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Nonlinear wavepacket dynamics in proximity to a stationary inflection point
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A stationary inflection point (SIP) in the Bloch dispersion relation of a periodic waveguide is an exceptional
point degeneracy where three Bloch eigenmodes coalesce, forming the so-called frozen mode with a divergent
amplitude and vanishing group velocity of its propagating component. We have developed a theoretical frame-
work to study the time evolution of wavepackets centered at an SIP. Analysis of the evolution of the statistical
moment distribution of linear pulses shows a strong deviation from the conventional ballistic wavepacket dy-
namics in dispersive media. The presence of nonlinear interactions dramatically changes the situation, resulting
in a mostly ballistic propagation of nonlinear wavepackets with the speed and even the direction of propagation
essentially dependent on the wavepacket amplitude. Such a behavior is unique to nonlinear wavepackets centered
at an SIP and can be used for the realization of a novel family of beam power routers for classical waves.

DOI: 10.1103/PhysRevB.109.024312

I. INTRODUCTION

The Bloch dispersion relation of a periodic waveguide can
develop exceptional points of degeneracy (EPDs), where two
or more Bloch eigenmodes coalesce. As opposed to well-
studied resonant EPDs, which require the implementation of
dissipative mechanisms, Bloch EPDs occur even in the ab-
sence of gain/loss elements since they occur in the spectrum
of transfer matrices. These are non-Hermitian operators [they
are pseudounitary, belonging to the SU (N ) group], allowing
the formation of EPDs in their spectrum. A well-known ex-
ample is a regular band edge where two counterpropagating
Bloch modes collapse onto each other.

Our investigation focuses on a stationary inflection point
(SIP), where three Bloch eigenmodes (two evanescent and
one propagating) coalesce (see [1–8] and references therein).
In proximity to the SIP frequency, an incident wave can be
completely converted into the frozen mode with diverging
amplitude and vanishing group velocity of its propagating
component [2–4,8,9]. The frozen mode regime is quite dif-
ferent from a common cavity resonance because its frequency
is independent of the system dimensions and boundary con-
ditions. The most remarkable features of the frozen mode
regime include robustness with respect to structural imperfec-
tions and moderate losses [3,4,10,11]. The above properties
make the frozen mode regime particularly attractive for the
enhancement of various wave-matter interactions and wave
amplification, including cavityless lasing [12–14].

The focus of this study is the unique dynamics of an
SIP-centered wavepacket inside a periodic structure. Unlike
the monochromatic frozen mode which involves non-Bloch
Floquet eigenmodes [1–8], the Gaussian wavepacket is a
superposition of propagating Bloch modes with wave num-
bers close to that of the SIP. Due to the SIP proximity,
both the group velocity and its first derivative with respect
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to the Bloch wave number are infinitesimally small. As a
consequence, both linear and nonlinear dynamics of an SIP-
centered wavepacket demonstrate some interesting and unique
features. Indeed, in the linear regime, the time evolution of the
SIP-centered wavepacket does not involve ballistic propaga-
tion, which can be expected due to the zero group velocity
at the SIP frequency. Remarkably, though, the presence of
nonlinearity changes the situation dramatically. We show that
the SIP-centered nonlinear wavepackets can propagate bal-
listically with the speed and even direction of propagation
essentially dependent on the wavepacket amplitude. This fea-
ture can potentially be used for the realization of a novel class
of beam power routers whose implementation spans a variety
of wave frameworks, ranging from photonic metamaterials
[12,15–17] to phononics and elastodynamic composite media
[18–20].

The remainder of this paper is organized as follows. The
next section is devoted to establishing a linear model in the
context of coupled mode theory and developing a general
theoretical framework for describing SIP wavepacket dynam-
ics. Section III discusses the impact of nonlinearities on the
crossover of wavepacket time evolution from SIP dynamics
to ballistic propagation. Finally, in Sec. IV we introduce pro-
tocols for controlling propagation direction based on input
signal amplitude.

