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Nonlinear optical effects due to magnetization dynamics in a ferromagnet
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We theoretically consider magnetization dynamics in a ferromagnetic slab induced by the magnetic field of
a strong femtosecond laser pulse. The longitudinal geometry, in which the initial magnetization lies in both the
plane of incidence and the sample plane, is studied. The magnetization oscillations at the optical wave frequency
are calculated with the use of the Kapitza pendulum approach taking into account that the optical frequency is
much greater than the magnetization oscillation eigenfrequency. We study the reflection of the electromagnetic
wave from a ferromagnet and show that this laser-induced low-frequency magnetization dynamics leads to
the appearance of the second-order nonlinearity in the Maxwell’s equations, which in turn gives rise to both
the second harmonic generation (SHG) and rectification effect. Although the amplitude of the magnetization
oscillations is small, the considered effect may be responsible for the SHG with the efficiency comparable
to that of nonmagnetic SHG from metal surfaces. Our estimations show that the suggested mechanism may
explain the recent experiments on magnetization induced modulation of the SHG intensity in a “forbidden”
PinPout combination of incident and reflected waves in cobalt/heavy metal systems, where it can be even more
pronounced due to the spin current flow through the ferromagnet/heavy metal interface.
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I. INTRODUCTION

Nonlinear optical effects such as second harmonic gener-
ation (SHG) or rectification attract a lot of attention for the
last decades. On one hand, this is governed by the fact that
these effects may exist only in noncentrosymmetric systems.
As a result, these nonlinear optical phenomena, and first of
all the SHG probe, provide a powerful method for studying
the properties of surfaces and interfaces where the inversion
symmetry is broken [1,2]. On the other hand, the rectification
effect is an efficient mechanism for the THz wave generation
under the excitation by femtosecond laser pulses [3–6]. A
special research direction here is the magnetization-induced
phenomena in systems containing magnetic materials. For
instance, THz sources based on ferromagnet/heavy metal
multilayers are widely studied [7,8]. Magnetization brings
new symmetry properties to a medium [9], which in turn
leads to the appearance of the nonlinear-optical analogues of
the magnetooptical Kerr and Faraday effect, and even to a
number of new ones. Among others, recently the so named
“forbidden” magnetization-induced SHG intensity effect was
observed in ferromagnet/heavy metal systems such as Co/Pt,
Co/Ta, etc., multilayers, which consists in variation of the
p-polarized SHG intensity by longitudinal dc magnetic field
[10–12].

*eugenk@ipmras.ru
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Symmetry analysis of the nonlinear-optical interactions [9]
does not take into account the effects of (expected) magneti-
zation dynamics induced by the electromagnetic wave. They
are usually supposed to be small as the optical frequency
exceeds substantially the eigenfrequency of magnetization os-
cillations. However, if a strong femtosecond optical pulse is
considered with the electric field of the order of 1 MV/cm
or greater, the frequency ratio is of the order of 10−4, while
the magnetic field of the optical wave is relatively strong.
Therefore, one can expect that the effects that appear due to
magnetization dynamics may be comparable to those provided
by static magnetization due nonlinearity at a ferromagnet sur-
face.

In this work we study these effects and compare the
theoretical results with the data of recent experiments. The
magnetization dynamics caused by the magnetic field of the
incident laser radiation is described in the framework of the
Landau-Lifshitz-Gilbert equation solved within the Kapitza
pendulum approach. The Maxwell equations are then solved
with the assumptions of small gyrotropic terms of the dielec-
tric constant and small magnetization oscillation magnitude.
We obtain both double frequency electric field and zero-
frequency (rectified) electric field, or the electric current in
a ferromagnet induced by the electromagnetic wave. Finally,
a boundary problem is solved. We suppose that the electro-
magnetic wave is incident at the surface of a ferromagnet
magnetized in the longitudinal geometry. The estimations
show that the suggested mechanism may explain the recent ex-
periments [10–12]: strong effects reported for a cobalt/heavy
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metal system may be explained by enhanced dissipation due
to spin current from a ferromagnet to heavy metal [13,14].
THz generation via such a magnetization dynamic is also
discussed.

