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Charge conservation in spin-torque oscillators leads to a self-induced torque
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Spin-torque oscillators are conventionally described by the Landau-Lifshitz-Gilbert-Slonczewski (LLGS)
equation. However, at the onset of oscillations, the predictions of the conventional LLGS equation differ
qualitatively from experimental results and thus appear to be incomplete. In this work we show that taking
charge conservation into account leads to a previously overlooked self-induced torque, which modifies the
LLGS equation. We show that the self-induced torque originates from the pumping current that a precessing
magnetization drives through a magnetic tunnel junction. To illustrate the importance of the self-induced torque,
we consider an in-plane magnetized nanopillar, where it gives clear qualitative corrections to the conventional
LLGS description.
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I. INTRODUCTION

The conventional Slonczewski spin-transfer torque [1,2]
provides the basis for the description of steady-state preces-
sions in spin-torque oscillators (STO), a versatile functional
element of spintronics [3–5]. The corresponding Landau-
Lifshitz-Gilbert-Slonczewski (LLGS) equation [1,2], how-
ever, does not accurately predict the observed precession
frequency [6–10]. A commonly employed solution to ad-
dress the discrepancy between prediction and observation is
to generalize the Gilbert damping by phenomenologically
including nonlinear dissipation terms [3,9]. Micromagnetic
simulations that go beyond the single-domain approximation
indicate that inhomogeneities in the magnetization could also
play an important role [7,11,12]. Others have shown that addi-
tional corrections to the Slonczewski spin-transfer torque arise
due to an interplay of spin conservation and the dynamics in
adjacent layers [13–16].

In this work we show that imposing charge conservation
in spin-torque oscillators gives rise to a previously overlooked
self-induced torque, modifying the LLGS equation. This self-
induced torque leads to qualitatively important corrections
to the precession frequency and power and should thus be
included in the description of the magnetization dynamics
in spin-torque oscillators. Given the fact that charge con-
servation is not easily violated, we believe the self-induced
torque in this work to be of importance in a wide range of
systems.

We consider a magnetic double tunnel junction as shown
in Fig. 1, where a metallic nanomagnet is tunnel-coupled to
two leads, one of which is also a magnet but with a fixed
magnetization. The magnetization of the nanomagnet is dy-
namic and its angular dynamics are described by the LLGS
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equation. We treat the magnetization as a single macrospin
with constant magnitude and include the Gilbert damping en-
hancement [17] and a Slonczewski torque [1,18,19]. Applying
a voltage over the system drives a spin-polarized current into
the nanomagnet, which exerts a torque on its magnetization
that can drive it into a precession [3–5].

Charge conservation requires that tunneling is the only way
to change the charge of the nanomagnet and we therefore
need to keep track of the number of electrons that tunnel
into or out of the nanomagnet. This gives rise to a cou-
pling between two degrees of freedom: (i) the nanomagnet’s
magnetization and (ii) the nanomagnet’s charge. On the one
hand, the magnetization dynamics affect the charge degree
of freedom by pumping a charge current through the system,
since the left tunnel junction is magnetic [20,21]. On the other
hand, the charge degree of freedom affects the magnetization
dynamics by altering the voltage drop across the magnetic
tunnel junction, in turn altering the Slonczewski torque. As we

FIG. 1. We consider a metallic nanomagnet with dynamical mag-
netization that is tunnel-coupled to a ferromagnetic lead (left) and a
normal metal lead (right). The ferromagnetic lead has a fixed magne-
tization Mfix that is parallel to the precession axis of the dynamical
magnetization M. A voltage V is applied across the whole system.
As shown in the main text, an interplay emerges between the nano-
magnet’s magnetization M and its charge Q. It is the result of charge
conservation, in combination with the charge pumping caused by the
precessing magnetization and the Slonczewski spin-transfer torque
caused by the voltage drop across the magnetic tunnel junction.
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will show, the emerging interplay gives rise to a self-induced
torque in the magnetization dynamics. We emphasize that in
this work we do not rederive any new results for the individual
tunnel junctions; the self-induced torque emerges from charge
conservation in the whole system. To demonstrate the rele-
vance of the charge conservation in spin-torque oscillators, we
consider an in-plane magnetized nanopillar [6] and show that
accounting for the self-induced torque leads to qualitatively
different predictions.