II. LINEAR DYNAMICS

For demonstration purposes we consider a minimal math-
ematical model which may support an SIP. It is provided by
the temporal coupled mode theory (CMT) equations

i
dψn

dt
= −J (ψn+1 + ψn−1) − J3(ψn+3 + ψn−3), (1)

where ψn(t ) is the field amplitude at mode (site) n =
1, . . . , N . This model captures all of the features of SIP dy-
namics, and it can be also associated with a phenomenological
description of a physical system.
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FIG. 1. [(a)–(c)] Physical systems exhibiting SIPs. The unit cells
in each case are indicated with dotted lines. (a) Multimode waveg-
uide array [15–17]. (b) Serpentine waveguide [7]. (c) Multilayered
photonic structure [12]. (d) Dispersion relations ω(q), as defined by
Eq. (5), in the vicinity of the inflection point q̄ = −π/2 and the
corresponding slopes: Black solid line for the SIP [ω′(q̄) = ω′′(q̄) =
0, J3 = J/3], blue solid line for the ordinary inflection point [OIP;
ω′(q̄) > 0, ω′′(q̄) = 0, J3 < J/3], and red solid line for the roton
dispersion relation [ω′(q̄) < 0, ω′′(q̄) = 0, J3 > J/3].

Some of the known examples of photonic setups which
exhibit SIPs are illustrated in Fig. 1. The example of multi-
mode waveguide arrays shown in Fig. 1(a) consists of three
periodic nanobeams with the same longitudinal periodicity;
the possible longitudinal shifts between the waveguides allow
for adjustments to the dispersion [15–17]. An asymmetric op-
tical periodic serpentine waveguide is presented in Fig. 1(b);
the degree to which the glide symmetry is slightly broken
determines the dispersion and can create an SIP [7]. Another
example of a photonic setup is multilayered photonic struc-
tures [Fig. 1(c)]. The unit cell consists of three components:
A central magnetic layer sandwiched between two misaligned
anisotropic birefringent layers (blue and red), and the disper-
sion is controlled by the misalignment angle [12]. SIP-based
systems can be also implemented in the acoustic metama-
terial framework [18–20]. There is strong consensus in the
scientific literature that the primary qualitative features of the
SIP-related frozen mode regime remain the same regardless
of the specific physical platform.

In the case that Eq. (1) describes a set of N coupled res-
onators with (third-)nearest-neighbor coupling constant (J3)
J , the variable t indicates time. The same equation might also
be used to describe the paraxial field propagation in multicore
optical fibers. In this case, t describes the paraxial propagation
distance.

Dynamical equations (1) can be generated by the classical
Hamiltonian

H =
∑

n

[ε|ψn|2 + J (ψnψ
∗
n+1 + c.c.)

+ J3(ψnψ
∗
n+3 + c.c.)], (2)

where ψn and iψ∗
n are canonically conjugate dynamical vari-

ables. Assuming periodic boundary conditions, ψn+N = ψn,

one can rewrite the Hamiltonian as

H =
∑

k

ω(qk )|φk|2. (3)

The Bloch modes φk (and their canonically conjugate iφ∗
k ) are

defined by the Fourier transform

ψn = 1√
N

N/2−1∑
k=−N/2

e−iqk nφk, φk = 1√
N

∑
n

eiqk nψn, (4)

where qk = 2πk/N , with a spectrum

ω(qk ) = ε + 2J cos qk + 2J3 cos 3qk . (5)

One can see that for J3 = J/3 the dispersion relation exhibits
SIPs at q̄ = ±π/2, as ω′(±π/2) = ω′′(±π/2) = 0, while
ω(3)(±π/2) = ∓8J . Of course, the dispersion relation (5) is
associated with a specific mathematical model. In this respect
the model (1) with this dispersion relation is not interesting
on its own, but rather, it serves as a typical example for pre-
sentation purposes and has been used to numerically confirm
our general theory for beam dynamics. The theory utilizes
only the generic form that the dispersion relation has when
expanded around the SIP [see Eq. (9) below]. In this respect,
the wavepacket dynamics generated in the proximity of an SIP
is, indeed, universal and model independent.