II. THEORETICAL APPROACH

We start with the Landau-Lifshitz-Gilbert equation for a
uniform magnetic medium placed in an alternating magnetic
field:

dM
dt

= −ωM

Ms
[M × H + h′] + αωM

M2
s

[M × [M × H + h′],

(1)

where M is the magnetization, Ms its saturation value, H is the
external magnetic field, ωM = γ Ms is the magnetization oscil-
lation characteristic frequency, γ is the gyromagnetic ratio, α

is the dimensionless Gilbert damping constant of the consid-
ered medium, and h′ = h′

0 cos ωt is the alternating magnetic
field of the optical wave inside the medium. We then take
into account that the optical frequency is much larger than the
magnetic system eigenfrequency, ω � ωM . This assumption
is valid as the ratio ωM /ω is typically 10−4 or less. Then
the equation (1) can be solved with the use of the Kapitza
pendulum method [15]. The general approach to this problem
is described below.

Let us consider a system of differential equations for an
arbitrary number of coordinates Ai with a rapidly oscillating
external source:

dAi

dt
= fi(A) + gi(A) cos ωt + hi(A) sin ωt, (2)

where we take into account the arbitrary phase of the source
in the right-hand part of the equation by introducing the two
sets of real functions gi and hi, and A is the coordinate vector.
One may determine the eigenfrequencies of the system (2) as

� f i j = ∂ fi

∂Aj
, �g i j = ∂gi

∂Aj
, �h i j = ∂hi

∂Aj
, (3)

and suppose that they all are much smaller than that of the ex-
ternal source, i.e. � f ,g,h i j � ω. We also suppose that � f i j ∼
�g i j ∼ �h i j ∼ �, where � is the characteristic frequency of
system motion. This is governed by the fact that the oscillation
of the external source, which is explicitly written in (2) in
terms of gi and hi, is much faster than all the characteristic
times of the system (including the time at which the magni-
tude of the source changes). Such a supposition corresponds to
a wide range of physical systems, including the system under
consideration (1) in which an electromagnetic wave of optical
frequency acts on magnetization of a ferromagnet.

Then we may seek the solution of the system (2) in the
form

A = U + a, (4)

supposing that U is a “slow” part of the solution with the
typical frequency �, and a is the “fast”oscillating part with

the characteristic frequency ω. It is then straightforward to
split the functions fi, gi, hi into the series

fi(A) ≈ fi(U) +
∑

j

∂ fi

∂Aj

∣∣∣∣
U

a j + 1

2

∑
jk

∂2 fi

∂Aj∂Ak

∣∣∣∣
U

a jak,

(5)

gi(A) ≈ gi(U) +
∑

j

∂gi

∂Aj

∣∣∣∣
U

a j, (6)

hi(A) ≈ hi(U) +
∑

j

∂hi

∂Aj

∣∣∣∣
U

a j . (7)

Here we provide terms up to (�/ω)2 for a general solution
(see below). However, we need only terms linear in �/ω to
solve (1) in the framework of the current paper.

By substituting (5)–(7) into (2) and averaging over a small
time period corresponding to the frequency ω, one may obtain
the equation for the “slow” part U:

U̇i = fi − 1

2ω

∑
j

(
∂gi

∂Aj
h j − ∂hi

∂Aj
g j

)

− 1

2ω2

∑
jk

(
∂gi

∂Aj

∂ fi

∂Ak
gk + ∂hi

∂Aj

∂ fi

∂Ak
hk

− 1

2

∂2 fi

∂Aj∂Ak
(g jgk + h jhk )

)
, (8)

where we restrict ourselves by the second order in � /ω
and consider the functions fi, gi, hi, and their derivatives are
taken at the U coordinate. Note that we suppose that the
second derivative of fi gives a term proportional to �2, e.g.,

∂2 fi

∂Aj∂Ak
g j ∝ �2. It is obvious from (8) that an arbitrary shift of

the phase of the oscillating source would lead to change of gi

and hi while keeping U intact. The equation of motion for a
classic pendulum with vibrating suspension [15] is obtained
from the third term of the right-hand part of (8) (∝1/ω2).