The remainder of this work is organized as follows. We
first describe the magnetization and charge dynamics and their
coupling in Sec. II. In Sec. III we show that this gives rise
to a self-induced torque in a steady-state situation, which we
show to be qualitatively and quantitatively important in the
description of an in-plane magnetized nanopillar in Sec. IV.
We end with a conclusion and discussion in Sec. V.

II. COUPLED DYNAMICS OF MAGNETIZATION
AND CHARGE

The degrees of freedom of interest are the magnetization
direction and the charge of the nanomagnet. For simplic-
ity, we model the nanomagnet’s magnetization by a single
macrospin M, which is justified when the nanomagnet is
small enough. Similarly, we model the nanomagnet’s charge
by a single number Q, which describes the total charge on
the nanomagnet. The coupled dynamics of magnetization and
charge are then described by the Landau-Lifshitz-Gilbert-
Slonczewski equation [Eq. (1)] together with the continuity
equation [Eq. (3)].

Assuming the magnetization’s magnitude M to be con-
stant, the magnetization dynamic is described in terms of its
direction m = M/M, which can also be specified with spheri-
cal coordinates m = (sin θ cos φ, sin θ sin φ, cos θ ), where we
choose the left lead’s fixed magnetization mfix as the z axis.
The equation of motion for m is the Landau-Lifshitz-Gilbert-
Slonczewski (LLGS) equation [1,2]

ṁ = −γ m × Heff + α(θ ) m × ṁ + γ

MV m × Is × m. (1)

Here, the first term describes the precession of the magnetiza-
tion with a frequency ω around the effective magnetic field
Heff , where γ is the gyromagnetic ratio. The second term,
known as Gilbert damping [22], describes the relaxation of the
magnetization towards an energetic minimum. The Gilbert-
damping coefficient α(θ ) = α0 + (h̄2γ /4e2MV ) [g̃l (θ ) + g̃r]
contains two terms corresponding to two sources of Gilbert
damping: the first term α0 accounts for internal Gilbert
damping [22]; the second term accounts for Gilbert-damping
enhancement due to spin pumping into the leads [17,23–
25], where V is the nanomagnet’s volume and g̃l (θ ) and g̃r

are the spin-flip conductances of the left and right junction,
respectively. The third term, known as Slonczewski torque,
describes the torque arising due to the spin transfer from the
electron system to the magnetization [1,2].

We assume strong internal relaxation in the nanomagnet’s
electron system, which means that it relaxes to equilib-
rium on time scales much shorter than the inverse tunneling
rates. Electrons that enter the nanomagnet through one tunnel
junction will therefore equilibrate with the other electrons in

the nanomagnet before they leave again through the other tun-
nel junction; for a more detailed discussion, see Appendix A.
In turn, both tunnel junctions are effectively independent. The
Slonczewski spin-transfer torque is then governed by

Is = − h̄

4e
gs

lVl mfix, (2)

where gs
l is the spin-flip conductance of the left junction, and

Vl is the voltage drop across the left junction [19,25].
The charge dynamics are governed by charge conserva-

tion. The only way to change the nanomagnet’s charge is
by tunneling of electrons between the nanomagnet and its
leads. Consequently, the charge dynamics are described by the
continuity equation

Q̇ = I l
c + Ir

c , (3)

where Ir
c and I l

c are the charge currents flowing from, re-
spectively, the right and left lead to the nanomagnet. The
charge current through the right junction is simply given by
the Ohmic relation

Ir
c = grVr, (4)

where gr is the conductance of the right junction and Vr is the
voltage drop across the right junction [26].

In contrast to the right junction, the charge current across
the left junction is spin-polarized, and thus the charge current
is given by

I l
c = gl (θ )Vl + I p

c , (5)

where gl (θ ) is the conductance of the left junction, Vl is the
voltage drop across the left junction, and

I p
c = h̄

4e
gs

l mfix · (m × ṁ) (6)

is the pumping current contribution, which is the reciprocal of
the Gilbert-damping enhancement, as it arises from the spin
pumping into the leads combined with the spin filtering of the
magnetic left lead [17,20].