In the Bloch mode representation Eq. (1) becomes
decoupled,

i
dφk

dt
= −ω(qk )φk . (6)

In the present study we always assume for the initial condition
preparation of a Gaussian packet in q space,

φk (0) = φ̄k =
(

4π

N2σ 2

)1/4

exp

{
− (qk − q̄)2

2σ 2

}
, (7)

where we assume the packet is well confined to the first
Brillouin zone, σ � 2π , and q̄ is the reciprocal lattice vector
associated with one of the SIPs. Such an initial condition
implies a preparation of a Gaussian packet of width σ−1 in
direct space. Assuming the initial wavepacket is centered at
n = 0, the time dependence of the amplitude on the nth site is
given by

ψn(t ) =
√

N

2π

∫ +π

−π

dqeiqne−iω(q)t φ̄(q), (8)

where we have exploited the solution φk (t ) = exp{iω(qk )t}φ̄k

of Eq. (6) and the condition N � 1 for the continuous limit.
The integral in Eq. (8) can be evaluated analytically by

employing a number of reasonable approximations. First, the
fast convergence of the integral may be exploited by replacing
the limits of integration: ±π → ±∞. Second, we can use a
Taylor expansion of the dispersion relation ω(q), Eq. (5), in
the vicinity of q̄, for which the cubic nature of the SIP gives

ω(q) ≈ ω0 + α

3
(q − q̄)3, α = 1

2

d3ω

dq3

∣∣∣
q=q̄

. (9)

A virtue of this approximation transcends mathematical sim-
plification. Indeed, after utilizing it, the validity of theoretical
conclusions is independent of the peculiarities present in the

024312-2



NONLINEAR WAVEPACKET DYNAMICS IN PROXIMITY TO … PHYSICAL REVIEW B 109, 024312 (2024)

FIG. 2. Signal intensity in the direct space in the presence of an
SIP. Pn(0) (blue solid line) is the initial wavepacket, Pn(t1,2) is the
numerical solution of Eq. (1) for t1 < t2 (red and green solid lines,
respectively), and Pth

n (t ) (dashed black lines) is given by Eq. (11).
Inset: First moment of distribution 〈n〉 vs time in the presence of an
SIP (blue solid line) and an OIP (red solid line); the slopes represent
the flow, FOIP/FSIP = 50. The wavepacket width in q space is σ =
0.1.

specific model (1), as Eq. (9) is applicable for any system
featuring SIPs. Moreover, the dynamics are determined only
by the parameters α and σ . For the present model, the parame-
ters we have introduced are given by ω0 = ω(q̄) = ε ≡ 0 and
α = 8J for q̄ = −π/2.

Using the approximations we have introduced, one can
rewrite Eq. (8) as

ψn(t ) =
√

2π−3/4σ−1/2(αt )−1/3e−iω0t eiq̄n

×
∫ ∞

0
dxe−εx2

cos

(
x3

3
− zx

)
, (10)

where z = n(αt )−1/3 and ε = (1/2)(αt )−2/3σ−2. It can be
shown (see Appendix A) that for t � α−1(2σ 2)3/2, the in-
tensity Pn(t ) = |ψn(t )|2 on the nth site takes the approximate
form

Pn(t ) = 2

√
π

σ 2
(αt )−2/3e− n

ασ2t Ai2[−n(αt )−1/3], (11)

where Ai(−z) is the Airy function [21]. The numerically
evaluated intensity using Eq. (1) as a function of position is
reported in Fig. 2 for t = 0 and t2 > t1 � 0 (solid lines), while
the black dashed lines correspond to the analytical expression
(11).

The solution we have derived corresponds to a forward
propagation of the wavepacket as Pn(t ) decays quickly for
n < 0 due to the asymptotic behavior of the Airy function;
it would be the opposite direction had we prepared the initial
packet at the symmetric position in q space, i.e., at +π/2,
where α < 0.

To characterize the wavepacket propagation, a good
observable is the energy flow, F (t ) = ∑

n nṖn, which is equiv-
alent to a time derivative of the first moment 〈n(t )〉. Using
Eq. (11), one can find the flow of the linear SIP dynamics to
be FSIP = σ 2α/2 (see Appendix B for mathematical details).