Usually Eq. (8) is then used to calculate the dynamics of
the system averaged over “fast” oscillations of the source at
the coordinate vector U. This is done for the dynamics of
the magnetized medium in [16,17] and recently in [18,19].
However in order to find the sources of the first and second
harmonics of the fast oscillating terms at the ω frequency,
we need to consider the “fast” part of the solution. This can
be made by using the perturbation theory after substituting
Eqs. (5)–(7) into (2) and taking into account Eq. (8). The
“fast” part oscillating at the source frequency ω is then in-
tegrated in the form

aω
i =

(
gi

ω
sin ωt − hi

ω
cos ωt

)

−
⎛
⎝∑

j

∂ fi

∂Aj

h j

ω2
sin ωt +

∑
j

∂ fi

∂Aj

g j

ω2
cos ωt

⎞
⎠, (9)

where we suppose again that the functions fi, gi, hi and their
derivatives are taken at the U point. It is clear from (9) that
the expression in the second bracket in the right-hand part
is smaller than the first one as � /ω ; we neglect all smaller
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FIG. 1. Geometry of the system under consideration. A p-
polarized optical wave is incident at the surface of a ferromagnet
magnetized in the longitudinal geometry. Oscillations of magneti-
zation are schematically shown as a shift of M from the initial z
direction.

terms in the solution. We may substitute the solution (9) into
series (5)–(7) in order to obtain the condition of applicability
of this series expansion. Substituting the first bracket of the
right-hand part of (9) gives the term ∼�

ω
g j , ∼�

ω
h j in the first

order of the Taylor series, and the term ∼( �
ω

)2g j , ∼( �
ω

)2h j in
the second order of the series, etc. Accordingly, substituting
the second bracket of the right-hand part of (9) gives a term
proportional to square of the ratio of frequencies in the first
order of the Taylor series already. Taking for simplicity that fi,
gi, and hi are of the same order of value, we get the expected
result that the small parameter for the series expansion of
(5)–(7) is � /ω .

One may also find the “fast” part of the solution oscillating
at the double frequency 2ω. In the lowest order of the pertur-
bation theory it takes the form

a2ω
i = 1

4ω2

⎛
⎝∑

j

(
∂hi

∂Aj
h j − ∂gi

∂Aj
g j

)
cos 2ωt

−
∑

j

(
∂gi

∂Aj
h j + ∂hi

∂Aj
g j

)
sin 2ωt

⎞
⎠, (10)

which is proportional to (1/ω )2.
We can now apply the general solution described above to

the Landau-Lifshitz-Gilbert equation (1). In order to do this,
we take into account that the magnetization vector can be
written through the two angles, ϕ and β, with the amplitude
|M| = Ms, as

M = Ms(cos ϕ sin β, sin ϕ sin β, cos β ) (11)

in Cartesian coordinate system, as shown in Fig. 1. According
to (9), the part of magnetization oscillating at the frequency ω

has a term linear in � /ω ≡ ωM /ω . If one takes the Cartesian
coordinate system in such a way that the equilibrium magne-
tization is parallel to the z axis and the magnetic field of the
wave is parallel to the y axis (h′ = −e′

0ey cos ωt , where e′
0 is

the wave electric field magnitude, ey is the unit vector in the
y direction; see Fig. 1), the magnetization has the following
form:

M = M0 + m =
(

ωM

ω
h′

0 sin(ωt − k′r),

− α
ωM

ω
h′

0 sin(ωt − k′r), Ms

)
(12)

up to the first order in ωM /ω , where M0 is the static and m is
the oscillating part of magnetization. This oscillating part m
of magnetization gives rise to the second harmonic generation,
as we show below.

The Maxwell’s equations are solved when considering the
magnetization oscillations as a perturbation. We write the
dielectric permittivity of the medium in the usual form:

εi j = ε0δi j + iγ Mkei jk, (13)

where δi j , ei jk are the Kronecker delta and the antisymmetric
Levi-Civita tensor, respectively. The real unperturbed electric
field e′ is found by solving the Maxwell’s equations with the
magnetization M0. After that, the linear in m correction δe′ is
found as a solution of the equation

∇ × (∇ × δ e′ ) + ε0

c2
¨δ e′

= −i
γ

c2
(ë′ × m + 2ė′ × ṁ + e′ × m̈), (14)

which follows from the Maxwell’s equations in the linear
order in the gyrotropic component γ of the dielectric permit-
tivity, c being the light velocity. The right-hand part of the
equation (14) acts as a source of the electric field δe′ and is
proportional to the square of unperturbed field in accordance
with (12), therefore it leads to the generation of the second-
harmonic field. Note that Eq. (14) is written for the second
derivatives of δe′, hence it does not describe the rectification
effect (or the zero-frequency field). This problem is discussed
below.

