + σσ ′ cos θh cos θh′ + σσ ′ cos (φh − φh′ ) sin θh sin θh′], (B3b)〈

W σσ ′
qq′ W σ ′σ

q′q
〉 = 1

8 nαW 2
0 {[1 − σσ ′ cos θh cos θh′][(qx + q′

x )2 + (qy + q′
y)2]

− σσ ′ cos(φh + φh′ ) sin θh sin θh′ [(qx + q′
x )2 − (qy + q′

y)2]

− 2σσ ′ sin(φh + φh′ ) sin θh sin θh′ (qx + q′
x )(qy + q′

y)}, (B3c)

where V σσ ′
qq′ ≡ 〈uqσ |V̂qq′ |uq′σ ′ 〉. Inserting Eq. (B3) into Eq. (5), we obtain

�qσ = �I

[
1 + σηexmz cos θh + �α

�I
Fσ (ηh, ηex; m)

]
, (B4)
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where the dimensionless function Fσ reads

Fσ (ηh, ηex; m) = (1 − σηexmz cos θh)
[
1 + η2

h + η2
ex

(
4 − 5m2

z

)
− 4ηexηh · m

] + 2σ sin θh
(
1 − η2

exm2
z

)
×

(
ηh − 2ηex

ηh · m
ηh

)
, (B5)

in which we assume the Fermi level lies in the upper band
(ε > 0). From this, we arrive at the momentum scattering
time, Eq. (6).

APPENDIX C: VERTEX CORRECTION
AND NONLINEAR CONDUCTIVITY

The disorder-averaged velocity vertex function may be
found self-consistently from the general vertex equation

Vqσ (ε, ε′) = vqσ +
∑
q′σ ′

〈
V σσ ′

qq′ V σ ′σ
q′q

〉
GA/R

q′σ ′ (ε)

× Vq′σ ′ (ε, ε′)GR/A
q′σ ′ (ε′), (C1)

where ε and ε′ are, respectively, the energies of the incoming
and outgoing Green’s functions to the vertex in question. The
near-dc behavior may be captured by setting ε′ = ε + h̄ω.
Then, using the identity

GA/R
qσ (ε)GR/A

qσ (ε + h̄ω) 
 2π

h̄

τqσ

1 ∓ iωτqσ

δ
(
εqσ − ε

)
, (C2)

the vertex function may be approximated as

Vqσ (ε, ε + h̄ω) 
 vqσ + 2π

h̄

∑
q′σ ′

〈
V σσ ′

qq′ V σ ′σ
q′q

〉

× τq′σ ′

1 ∓ iωτq′σ ′
vq′σ ′δ(εq′σ ′ − ε). (C3)

To obtain an approximate form for the conductivity tensor, we
insert Eq. (C3) into Eq. (7) and use the identity

[
GR

qσ (ε)
]m+1[

GA
qσ (ε)

]n+1 
 2π in−m (m + n)!

m!n!

(
τqσ

h̄

)m+n+1

× δ(εqσ − ε) (C4)

to arrive at the following form for the in-plane conductivity
components

σ i j j = −4e3

h̄
Re

∑
q

[
∂ωV i

q+(εF , εF + h̄ω)|ω=0

+ iV iF
q+τF

q+

(
1 + i

∂�F
q+

∂εF

)]
v

j
q+V

jF
q+

(
τF

q+
)2

δ(εq+ − εF ),

(C5)

where �F
qσ and τF

qσ are the self-energy and scattering time
at the Fermi level. In this form, the quadratic conductivity
tensor is expressed entirely in terms of the velocity vertex
function and scattering time at the Fermi level, the former of
which has, in general, been argued to play an important role
in the nonlinear transport in Dirac systems [70,71]. Plots of
the angular dependencies of these two quantities for various
sweeps of the magnetization are presented in Fig. 4.