The same result can be obtained by observing an equality
of the flow to the average group velocity,

F (t ) = 〈vg(t )〉 =
∫

dq

(
∂ω

∂q

)
|φ(q, t )|2. (12)

This equation remains a good approximation in the presence
of weak nonlinearity (see Appendix C for the derivation) and
will be helpful for an explanation of a transition to ballistic
transport and other nonlinear dynamical effects.

It is possible to consistently single out the anomalous
transport features associated with the presence of the SIP
in the framework of the present model. Assuming the long-
range coupling in Eq. (1) is zero, J3 = 0, then q = −π/2
corresponds to an ordinary inflection point (OIP), ω′′(q =
−π/2) = 0 and ω′(q = −π/2) �= 0, such that the linear term
of the ω(q) expansion dominates in its vicinity, as opposed to
the cubic one, as was the case for an SIP. Therefore, Eq. (8)
is evaluated using the expansion ω(q) ≈ ω0 + v(q + π/2) in-
stead of Eq. (9), where v = ω′(q = −π/2) = 2J is the group
velocity. Under the conditions of an OIP, integration of Eq. (8)
results in a direct space Gaussian packet of width σ−1, prop-
agating at constant velocity v. It can be shown that the flow
associated with an OIP, FOIP = 〈vg〉 = v, does not depend
on the initial wavepacket width σ , which constitutes ballis-
tic propagation as opposed to SIP transport. Using explicit
expressions for v and α, we can see that FSIP/FOIP = 2σ 2.
For instance, the value of σ = 0.1 used in our numerical
simulations implies a 50-fold reduction in the propagation
speed due to a deformation of the dispersion relation towards
an SIP (see the inset in Fig. 2).

III. NONLINEAR DYNAMICS AND BALLISTIC
CROSSOVER

As we have established a theoretical framework for slow
wave dynamics in linear systems that exhibit an SIP, we may
explore how this framework is influenced by the presence
of weak nonlinearity. Probably, the most common type of
nonlinearity is a uniform Kerr-type contribution to the on-site
optical potential, which we introduce in the model by adding
the term −χ |ψn|2ψn to right-hand side of Eq. (1), where the
nonlinear coefficient χ could be either positive or negative
(focusing/defocusing Kerr nonlinearity).

Furthermore, by using the terminology “weak,” we imply
that the nonlinearity could be treated perturbatively, i.e., the
linear eigenmode representation still provides a valid basis.
This can be guaranteed by ensuring the nonlinear energy
contribution to the total internal energy H ≡ H + χ

2

∑
n |ψn|4

is small compared to the linear energy H , given by Eq. (2).
We have also compared the average group velocity, which is
derived from the linear dispersion relation, with the flow in
the presence of the nonlinearity [see Fig. 3(c)]. Examination
of both quantities has shown us that even for the largest values
of χ used in our analysis below, the nonlinear effects (in this
χ range) can indeed be treated as a perturbation to the linear
dynamics.

Technically, the dynamical equations could be rescaled to
fix χ ≡ 1, as only (χ/2)

∑
n |ψn|4 contributes to the total

internal energy H. In physical photonic networks the nonlin-
ear contribution is governed by the incoming optical power
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FIG. 3. A stationary value of flow as a function of nonlinearity.
Insets: (a) population numbers at t = 0 (blue solid line) and t � 0
(red dots) vs wave number q for χ = 0.1, (b) the same as (a) for
χ = 10, and (c) flow (black dashed line), average group velocity
(red solid), and 〈vg〉 as a function of time for χ = 10. The transition
between the SIP and ballistic regimes occurs when the wavepacket
in q space “spills out” of the initial Gaussian peak between χ = 0.1
and χ = 0.5.

P = ∑
n Pn(t = 0) rather than changes in the material prop-

erties. However, for theoretical analysis it is convenient to
vary χ as the relevant parameter in different simulations while
keeping incident power constant.