Let us consider the p-polarized electromagnetic wave with
the electric field e = e0cos(ωt − kr), e0 = ex cos θ + ez sin θ

incident at the surface of a ferromagnet as shown in Fig. 1.
Here θ is the incident sliding angle, k = k(cos θez − sin θex )
is the wave vector, and ei are the unit vectors of the Carte-
sian coordinate system. There are two eigenmodes inside the
medium, which have a different refractive index and structure
[20] (approximate electric field structure for the modes is
written out below). Since these modes have elliptical polar-
ization in the general case, both of them are excited by the
p-polarized incident wave. The wave vectors of these modes
inside a medium are determined from the boundary conditions
at the magnetic interface as

k′
± ≈ k0

√
ε0

(
1 ± γ Ms

2ε
3/2
0

cos θ

)
, (15)

where k0 = ω
c . Corresponding sliding angles θ ′

± inside the
magnetic medium are equal to

cos θ ′
± ≈ cos θ√

ε0

(
1 ∓ γ Ms

2ε
3/2
0

cos θ

)
. (16)

The Cartesian components of the electric field of the optical
wave inside the medium may also be easily found by satis-
fying the boundary conditions of continuity of the tangential
component of the electric field strength vector, the normal
component of the electric field induction vector, and the
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tangential component of the magnetic field strength vector:

e′
x+ = e′

x− = 2e0
cos (ωt − k′r) sin θ cos θ

ε0 sin θ +
√

ε0 − cos2 θ
, (17)

e′
y± = 2e0 sin(ωt − k′r)

±√
ε0 sin θ + γ Ms

2 tan θ

ε0 sin θ +
√

ε0 − cos2 θ
, (18)

e′
z± = 2e0 cos(ωt − k′r)

×

√
ε0 − cos2 θ sin θ ± γ Ms

2
√

ε0

2ε0−cos2 θ√
ε0−cos2 θ

tan θ

ε0 sin θ +
√

ε0 − cos2 θ
. (19)

Note that this solution is an approximate one and is applicable
only when the terms proportional to γ Ms are small. Solution
(12) contains the magnitude of the unperturbed magnetic field
wave inside the medium, which is determined from the bound-
ary conditions as

h′
0 = e0

4ε0 sin θ

ε0 sin θ +
√

ε0 − cos2 θ
. (20)

Substituting (17)–(19) and (12) into Eq. (14), we then solve
this equation and finally find the double-frequency electric
field outside the medium from the boundary conditions. The s
and p component of its magnitude have the form

e2ω
s = e2

0

Ms

ωM

ω

γ Ms

2

ε0

√
ε0 − cos2 θ tan2 θ

(ε0 sin θ +
√

ε0 − cos2 θ )2
, (21)

e2ω
p = α

e2
0

Ms

ωM

ω

γ Ms

2

(ε0 − cos2 θ ) sin θ cos θ

ε0(ε0 sin θ +
√

ε0 − cos2 θ )2
. (22)

Second harmonic field determined by its p and s components,
(21) and (22), appears due to oscillations of magnetization of
the ferromagnet in the magnetic field of the light wave. This
is the main result of current paper; it is discussed in Sec. III.

As we have mentioned above, the static (zero-frequency)
electric field is not described by Eq. (14). However, second-
order nonlinear optical effects such as SHG and rectification
typically coexist. In order to show that the rectified signal
appears in our case as well, we provide a simple model in
which the electron motion is described by Newton’s law. This
method is very similar to one used by Gaponov and Miller
in order to calculate the ponderomotive force that acts on
a charged particle in an electromagnetic field of high fre-
quency [21]. We suppose that “free” conduction electrons are
in charge of the optical response of the system. Their motion
is described as

r̈ = − e

me
e′ − λ

me
ṙ × M(t ), (23)

where r is the electron coordinate, e is its absolute charge, me

is its mass, and λ is the constant of Lorentz-like force induced
by the magnetization, which leads, e.g., to anomalous Hall
effect and has spin-orbit roots [22]. Supposing that λ is small,
we first solve the equation (23) neglecting the Lorentz-like
force. At the next step we substitute the obtained solution into
this force in order and find the corresponding correction to
r(t ). Averaging this force over the time period of wave with
(12) gives an effective electric field that acts on the electrons:

Eeff = −γ
ω

ω2
p

〈ė′ × m〉t , (24)

TABLE I. Contributions to SHG appearing in different combi-
nations of the polarizations of the exciting and SHG light. “+” or
“−” represent existence or absence of SHG light, respectively. SHG
discovered in current paper is marked after slash where applicable.

