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Many-body enhancement in a spin-chain quantum heat engine
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We show that ferromagnetic interactions can enhance the adiabatic performance of a quantum spin chain
engine at low temperatures. The enhancement in work output is particular pronounced, increasing exponentially
with interaction strength. The performance enhancement occurs in the paramagnetic phase and is qualitatively
explained by considering just the ground and first excited state, in which case the system exhibits bipartite
entanglement. As the temperature is increased, thermal occupation of higher energy states diminishes perfor-
mance. We find that these thermal fluctuations are smallest for long-range interactions, resulting in the highest
efficiency. Diabatic work extraction degrades performance due to quantum friction. We identify an approximate,
experimentally realisable counterdiabatic drive that can mitigate friction for weak interactions.
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I. INTRODUCTION

Quantum heat engines convert heat into work utilizing
some distinctly quantum effect in the reservoir or working
substance [1]. Reservoirs possessing coherence [2–4], squeez-
ing [5–11], or entanglement [12,13] have been shown to
improve engine performance. Coherence in a working sub-
stance can be utilized as a resource [14–17] and can improve
the power output of rapid engine cycles [18,19]. In the many-
body regime, interactions in a Bose gas can enhance engine
performance compared to a noninteracting gas [20–22]. Inter-
actions in a many-body quantum system can also be tuned to
change the energy of a working substance, hence providing a
means to extract work [23–25].

One of the simplest quantum working substances is an
ensemble of two-level systems (“spins”) [19,26–35]. Work
can be extracted by tuning the level spacing h̄ω(t ) via the
control of an external field, see Fig. 1(a). Including inter-
actions between spins opens up the possibility to explore
many-body quantum effects. While considerable work has ex-
plored engines with two interacting spins [36–49], much less
is known about greater numbers of spins. For nearest-neighbor
interactions, a spin chain can function as both a heat engine
and a refrigerator [50] with critical scaling of performance
close to the critical point [51]. While moderate enhancements
due to interactions have been identified in systems of two
spins [42–45], a thorough investigation of whether many-body
effects can improve the performance of a spin-chain quantum
heat engine is lacking.

In this paper we characterize the performance of an Otto
cycle with a ferromagnetic spin chain as the working sub-
stance. In addition to displaying rich many-body physics, this
system may be realized in experiments with a remarkable
degree of control [52–56]. We show that both short- and
long-range interactions improve the adiabatic work output
and efficiency in the paramagnetic phase at low temperatures
kBT � h̄ω. The performance enhancement is qualitatively ex-
plained by an analytic model considering just the ground and

first excited state, in which case the thermal state exhibits
bipartite entanglement. For temperatures kBT > h̄ω, higher
energy eigenstates are occupied and interactions degrade per-
formance. These thermal fluctuations decrease as the range
of interactions is increased, and hence greater efficiency is
most robust for long-range interactions. For diabatic work
extraction, decreasing the engine cycle time reduces perfor-
mance due to quantum friction [36,37,57]. We demonstrate an
approximate, experimentally realizable counterdiabatic drive
that can mitigate friction for weak interactions, and hence a
performance enhancement is possible at finite power output.

This paper is organized as follows. In Sec. II we intro-
duce the spin-chain model and the engine cycle. In Sec. III
we demonstrate the performance enhancement in the adia-
batic, low-temperature limit. In Sec. IV we demonstrate how
increasing temperature decreases the performance enhance-
ment. In Sec. V we show performance for finite-time work
extraction, and show how a performance enhancement can be
retained by using an approximate counter-diabatic drive. We
conclude in Sec. VI.