In general, nonlinear effects that impact the dynamics in
periodic systems are expected to emerge. As the nonlinearity
provides a mechanism of wave mixing, the initial wavepacket
in q space does not remain constant. Rather, the underly-
ing four-wave mixing causes a smearing and splitting of the
wavepacket in q space, introducing additional Bloch states
to the wavepacket propagation which can change the flow
with respect to the underlying linear system. Here we inves-
tigate some of the possible nonlinear effects by introducing
modifications to the model in Eq. (1). In Fig. 3 we see how
the presence of nonlinearity affects the flow. The distinct
crossover towards ballistic propagation between χ = 0.1 and
χ = 0.5 is caused by spreading of the wavepacket in q space.
Indeed, while at χ = 0.1 the wavepacket remains confined
in the vicinity of the SIP at q̄ = −π/2 [Fig. 3(a)], at higher
values of nonlinearity the states corresponding to sufficiently
nonzero group velocities become populated [for example, see
Fig. 3(b) for χ = 10]. This explanation is in agreement with
Eq. (12) and Fig. 3(c).

In the linear system, the propagation speed in the pres-
ence of an SIP depends on the wavepacket width: In the
hypothetical case of a q-space δ-function initial condition,
σ → 0, the signal will not propagate as the group velocity
is identically zero; however, broadening the wavepacket in-
troduces proximal states whose group velocities are small but
not entirely vanishing. We restrict our analysis to bandwidths
within a range that is large enough for the initial wave to
be a localized packet in direct space and small enough to
keep the Bloch states in the vicinity of the SIP sufficiently

FIG. 4. Signal deflection by incident power. (a) Signal profile in
a linear system with the roton dispersion relation. (b) Signal profile
in the same system with nonlinearity χ = 5. (c) Occupation numbers
at t = 0 (blue solid line) and t � 0 (red dots) vs wave number q
for χ = 5. The black solid line corresponds to the roton dispersion
relation; we can see that the positive group velocity states become
populated. (d) Average group velocity (red solid line) and the flow
(black dashed line) vs time. The initial negative values switch to
positive in the stationary regime via the spreading of the wavepacket
in q space.

populated. For instance, for a typical system size N ∼ 103

used in our simulations, we achieved this balance by choosing
σ ∼ 0.1, effectively preparing an initial wavepacket n ∼ 10
sites wide. The precise shape of the wavepacket is not impor-
tant as long as this range can be maintained. The Gaussian
profile is a reasonable choice for its analytical properties and
physical accessibility. The nonlinear effect causes a crossover
to the ballistic transport regime as the Bloch-mode population
becomes independent of the initial preparation.

IV. PROTOCOLS FOR CONTROLLING
THE PROPAGATION DIRECTION

Roton dispersion induced by SIP management. The depen-
dence of the flow on the population numbers in q space gives
an idea of how to control not only the signal speed but also the
direction via the manipulation of its incident power. Consider
again the dispersion relation (5). When J3 > J/3, the inflec-
tion point q = −π/2 has a negative slope, as it is positioned
between a local maximum (to its left) and a local minimum
(to its right), creating the so-called roton dispersion relation
[22]. Hence, in the linear system the initial preparation of a
Gaussian packet centered at q = −π/2 will be followed by
the energy propagating in the negative direction. However,
as the nonlinearity exceeds some threshold value, the initial
Gaussian in q space splits and spreads, exciting states with
predominantly positive group velocity, so that 〈vg〉 > 0, turn-
ing the energy flow to the opposite direction. As one can see
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FIG. 5. (a) Flow (black dashed line) for μ = 5 and J/(3J3) =
0.93, the average group velocity of the underlying roton dispersion
relation 〈vg〉 (blue solid line), and the effective group velocity 〈veff

g 〉
(red solid line) vs time. (b) Occupation numbers at t ∼ 0 (blue solid
line) and at t � 0 (red dots); the black solid line corresponds to
the roton dispersion relation, and the purple dash-dotted line is the
effective curve caused by the coupling nonlinearity at t ∼ 0.

in Fig. 4, this effect takes place in a stationary regime, after
the time required for the wavepacket to spread in q space.

A possible experimental realization of the nonlinear pulse
propagation we are studying at involves arrays of coupled
resonators of optical waveguides. The quantitative details of
the coupled array [see Fig. 1(a)] could differ from those in
our CMT model, but as long as the Bloch dispersion relation
displays an SIP or associated roton behavior and the Kerr
nonlinearity is strong enough, we have every reason to believe
that the predicted effects can be produced experimentally. As
stated above, the conclusions about the qualitative features of
the SIP-related frozen mode regime are expected to remain
the same regardless of the specific physical platform. An
alternative platform for the realization of such beam dynamics
has recently emerged in the frame of acoustic metamaterials,
where the roton dispersion has been designed via appropriate
nonlocal couplings [18–20].