Polarization Mx My Mz Nonmagnetic

PinPout − + −/+ +
PinSout + − +/+ −
SinPout − + − +
SinSout − − + −

where the Lorentz-like force constant λ is expressed through
the medium constant of gyrotropy γ , ωp is the electron plasma
frequency, and 〈...〉t stands for averaging over time. After
averaging with m determined by (12) and e′ defined as (17)–
(19), we obtain

Eeff x = −αEeff y

= −α
e2

0

Ms

ωωM

ω2
p

γ Ms
4ε0 sin2 θ

√
ε0 − cos2 θ

(ε0 sin θ +
√

ε0 − cos2 θ )2
, (25)

Eeff z = −α
e2

0

Ms

ωωM

ω2
p

γ Ms
4ε0 sin2 θ cos θ

(ε0 sin θ +
√

ε0 − cos2 θ )2
. (26)

Thus, we have the rectification effect due to magnetization
oscillations inside a medium. This is the second main result
of the current paper.

III. RESULTS AND DISCUSSION

The main results of our consideration presented in Sec. II
are the equations for the s- and p-polarized components of the
electric field of the SHG wave (21), (22) and the rectified field
(25), (26) driven by oscillations of the magnetic moment in the
medium under the influence of the p-polarized incident wave
in the longitudinal geometry. We analyze these equations be-
low.

A. Second harmonic generation

It is known [23] that for the p-polarized light incident at the
surface of an isotropic ferromagnet there is only a p-polarized
nonmagnetic SHG response, while only the transversal com-
ponent of magnetization may give rise to the p-polarized
magnetic SHG signal (see Table I). There is only s-polarized
magnetization-induced SHG for both polar and longitudinal
geometries of the experiment. This is governed by the sym-
metry of the surface of a ferromagnet at which the inversion
symmetry is broken, as the SHG polarization P2ω can be fully
described by the following expression:

P 2ω ∝ ne2 + e(n · e) + n × e (M · e) + M × e (n · e)

+ n × M e2, (27)

where n is the surface normal vector and e is the magnitude of
the electric field of the incident wave. The first two terms in
the right-hand part of (27) stand for the nonmagnetic response,
while the last three are linear in M. It is then straightforward
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FIG. 2. Dependence of the SHG intensity for the PinPout polar-
izaton combination on longitudinal magnetic field for the sliding
angle θ = 70◦ for Pt(3 nm)/Co(3 nm)/W(3 nm) film. The picture
is taken from [10]. (The Cartesian coordinate x here corresponds to
the coordinate z in the current paper.)

to obtain the results summarized in Table I. One can see that
the p-polarized SHG is “forbidden” for My = 0.

The second harmonic generation (21), (22) in this paper
is of different nature. It is governed by the oscillation of
magnetization of the magnetic field h′ inside the medium
together with the nonlinearity of the material equation for the
electric induction; it contains the vector product of the electric
field e′ and the oscillating magnetization. This mechanism
is not related to the break of the inversion symmetry at the
interface, instead it utilizes the break of this symmetry by the
wave vector k′ ∝ e′ × h′. Therefore it removes the symmetry
restriction on magnetization-induced effects in SHG for the
PinPout combination of polarizations illustrated by Table I. We
suppose that the same would apply to the SinPout polarization
combination.

The “forbidden” effect was earlier observed in [10]; the
main result of this experiment is shown in Fig. 2. Here the
SHG intensity hysteresis in the longitudinal geometry mea-
sured for the PinPout polarizations’ combination shows a clear
difference in the SHG signal for the positive and negative
saturating magnetic field. This “forbidden” effect may be ex-
plained by the mechanism discussed in the current paper.

This is supported by the following estimations. In the ex-
periment, the pulsed laser radiation at the 820 nm wavelength
with 30 fs pulse duration is used. The peak pulse power is
about 70 kW and the beam diameter is 30 μm, which gives
the intensity of ∼1010 W

cm2 and the electric field of 2.7 · 106 V
cm .

As the saturation magnetization of cobalt is 1400 G, we get
the ratio h0/Ms ≈ 6.5. We can estimate the gyrotropic term
of the dielectric permittivity from the MOKE polarization
rotation angle, which is about 5 · 10−3 rad for Co films. By
taking the approximate value ε0 ∼ 10 by the order of value,
we obtain γ Ms ≈ 0.05, which is a small parameter indeed.