FIG. 4. Angular dependencies at the Fermi level. (a) Scattering
time (with qy = 0) in the yz plane; (b) ith component of the velocity
vertex function (with qj = 0) in the jz plane, where i/ j = x/y or y/x.
(c) Scattering time (with qx = 0) in the xz plane and (d) longitudinal
velocity vertex function (with qy = 0) in the xz plane. Parameters
used: εF = 0.5 eV, vF = 5 × 1014 nm/s [58], and ηI = 0.01.

APPENDIX D: ANGULAR DEPENDENCIES
WITH WEAK SOC DISORDER

Here, we analyze the angular dependencies of the UMR
coefficients in the limit where the SOC disorder is weaker than

FIG. 5. Angular dependencies of the UMR coefficients for vari-
ous angular sweeps of the magnetization. Here, βi j (i, j = x, y, z) is
the angle between the i axis and the magnetization as it sweeps the i j
plane. Parameters used: εF = 0.5 eV, vF = 5 × 1014 nm/s [58], and
ηI = 0.01.
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the scalar disorder. We thus set r = 2 and plot the UMR coef-
ficients, which are presented in Fig. 5. The first notable feature
is that compared to the plots in Fig. 3—wherein r = 0.2—the
amplitudes of the UMR and NPHE are generally weaker here
for various in-plane and out-of-plane magnetization sweeps.
This is not surprising, as the effects are generated in the
presence of SOC disorder, which is also weaker here.

Another interesting feature is the qualitative behavior of
the UMR coefficients when the Fermi level approaches the ex-
change energy. For out-of-plane sweeps of the magnetization,
as shown in Figs. 5(a) and 5(b), for lower values of ηex (see
the dotted pink and dashed green curves), the UMR (NPHE)
displays typical sinusoidal behavior, with two symmetry-
imposed sign changes at βyz(βxz ) = π/2, 3π/2. However, at

ηex = 0.9 (see the solid blue curves), four additional sign
change points appear, which are connected by quasiplateaus
of suppressed conductivity.

In order to gain further insight into the emergence of quasi-
plateaus and additional sign change points in the nonlinear
magnetoresistances, it is convenient to obtain an approximate
analytical expression for the conductivity tensor. As the ir-
regularities in the angular dependencies emerge when the
magnetization is almost out of plane, we may treat the in-plane
components of the unit magnetization vector as perturbative
parameters in the quasiplateau-forming angular region. Insert-
ing Eqs. (B2) and (B3) into Eq. (C3), to first order in mx

and my, the dressed velocity vertex function may be expressed
as

Vqσ (ε, ε + h̄ω) = Iσ (ηh, ηex, mz, �α, �I ; ω)vqσ + vF z × [Jσ (ηh, ηex, mz, �α, �I ; ω)ηh + ηexKσ (ηh, ηex, mz, �α, �I ; ω)m],
(D1)

where the dimensionless functions Iσ , Jσ , and Kσ are given by

Iσ (ηh, ηex, mz, �α, �I ; ω) = �α

(
1 − η2

exm2
z

)[
9
(
1 − η2

exm2
z

) + η2
h

] + �I
(
3 + η2

exm2
z

) ∓ ih̄ω

8�α

(
1 − η2

exm2
z

)2 + 2�I
(
1 + η2

exm2
z

) ∓ ih̄ω
, (D2a)

Jσ (ηh, ηex, mz, �α, �I ; ω) = 2�α

(
1 − η2

exm2
z

)
(1 − σηexmz cos θh)

8�α

(
1 − η2

exm2
z

)2 + 2�I
(
1 + η2

exm2
z

) ∓ ih̄ω
, (D2b)

Kσ (ηh, ηex, mz, �α, �I ; ω) = − 4�α

(
1 − η2

exm2
z

)
[
8�α

(
1 − η2

exm2
z

)2 + 2�I
(
1 + η2

exm2
z

) ∓ ih̄ω
]2

× {
4�α

(
1 − η2

exm2
z

)(
1 − η2

exm2
z − η2

h

)
(1 − σηexmz cos θh)