The vector form I p
c ∝ mfix · (m × ṁ) holds for the spe-

cific geometry where the precession axis of the nanomagnet’s
magnetization is parallel to the fixed magnetization of the
magnetic lead. However, we believe it to be valid in more
general situations, since the cross product m × ṁ is related
to the spin pumping which leads to the Gilbert-damping en-
hancement. The projection onto mfix enters due to the spin
filtering of the left lead, because of which the pumped spin
current is accompanied by a pumped charge current. There-
fore, in different geometries the same processes will occur,
and thus the same vector form is to be expected. Finally we
note that, since the left lead is magnetic, the conductance gl (θ )
also depends on the angle between the magnetizations of the
nanomagnet and the left lead [25,27].

As the Landau-Lifshitz-Gilbert-Slonczewski equation
[Eq. (1)] and the continuity equation [Eq. (3)] are coupled to
each other, an interplay emerges between the magnetization
dynamics and the charge current flow: the magnetization dy-
namics affect the charge current flow via the pumping current
I p
c and the charge current flow affects the magnetization dy-

namics via the Slonczewski spin-transfer torque Is.
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III. CHARGE CONSERVATION GIVES RISE
TO A SELF-INDUCED TORQUE

To investigate how the interplay with the charge dynamics
affects the magnetization dynamics, we want to eliminate
the charge degree of freedom. For that purpose, we focus
on a steady-state situation for the charge (currents) Q̇ = 0,
which can be justified in two distinct ways: first, when we
search for steady-state precessions of the magnetization—as
in Sec. IV—the charge enters a steady state as well. Second,
the charge degree of freedom usually relaxes on much shorter
time scales than the magnetization direction, such that the
charge degree of freedom adjusts adiabatically, Q̇ ≈ 0, to the
magnetization dynamics [28].

In a steady-state situation for the charge, the current flow-
ing into the nanomagnet from the left lead is equal to the
current flowing out of the nanomagnet into the right lead I l

c =
−Ir

c , which follows immediately from the continuity equation
[Eq. (3)]. In turn, using Kirchhoff’s voltage law Vl − Vr = V ,
we find the voltage drop across the left junction:

Vl = gr

gl (θ ) + gr
V − I p

c

gl (θ ) + gr
. (7)

The first term is the standard voltage drop for two resistors
(or tunnel junctions) in series. The second term is more in-
teresting: it is an additional voltage drop that arises due to
the pumped charge current I p

c , as given in Eq. (6). Since this
additional pumping-current-induced voltage drop is across the
left junction with the magnetic lead, it also gives rise to an
additional Slonczewski spin-transfer torque. Explicitly, using
the voltage drop over the left junction, Eq. (7), to find the
Slonczweski spin-transfer-torque, Eq. (2), we obtain a mod-
ified LLGS Eq. (1), which now becomes

ṁ = −γ m × Heff + α(θ ) m × ṁ

+ γ

MV m × IV
s × m + γ

MV m × Ip
s × m, (8)

where we have split up the spin-transfer torque in two
contributions. Firstly, we obtain the standard Slonczewski
spin-transfer torque induced by the voltage bias V applied
across the whole system:

IV
s = − h̄

4e

gs
lgr

gl (θ ) + gr
V mfix. (9)

It is simply proportional to the voltage bias applied over the
two leads and has been obtained before by numerous authors
[19,25,29]. However, we also obtain

Ip
s =

(
h̄

4e

)2 (gs
l )

2

gl (θ ) + gr
[mfix · (m × ṁ)] mfix, (10)

which is our central result: a new self-induced torque. To be
precise, it is a pumping-current-induced spin-transfer torque.
Physically speaking, it originates from the pumping current
I p
c driving electrons over a magnetic tunnel junction. If the

precession axis of m is aligned with mfix, it is simply propor-
tional to the precession frequency ω. Therefore—despite its
origin—the self-induced torque effectively acts more similar
to Gilbert damping than to the conventional voltage-bias-
induced spin-transfer torque. To be more precise, it will
act effectively as an anti-Landau-Lifshitz damping ∝ m ×

(mfix × m), but with a prefactor that has a specific depen-
dence of the magnetization dynamics ∝ mfix · (m × ṁ). This
specific dependence on the magnetization orientation and dy-
namics could be used to tell the self-induced torque apart from
other spin-transfer torque terms and from the phenomenolog-
ical nonlinear Gilbert damping.

While a similar effect has been seen before in calculations
far away from equilibrium [28,30–34], we have shown here
that those effects can also be interpreted as a consequence
of charge conservation. We therefore expect this effect to
be present independent of the strength of relaxation in the
electron system, although it might change quantitatively with
the internal relaxation rate.