The frequency ratio, which is the main small parameter
that determines the magnetization oscillation magnitude, is
ωM /ω ≈ 0.6 · 10−4, and the Gilbert damping constant is ap-
proximately α ∼ 0.1 by the order of value for a Co/Pt system
(see below). Using Eq. (22) and neglecting the angular de-

TABLE II. Typical parameters for different ferromagnetic mate-
rials and estimations for the “forbidden” PinPout SHG effect.

Material Ms, G γ Ms α I2ω
/I2ω

s
Ref.

YIG 200 5 · 10−4 2.3 · 10−4 2.3 · 10−6 [24]
Ni80Fe20 800 0.02 0.01 4 · 10−3 [25,26]
CoFeB 1200 0.04 0.015 1.2 · 10−2 [26]
Co 1400 0.05 0.02 2 · 10−2 [27]
Thin Co/Pt 1400 0.05 0.04 − 0.22 0.04 − 0.22 [13]

pendence, we arrive at the estimation e2ω
p ≈ 10−8e0. Typical

SHG efficiency for a ferromagnetic surface is I2ω
s ≈ 10−14Iω,

hence the electric field e2ω ≈ 10−7e0 [2]. Thus, the interfer-
ence of the discovered magnetic SHG with the nonmagnetic
SHG response from the surface gives I2ω ≈ 10−15Iω, which
is only an order of magnitude smaller than that for the non-
magnetic signal: I2ω

/I2ω
s ≈ 0.1. The experimentally observed

“forbidden” effect that can be compared to our estimations
is determined as I2ω (+H )−I2ω (−H )

I2ω (+H )+I2ω (−H ) and is approximately 0.17.
Thus, the suggested mechanism gives the value of the same
order of magnitude as observed in the experiment.

According to [10], the observed “forbidden”
magnetization-induced SHG intensity effect decreases as
the Co layer thickness grows in a Co/Pt or Co/W bilayer
film. This is consistent with the fact that the discussed SHG
effect is proportional to the Gilbert damping constant α,
which is enhanced in an FM/HM system due to the spin
current flow at the ferromagnet/heavy metal interface [13].
As this is a surface effect, it decreases as the cobalt thickness
grows. Accordingly, the “forbidden” SHG effect in this paper
decreases.

Table II summarizes the results of rough estimations of
the “forbidden” SHG effect for different materials. One can
see that the increase of saturation magnetization and of the
Gilbert damping constant leads to the increase of the effect.
So the best choice for its observation is a thin Co/Pt multi-
layer system, which stays in agreement with the mentioned
experiments.

The dependences of the calculated SHG fields (21), (22)
on the sliding angle θ and the dielectric permittivity ε0 of
the medium are shown in Fig. 3. The field of the s-polarized
SHG wave grows as the sliding angle increases. It diverges at
θ = π

2 when the solution (21) is incorrect for tan θ → ∞. The
electric field of the p-polarized SHG wave reveals a maximum
at the θ ≈ 15◦ sliding angle. This field has a maximum at
quite small dielectric permittivity (ε0 ≈ 1.2) and, contrary to
the field of the s-polarized SHG wave, decreases as 1/ε0 for
ε0 � 1.

The most powerful method to experimentally reveal the
discussed “forbidden” SHG effect may be based on its de-
pendence on the Gilbert damping constant. It is possible to
manipulate this constant, e.g., by varying the magnetic mate-
rial or its thickness, the material or thickness of a neighboring
layer in a ferromagnet/heavy metal system. Also, the prop-
erties of a thin polycrystalline ferromagnetic film may be
changed by different methods such as irradiating it with ions
[28] or fabricating the sample under special conditions [29], or
even by adding a very small amount of impurity (for instance,
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FIG. 3. (a) Dependence of electric field of the “forbidden” p-
polarized second-harmonic wave on the sliding angle for ε0 =
10 (the inset shows the same for the “allowed” s-polarized
wave obtained in the current paper). (b) Dependence of electric
field of the p-polarized (solid line) and s-polarized (dashed line)
second-harmonic wave on dielectric permittivity for θ = 15◦. Other
parameters are the same as mentioned in the text for thin Co/Pt
system.

it is known that the conductivity of nickel is sufficiently
changed by adding only 3% of copper [30]). However there
is no regular method of precise control of the Gilbert damping
constant. Therefore such technological and experimental work
requires a lot of investigations and is beyond the scope of
the current paper. The angular dependence of the “forbidden”
effect may also be checked in an experiment: it should reach
its maximum at a certain angle and tend to zero both for
sliding and normal incidence of the exciting wave.