Nonlinear coupling. Another possible method of signal
deflection is based on a modification of the dispersion rela-
tion by nonlinearity. In the one-channel model, the on-site
nonlinearity may cause a vertical shift of the dispersion re-
lation but not deformation of the band. In systems with more
complex unit cell structure, uniform on-site nonlinearities can
alter relative on-site optical potentials between propagation
channels, which deforms the effective dispersion relation. One
can still demonstrate this phenomenon in the framework of a
one-channel model by introducing nearest-neighbor nonlin-
ear coupling, J → J (1 + μ|ψn|2), to Eq. (1). Implementation
of such nonlocal nonlinearities has been already reported in
electronic circuits (see, for example, [23,24]). Regardless, the
goal of the present section is to demonstrate the nonlinear
dispersion effect with minimal modifications to our relatively
simple mathematical model.

In Fig. 5(a) one can see that the flow (black dashed line)
is positive from the beginning of the dynamical evolution,
while the average group velocity (blue solid line) is negative
as one expects for the underlying roton linear system. Strictly
speaking, Eq. (12) is not applicable as the nonlinearity cannot
be treated perturbatively and the dispersion relation is not
well defined. However, Eq. (5) may be conditionally restored

for any time step if the coupling parameter J is replaced by
Jeff (t ) = J[1 + μδ(t )], where δ(t ) ∼ 〈|ψn(t )|2〉. Then, even
though J/(3J3) < 1 (a condition for a roton dispersion re-
lation), the effective group velocity, veff

g (t ) = ∂ωeff (q, t )/∂q,
in the vicinity of the inflection point at q = −π/2 will
remain positive whenever δ(t ) > 1 − J/(3J3). One can see
in Fig. 5(a) average values of the effective group velocity
〈veff

g (t )〉 (red solid line), which is in agreement with the flow.
Apparently, this effect is observable only in the short time

range, as for t � 0 the value of 〈|ψn|2〉 ∝ 1/N . Thus, δ(t )
becomes negligible and the dispersion relation converges to
the roton profile. On the large timescale the direction of signal
propagation is governed by the wavepacket distribution in q
space. The competition between these two processes may be
clarified by Fig. 5(b): At t ∼ 0, the propagation is governed
by the narrow Gaussian peak (solid blue line) probing the
effective ωeff (q) (purple dash-dotted line); at t � 0 the band
is restored toward the roton dispersion relation (black solid
curve), while the wavepacket (red dots) probes the states out-
side the negative group velocity region.

V. CONCLUSIONS

In this study, we have developed a theoretical framework
for linear and nonlinear dynamics of wavepackets centered
at an SIP. In the linear regime, such pulses do not propa-
gate ballistically due to the zero group velocity at the SIP
frequency. We have demonstrated that nonlinearity can result
in ballistic propagation of SIP-centered pulses, with the speed
and even the direction of propagation essentially dependent on
the pulse amplitude. This unique feature that emerges from the
interplay between an SIP and nonlinearity provides exciting
opportunities for control and manipulation of electromagnetic
and acoustic pulses injected into a composite structure that
supports an SIP. One possible application is the development
of a novel type of beam power router. Another application
is to use this unique effect for microwave (MW) and optical
limiting, in which case only pulses with an amplitude below
a certain threshold will be transmitted by the structure, while
input pulses whose amplitudes exceed the threshold will be
reflected back. Yet a third application is in a “nonresonant Q
switch,” which prevents radiation from leaking from a system
unless the pulse amplitude exceeds a threshold value. In all
cases, a combination of the enhanced amplitude (see, e.g.,
Ref. [2] and references therein) of the frozen mode and the
enhanced response to nonlinearities in the vicinity of an SIP
provides great flexibility in achieving desirable threshold val-
ues.
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APPENDIX A: INTEGRAL EVALUATION

In this Appendix we provide a detailed, although not rig-
orous, evaluation of the integral which appears in Eq. (10),
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i.e.,