IV. EXPERIMENTAL RELEVANCE OF THE
SELF-INDUCED TORQUE

In order to show that the self-induced torque is qualita-
tively and quantitatively relevant, we now consider an in-plane
magnetized nanopillar [6]. The effective magnetic field for
the nanomagnet is then Heff = H0ẑ − 4πMxx̂, where the ẑ
direction is parallel to the magnetization of the left lead
ẑ = mfix and H0 is the applied external magnetic field. Then
the frequency of the linear ferromagnetic resonance is ω0 =
γ
√

H0(H0 + 4πM ) and the critical voltage where the parallel
alignment becomes unstable is Vc = γ α(0)(H0 + 2πM )/σ0,
where σ0 ≡ γ

MV
h̄
4e

gs
l

gl (0)+gr
is the spin-polarization efficiency

for a parallel alignment. Note that the critical voltage is in-
dependent of the self-induced torque, which only affects the
dynamics in the auto-oscillation regime, where V > Vc.

The charge conductances gl/r (θ ), the spin-flip conduc-
tances g̃l/r (θ ), and spin conductances gs

l/r that characterize the
tunnel junctions are not independent of each other. Instead,
they are related to each other as [27]

gl/r (θ ) = 1
2

[
gP

l/r + gAP
l/r + (

gP
l/r − gAP

l/r

)
cos θ

]
,

g̃l/r (θ ) = 1
2

[
gP

l/r + gAP
l/r − (

gP
l/r − gAP

l/r

)
cos θ

]
,

gs
l/r = P−1

(
gP

l/r − gAP
l/r

)
, (11)

where gP/AP
l/r are the conductances of the left/right tunnel

junction with the magnetization parallel or antiparallel to the
fixed magnetization. Furthermore, P = (ρ↑

m − ρ↓
m)/(ρ↑

m + ρ↓
m)

is the polarizing factor of the nanomagnet, where ρ↑
m and ρ↓

m
are the nanomagnet’s electron density of states for spin up and
spin down, respectively [1]. Note that, since the right tunnel
junction is nonmagnetic, we have gP

r = gAP
r and it follows that

gr (θ ) = g̃r (θ ) =: gr and gs
r = 0.

To demonstrate the relevance of the self-induced torque,
we choose the polarization factor of Fe, P = 0.4 [35],
and gP

l /G0 = 0.12 and gAP
l /G0 = 0.05, where G0 = 2e2/h

is the conductance quantum. The tunneling magnetoresis-
tance (TMR) is then TMR = (RAP − RP)/RP = 70% [36]. We
choose the conductance of the right junction to be equal to
the parallel conductance of the left junction, gr = gP

l . Further-
more, we set H0/4πM = 0.35, h̄γ /MV = 1, and choose α0

such that α(0) = 0.01. The applied voltage V is then variable,
since in experiment it can also be directly controlled. We note
that these values have been chosen to demonstrate the effect
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FIG. 2. Numerical results, as obtained from the LLGS equa-
tion [Eq. (8)] with (solid) and artificially without (dashed) self-
induced torque, are shown as a function of voltage for (a) the
microwave frequency and (b) the average power 〈p〉. Results are ex-
pressed in units of the FMR frequency ω0 and the critical voltage Vc.

of the self-induced torque and do not necessarily correspond
to a specific experiment.

We numerically solve the LLGS Eq. (8), varying the ap-
plied voltage and we show the resulting microwave frequency
and average power of the magnetization in Fig. 2 with (solid)
and artificially without (dashed) the self-induced torque. Here
p = (1 − mz )/2 is the power of the spin-torque oscillator [3].
We give further details regarding the numerical simulation of
the LLGS Eq. (8) in Appendix B.

The quantitative relevance of the self-induced torque for
this specific set of parameters is clearly visible, since the solid
and dashed lines in Fig. 2 are obviously different. The qualita-
tive relevance of the self-induced torque can be seen from the
onset of oscillations (V � Vc), where the self-induced torque
causes the main oscillation frequency to plateau, Fig. 2 (solid),
which is in qualitative agreement with experimental observa-
tions in similar systems [6]. In contrast, if one only accounts
for the conventional spin-transfer torque, Fig. 2 (dashed),
the LLGS predicts a sharper drop of the main oscillation
frequency at the onset of oscillations. A similar behavior is
present for the average z component, resulting in a plateau
in the microwave power at the onset of oscillations. This
nonlinear frequency shift at the onset of oscillation [37] is
well known to be incompletely described by the conventional,
or unmodified, LLGS Eq. [9]. The inclusion of the self-
induced torque corrects the qualitative behavior at the onset
of oscillations. We also observed that the self-induced torque
extends the voltage range over which auto-oscillations are
allowed (not shown here). Here however the θ dependency of
the Gilbert damping enhancement and the Slonczewski spin-
transfer torque through the charge and spin-flip conductances
gl (θ ) and g̃l (θ ) also plays an important role.