B. Rectification effect

The effective rectified field that appears due to magneti-
zation oscillations under the subjection of the magnetic field
of the optical wave is determined by (25) and (26). We may
estimate this field for realistic parameters of a femtosecond
laser pulse described above. The plasma frequency of a metal
with the electron concentration of 1022 cm−3 is ωp = 5.6 ·
1015s−1. The angle function in (25) reaches its maximum at
θ → π /2, which corresponds to normal incidence of the light
wave. Substituting all parameters into (25) and (26) we obtain
Eeff y ≈ 10−6e0 ≈ 3.7 V

cm . This effect is relatively weak, while
this value can be increased by lowering the plasma frequency,
e.g., by taking diluted magnetic semiconductors.

We note that the z component of the effective field is caused
by the x component of the light wave. Therefore it should be

zero due to screening effects that are not taken into account
in (25) and (26). On the other hand, the x component of the
effective field would be canceled due to the same screening
effect. Therefore the effective field has only the y component,
which is larger than the other components since it does not
contain the small damping factor α. Taking this into account,
from a symmetry point of view the effective field may be
written as

Eeff ∼ M × n. (28)

The electric current caused by this effective field may be
determined from Ohm’s law j = σEeff . For the thickness of
30 nm and the width of the the current flow area equal to the
beam diameter of 30 µm, we estimate the constant electric
current as Ie ≈ 4 mA. For the 80 MHz pulse repetition rate
this gives the average current 〈Ie〉 ≈ 1 nA, which can hardly
be detected in real systems. However, this current appears
at an electromagnetic wave envelope time which is usually
30–50 ps and thus should emit the THz radiation with the
characteristic frequency of 20–33 THz. In real systems, char-
acteristic time of the electric current relaxation is determined
by the electron-phonon interaction and is of the order of
100 fs–1 ps. Thus the electromagnetic wave generation is
usually restricted to several THz. The polarization of a THz
wave is determined by (28), and is the same as the conven-
tional one for the spintronic THz emitters [8]. However, this
additional mechanism does not depend on the constant of
Gilbert damping and therefore should exist as well for a single
ferromagnetic layer. Contrary to the mechanism that provides
THz generation in ferromagnetic/nonmagnetic systems, the
effect discovered here should give the signal growing with the
thickness of the FM layer.

IV. CONCLUSION

In conclusion, we theoretically investigate the nonlinear
optical effects that appear due to magnetization oscillations
under the influence of the optical wave on a ferromagnet sur-
face. Based on the Kapitza pendulum approach we show that
the light-induced magnetization dynamics in a ferromagnet
can provide a mechanism for the second harmonic generation.
Although the magnitude of the magnetization oscillations is
small, laser-induced magnetization dynamics can provide the
SHG response comparable to the nonmagnetic one, as well as
to the THz generation through the rectification effect.

The SHG effect is often used as a powerful tool for the
diagnostics of surfaces and buried interfaces of centrosym-
metric media [2]. It is widely applied for studies of surfaces
of ferromagnets, which may reveal specific magnetic proper-
ties different from those of bulky materials [31]. The SHG
mechanism suggested in this paper is supported by the re-
cent observation of the intensity magnetooptical SHG effect
under the application of the longitudinal magnetic field for
the PinPout combination of polarizations of the incident and
SHG waves, which is symmetry forbidden in a ferromagnetic
medium [10–12]. Therefore this effect expands the number of
mechanisms involved in the interaction of light with magnetic
materials and should be definitely taken into consideration for
the correct interpretation of the second harmonic generation
in magnets.
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We have shown that such a “forbidden” effect is a con-
sequence of damping of magnetization oscillations in a
magnetic system. Therefore it may be identified in the ex-
periment by its dependence on the Gilbert damping constant;
besides, a way to study damping in thin ferromagnetic films by
SHG experiments is revealed. The THz generation mechanism
suggested in the current paper may be used for spintronic

terahertz emitters, which have been intensively developed in
the last decade [8].
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