I (z, ε) = 1

π

∫ ∞

0
dxe−εx2

cos

(
x3

3
− zx

)
. (A1)

First, we notice that I (z, 0) = Ai(−z), the Airy function,
which is a solution of the differential equation [21]

y′′ + zy = 0. (A2)

Noticing that

∂2k

∂z2k
cos

(
x3

3
− zx

)
= (−1)kx2k cos

(
x3

3
− zx

)

and expanding e−εx2
into the Taylor series for any ε > 0, we

get

I (z, ε) = 1

π

∫ ∞

0
dxe−εx2

cos

(
x3

3
− zx

)
= 1

π

∫ +∞

0
dx

∞∑
k=0

(−1)kεk

k!
x2k cos

(
x3

3
− zx

)

= 1

π

∫ +∞

0
dx

∞∑
k=0

εk

k!

∂2k

∂z2k
cos

(
x3

3
− zx

)
=

∞∑
k=0

εk

k!

∂2k

∂z2k
I (z, 0) =

∞∑
k=0

εk

k!

∂2k

∂z2k
Ai(−z). (A3)

We introduce the notations F (z) = Ai(−z) and G(z) =
d
dz Ai(−z); then

F (2)(z) = −zF (z),

F (4)(z) = z2[−2z−2G(z) + F (z)],

F (6)(z) = z3[4z−3 + 6z−2G(z) − F (z)],

F (2k)(z) = zk[· · · + (−1)kF (z)]. (A4)

First, we consider positive values of z. For z > 1 the strongest
order of z in the asymptotic approximation of the Airy func-
tion Ai(−z) is

Ai(−z) ∝ z−1/4 sin

(
2

3
z3/2 + π

4

)
,

Ai′(−z) ∝ z1/4 cos

(
2

3
z3/2 + π

4

)
. (A5)

Therefore, the kth expression of Eq. (A4) is actually

F (2k)(z) = zk−1/4[O(z−3/2) + (−1)kz1/4F (z)],

with k � 2 and z1/4F (z) ∼ 1. For z < 0, the Airy function is
not periodic, but quickly decaying:

Ai(−z) ∝ |z|−1/4 exp
{− 2

3 |z|3/2
}
,

Ai′(−z) ∝ |z|1/4 exp
{− 2

3 |z|3/2
}
, (A6)

and

F (2k)(z) = |z|k−1/4e− 2
3 |z|3/2

[O(|z|−3/2)

+ |z|1/4e+ 2
3 |z|3/2

F (z)], |z|1/4e+ 2
3 |z|3/2

F (z) ∼ 1.

Therefore, we may approximate the derivatives as

∂2k

∂z2k
Ai(−z) ≈ (−1)kzkAi(−z),

and plugging it into Eq. (A3), we obtain

I (z, ε) ≈
∞∑

k=0

εk

k!
(−1)kzkAi(−z) = e−εzAi(−z). (A7)

We have to make one remark about this derivation: Al-
though integral (A1) converges for any ε � 0, the last step
in Eq. (A3), a change of integration and summation in their
order, is not rigorously justified, as convergence is not guar-
anteed for any value of ε. Actually, while the integral (A1)
converges quicker for larger ε, the sum converges better for
ε < 1. There is no contradiction here; it is a choice of the
approximation domain. The parameters ε and z are not inde-
pendent as they are introduced via physical variables

ε = (1/2)(αt )−2/3σ−2, z = n(αt )−1/3,

in Eq. (10) of the main text. To satisfy the initial condition,
the integral (A1) should behave as O[t1/3] for t → 0. This is
apparently not the case for Eq. (A7). That only means that this
approximation is not valid for t → 0. Technically speaking,
the time domain of guaranteed applicability is

σ−3 � αt � n3,

quite a realistic range. Practically, one can see in compar-
ison with the numerical simulations that the approximation
qualitatively captures all the phenomena associated with SIP
dynamics in almost the entire time domain.