V. DISCUSSION AND CONCLUSION

In this work, we have shown that charge conservation in
spin-torque oscillators can lead to a novel self-induced torque.
Explicitly, we considered a magnetic double tunnel junction,
Fig. 1, for which we showed that charge conservation leads

to an interplay between magnetization and charge dynamics,
which gave rise to a self-induced torque. This self-induced
torque leads to important modifications in the precession
power and frequency, especially at the onset of oscillations. It
therefore offers an additional microscopic explanation for the
experimental observation of a plateau at the onset of oscilla-
tions, complementing the phenomenological nonlinear Gilbert
damping of Tiberkevich and Slavin [9].

Due to their similar qualitative behavior, the self-induced
torque could be easily mistaken as a contribution to nonlin-
ear Gilbert damping. However, we do not suggest to replace
the phenomenological nonlinear Gilbert damping of Tiberke-
vich and Slavin [9] by the self-induced torque. It is likely
that there are other effects, such as the magnon-electron and
magnon-phonon interactions, that will lead to a proper non-
linear Gilbert damping. However, the self-induced torque and
nonlinear Gilbert damping can be distinguished experimen-
tally through their different angle dependence—as is clear
from the vector form in Eq. (8).

Self-induced torques, similar to the one studied in
this work, have previously been obtained. For example,
Refs. [13,14] found a backflow of spin current into the nano-
magnet and associated self-induced torque by considering the
spin accumulation at a normal metal in combination with im-
posing spin conservation. In addition, Ref. [15] found a sim-
ilar self-induced torque by imposing spin conservation in the
interaction between two nanomagnets. However, these works
required spin conservation in only a small part of the circuit,
which is different from the approach we consider in our work:
we impose charge conservation throughout the whole circuit.
Because charge conservation cannot be easily violated, we
expect the self-induced torque obtained here to be a ubiquitous
effect, which might also include the systems under study in
Refs. [13–15], although its qualitative and quantitative effects
should be evaluated for each specific system.

Moreover, we expect the self-induced torque to be rel-
evant beyond voltage-biased STOs. For example, it should
be equally relevant in ferromagnetic resonance experiments,
where a transverse oscillating magnetic field excites the
macrospin [24]. Such experiments could be used to verify the
existence of the self-induced torque proposed here and, simul-
taneously, to gain deeper insights into the nonlinear Gilbert
damping as conceived by Tiberkevich and Slavin [9]. Another
important example, where the self-induced torque might play
a crucial but underacknowledged role, is the magnetization
switching in magnetic tunnel junctions [38,39].

Finally, we note that within spin torque oscillators the un-
derstanding of the linewidth has suffered from a similar prob-
lem as the precession frequency [25]. The often employed so-
lution is to phenomenologically include the nonlinear Gilbert
damping when describing the thermal fluctuations [3,40–42].
This solution, although effective in its description of the ob-
served linewidth, does not offer a physical explanation of
the nature of the noise. Following the results of this work, it
would be of interest to further investigate the effects of charge
conservation on the noise in spin-torque oscillators. In partic-
ular, there will be an additional noise source coming from the
altered voltage drop across the left junction as given in Eq. (7),
which affects the spin shot noise associated with the discrete-
ness of the spin passing through the left junction [25,29].
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APPENDIX A: ELECTROCHEMICAL POTENTIALS

To relate our simple approach to more elaborate calcula-
tions (for example Refs. [28,30–34]), it is useful to connect the
charge on the nanomagnet Q, and the voltage drops across the
tunnel junctions Vl and Vr , to the electrochemical potentials of
the nanomagnet and the leads.