− 2�I
[
1 − 3η2

exm2
z + σηexmz

(
3 − η2

exm2
z

)
cos θh − σηh

(
1 + η2

exm2
z

)
sin θh

]
∓ ih̄ω[1 − σηexmz cos θh + σηh sin θh]

}
. (D2c)

Inserting this solution into Eq. (C5), the longitudinal and transverse conductivities read

σxxx = − 9e3vF

32πε2
F

my C(ηα, ηI , ηex, mz ), (D3a)

σyxx = 3e3vF

32πε2
F

mx C(ηα, ηI , ηex, mz ), (D3b)

where ηex is understood to be calculated at the Fermi level and the dimensionless function C is given by

C(ηα, ηI , ηex, mz ) = ηαηex
(
1 − η2

exm2
z

)2[
12ηα

(
1 − η2

exm2
z

)2 + ηI
(
1 − 3η2

exm2
z

)]
× [

12ηα

(
1 − η2

exm2
z

)2 + ηI
(
3 + η2

exm2
z

)]2[
4ηα

(
1 − η2

exm2
z

)2 + ηI
(
1 + η2

exm2
z

)]−6
,

(D4)

leading to the UMR coefficients

ζ
(2)
‖ = 9e3vF

16πσDε2
F

my C(ηα, ηI , ηex, mz ), (D5a)

ζ
(2)
⊥ = − 3e3vF

16πσDε2
F

mx C(ηα, ηI , ηex, mz ). (D5b)

Note that in this approximation, the ratio between the lon-
gitudinal and transverse UMR coefficients takes the simple

form

ζ
(2)
⊥

ζ
(2)
‖

= −1

3
cot φm, (D6)

where φm is the angle between the electric field and magneti-
zation, further confirming the common physical origin of the
two nonlinear magnetoresistances.

Figures 5(a) and 5(b) reveal that when an out-of-plane
angular sweep of the magnetization is performed, there will be
a total of six angles where the longitudinal or transverse UMR

024421-7



M. MEHRAEEN AND STEVEN S.-L. ZHANG PHYSICAL REVIEW B 109, 024421 (2024)

FIG. 6. Plot of the monotonically decreasing function f (r)
(blue), with the red horizontal line indicating the value of ηex = 0.9
for comparison. The unconventional angular dependencies of the
conductivities emerge when ηex > f (r).

coefficients vanish. Two of these are the conventional angles
where the in-plane magnetization vanishes (βyz = π/2, 3π/2
for the UMR and βxz = π/2, 3π/2 for the NPHE). The other
four must than correspond to solutions of C = 0, which turn
out to be βyz = π/2 ± θp/2, 3π/2 ± θp/2, and similarly for
βxz, where θp is the angular arc over which the conduc-
tivities display a plateaulike profile and is given by θp =
2 cos−1[ f (r)/ηex], where r = ηI/ηα and the dimensionless

function f (r) is

f (r) =
√√√√1 + r

8

(
1 −

√
1 + 32

3r

)
. (D7)

For the parameters used in obtaining Figs. 5(a) and 5(b),
ηex = 0.9 and r = 2, we find that θp ≈ π/3, which is quite
sizable. From Eq. (D7), we may deduce the requirement
the system imposes for the additional sign changes of the
nonlinear conductivity—and therefore the emergence of the
quasiplateaus—to occur. From the condition that θp > 0,
we conclude that the system must satisfy ηex > f (r). This
requirement—or its lack thereof—is met by all the curves in
Figs. 3(a) and 3(c), as well as the ones presented in Fig. 5, fur-
ther confirming the validity of the analytical approximation.
In addition, as displayed in Fig. 6, f (r) is a monotonically
decreasing function. From this fact, and the requirement that
ηex > f (r), we conclude that in order for the system to allow
for additional sign changes of the nonlinear magnetoresis-
tances and the subsequent emergence of plateaulike profiles,
the Fermi level must be sufficiently close to the exchange
energy and the density of the scalar scatterers must be suf-
ficiently higher than that of the SOC impurities.
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