APPENDIX B: FLOW IN THE PRESENCE OF AN SIP

In the absence of losses we define flow as

F (t )
def=

∑
n

n
d

dt
|ψ (t, n)|2 = d

dt

∑
n

n|ψ (t, n)|2. (B1)
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Using the explicit expression for signal propagation in the presence of the SIP at q = −π/2 [Eq. (6) of the main text] one can
write ∑

n

n|ψ (t, n)|2 = 2
( π

σ 2

)1/2
(αt )−2/3

∫ +∞

−∞
dxxe− x

σ2αt Ai2[−x(αt )−1/3] = 2
( π

σ 2

)1/2
∫ +∞

−∞
dyye

− y
σ2 (αt )2/3 Ai2(−y)

= −2
( π

σ 2

)1/2 ∂

∂a

[∫ +∞

−∞
dye−ayAi2(−y)

]
= −2

( π

σ 2

)1/2 ∂

∂a

[
ea3/12

2
√

πa

]
t�α(2σ )−3/2

−−−−−−→ σ 2αt

2
, (B2)

where a = σ−2(αt )−2/3. Therefore,

F (t )
t � α(2σ )−3/2

−−−−−−−→ σ 2α

2
. (B3)

This result can also be obtained using the equality of the flow to the average group velocity, F (t ) = 〈vg〉:

〈vg〉 =
∫ +π

−π

dq

(
∂ω

∂q

)
|φ(q)|2 ≈ − 2J√

πσ 2

∫ +∞

−∞
dq[sin q + sin 3q] exp

{
− (q − q̄)2

σ 2

}

≈ 2J√
πσ 2

∫ +∞

−∞
d p

[
− p2

2
+ 9p2

2

]
exp

{
− p2

σ 2

}
= α√

2π (σ/
√

2)2

∫ +∞

−∞
d pp2 exp

{
− p2

2(σ/
√

2)2

}
= ασ 2

2
, (B4)

where sin q and sin 3q are approximated in the vicinity of SIP, q̄ = −π/2.

APPENDIX C: FLOW AND AVERAGE VELOCITY EQUALITY

The proof of Eq. (12) in the main text, F (t ) = 〈vg(q, t )〉, is straightforward:

F (t ) = d

dt

∫
dxx|ψ (x, t )|2 = d

dt

∫∫
dqd p

∫
dxxφ∗(q, t )φ(p, t )e−i(q−p)x

= d

dt

∫∫
dqd p

∫
dxxei(p−q)xe−i[ω(p)−ω(q)]tC∗(q, t )C(p, t ), (C1)

where C(q, t ) is a slow function of time, which in the linear system is a constant. One can proceed further as

F (t ) = d

dt

∫∫
dqd pe−i[ω(p)−ω(q)]tC∗(q, t )C(p, t )(−i)

∂

∂ p

∫
dxei(p−q)x

= d

dt

∫∫
dqd pe−i[ω(p)−ω(q)]tC∗(q, t )C(p, t )(−i)

∂

∂ p
δ(p − q) = i

d

dt

∫
dqeiω(q)tC∗(q, t )

∂

∂q
[e−iω(q)tC(q, t )], (C2)

where we use the equality ∫
dx f (x)

∂

∂x
δ(x − x0) = − f ′(x0).

Hence,

F (t ) = d

dt

∫
dq

[(
∂ω

∂q

)
|C(q, t )|2 + iC∗(q, t )

∂C

∂q

]

=
∫

dq

(
∂ω

∂q

)
|φ(q, t )|2 +

∫
dq

(
∂ω

∂q

)
t

d

dt
|φ(q, t )|2 + i

2

d

dt

∫
dq|φ(q, t )|2. (C3)

The last term is always equal to zero due to norm conservation,

d

dt

∫
dq|φ(q, t )|2 = 0.

The second term is exactly equal to zero in the linear system as Ċ0 ≡ 0. At χ �= 0 the second term is still negligible. Indeed, the
norm exchange between the Bloch modes slows down by approaching the stationary regime, so t d

dt |φ(q, t → ∞)|2 → 0. The

norm exchange rate d
dt |φ(q)|2 is nonzero only at t → 0, which makes t d

dt |φ(q, t )|2|t→0 → 0 as well. Finally,

F (t ) =
∫

dq

(
∂ω

∂q

)
|φ(q, t )|2 = 〈vg〉.
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