The leads’ electrochemical potentials are fixed by the setup
(Fig. 1) with a ground and voltage source. The electrochem-
ical potential of the right lead μr serves as a reference point,
as the right lead is connected to the ground. Thus, in the
right lead, the electrochemical potential is identical with the
chemical potential, as the electrical potential of the ground is
(chosen to be) zero. The electrochemical potential of the left
lead μl is then determined (in reference to μr) by the applied
voltage, explicitly, μl = μr + eV. In other words, the voltage
that is applied across the whole system is determined by
the difference between the leads’ electrochemical potentials
V = (μl − μr )/e.

The nanomagnet’s electrochemical potential μm

is closely related to the nanomagnet’s charge Q =
e
∑

σ

∫
dερσ

m(ε) fm(ε) + Qb, where Qb is the positive back-
ground charge, ρσ

m(ε) is the nanomagnet’s density of states
for electrons with spin σ , and fm(ε) = (e(ε−μm )/kBT + 1)−1

is the Fermi-Dirac distribution describing the electron
distribution in the nanomagnet. Due to the close relation
between μm and Q, we can use μm as a degree of freedom
instead of Q [43]. In direct analog, an interplay now emerges
between the magnetization dynamics and the nanomagnet’s
electrochemical potential.

The electrochemical potential of the nanomagnet μm deter-
mines the voltage drops across the tunnel junctions through
Vl/r = (μl/r − μm)/e. Using these relations for the voltage
drops, and proceeding as in the main text, we can determine
the steady-state electrochemical potential corresponding to
Eq. (7):

μm = gl (θ )μl + grμr

gl (θ ) + gr
+ eI p

c

gl (θ ) + gr
. (A1)

The electrochemical potential contains two terms: the first
term is the standard result for double tunnel junctions with

strong internal relaxation; the second term is a shift due to the
pumping current. From Eq. (A1), the interplay between the
nanomagnet’s electrochemical potential and its magnetization
dynamics can be seen as follows. The magnetization dynam-
ics affect the electrochemical potential μm via the pumping
current I p

c . The electrochemical potential μm directly affects
the voltage drop across the left junction and, in turn, also the
Slonczewski spin-transfer torque in Eq. (1). As a result of this
interplay, we find the LLGS Eq. (8) with a self-induced torque.

Let us note that for gr 
 gl (θ ), g̃l (θ ), gs
l , we find μm ≈

μr . Then, the voltage drop across the magnetic left junction
becomes the same as the voltage applied across the whole sys-
tem, Vl ≈ V , and the self-induced torque becomes irrelevant.
So, in this case, we can recover previous results for magnetic
single tunnel junctions [25,29]. However, when gr is roughly
comparable to gl (θ ), g̃l (θ ), gs

l , the self-induced torque is rele-
vant. We expect this result to hold even if the tunnel junctions
are replaced by direct contacts.

Finally, however, let us also note that the electrochemical
potential of the nanomagnet μm (and with it the voltage drops
Vl and Vr) is only well defined since we assume strong internal
relaxation in the nanomagnet, which leads to an equilibrium
Fermi-Dirac distribution for the electrons. Away from that
local equilibrium, the nanomagnet’s electrochemical poten-
tial is ill defined and the full electron distribution takes its
role as degree of freedom. In turn, an interplay emerges
between the magnetization dynamics and the electron distri-
bution of the nanomagnet. While this interplay has been seen
in the strong nonequilibrium case without internal relaxation
[28,30–34], the vast regime between the two limiting cases of
strong and absent internal relaxation has—to the best of our
knowledge—not yet been explored theoretically.

APPENDIX B: NUMERICAL LLGS SIMULATIONS

The results as shown in Fig. 2 are obtained as follows.
For every voltage we run a separate simulation of the LLGS
Eq. (8) numerically, starting from an initial condition where
the macrospin is orientated along the positive z axis, with
a random small deviation. The simulations are then run for
4πγ Mt = 5 × 104, in order to ensure a steady-state preces-
sion has been reached. The precession frequency is then
obtained from finding the highest peak in the Fourier trans-
form of mx(t ) + imy(t ) and the average z component from
averaging mz(t ), where both are taken over the final 4πγ Mt =
5 × 103. Since for the parameters chosen here we have that
both α(θ ) � 1 and γ

MV |Ip
s | � 1, the dynamics of the magne-

tization are governed primarily by ṁ = −γ m × Heff and we
can thus replace ṁ → −γ m × Heff on the right-hand side of
LLGS Eq. (8) and in the self-induced torque, Eq. (10).
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