II. MODEL

A chain of N ferromagnetic interacting two-level spins is
described by the Hamiltonian (hereon h̄ ≡ 1)

Ĥ (ω(t )) = −ω(t )
N∑

i=1

σ̂ (i)
z − g

N∑
i, j=1
( j �=i)

Ji j σ̂
(i)
x σ̂ ( j)

x , (1)

with σ̂ (i)
μ (μ = x, y, z) the Pauli spin-1/2 matrices for spins i =

1, ..., N . The interaction strength between spins i and j is gJi j

with Ji j = 1/|i − j|p, g � 0 the nearest-neighbor-interaction
strength and p > 0 determining the range of interactions. Both
g and p are tuneable in experiments [53,55]. For N → ∞,
the system may be paramagnetic (g � ω) or ferromagnetic
(g � ω) with the precise cross-over gc(p) dependent on
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FIG. 1. (a) An Otto cycle can be realized in an ensemble of
two-level spins, as described in the main text. The area of blue and
red spots indicate the relative ground and excited state occupations,
respectively. [(b),(c)] Engine performance for a spin chain operating
adiabatically at low temperature (βH = 10ω−1

0 , βC = 2βH , N = 10).
Increasing g increases both (b) work output and (c) efficiency, with
maximum performance at g ≈ gc(p) (results are for r = rmax

NI ). Above
this, the system transitions to the ferromagnetic phase and no longer
functions as an engine. The approximate p = ∞ performance com-
puted from Eq. (6) (gray dot-dashed line) and from Eq. (9) (black
dashed line) are also shown. The gray horizontal line in (c) is the
Carnot efficiency.

p [58–64]. We denote nearest-neighbor interactions by
p = ∞.

We consider an Otto engine cycle with the following steps,
as shown in Fig. 1(a).

(1) We begin with a hot thermal state ρ th
H =

e−βH Ĥ (rω0 )/Z (βH , rω0) at level spacing ω = rω0, with r > 1
the “compression ratio” (in analogy with the ideal gas Otto
cycle, where the compression ratio is given by the ratio of
maximum and minimum gas volumes). The partition function
is Z (β, ω) = Tr e−βĤ (ω) and β = (kBT )−1 is the inverse
temperature.

(1 → 2) The system is then thermally isolated and work
is extracted by decreasing ω from rω0 to ω0, via the proto-
col ω(t )/ω0 = f (t ) (0 � t � τ ). We choose f (t ) = r + (1 −
r) sin2(πt/2τ ).

(2 → 3) Next, we cool the system at fixed ω = ω0, leaving
the system in a cold thermal state ρ th

C = e−βC Ĥ (ω0 )/Z (βC, ω0).

(3 → 4) We thermally isolate the system again and increase
ω from ω0 back to rω0, with the protocol ω(t )/ω0 = f (τ − t )
(0 � t � τ ).

(4 → 1) Finally we heat the system at fixed ω = rω0 back
to the initial state.

The work output W and efficiency η of the engine cycle
are

W = QH − QC, η = W

QH
. (2)

Here QH = Tr[Ĥ (rω0)(ρ th
H − ρ4)] is the heat input from the

hot reservoir and QC = − Tr[Ĥ (ω0)(ρ th
C − ρ2)] is the heat

output to the cold reservoir, with ρ4 the density matrix prior to
coupling to the hot reservoir and ρ2 the density matrix prior to
coupling to the cold reservoir. The density matrix at points
2 and 4 are obtained by time-evolving the von Neumann
equation ρ̇(t ) = −i[H (t ), ρ(t )] with initial conditions ρ th

H and
ρ th

C respectively, using Runge-Kutta integration.

III. ADIABATIC LOW-TEMPERATURE PERFORMANCE

A. Interactions enhance performance

We first examine the quantum adiabatic limit τ � ω−1
0 , g−1

(we set τ = 100ω−1
0 ) such that transitions between eigenstates

during the work steps are suppressed [65–68]. For zero in-
teractions and fixed βHω0 � 1, the maximum work output
occurs at a compression ratio rmax

NI ≈ 1 + (βHω0)−1, which
gives a small efficiency ηNI ≈ (βHω0)−1 that decreases with
decreasing temperature. We find that interactions drastically
improve both work output and efficiency in the paramagnetic
phase for temperatures β−1

H � ω0, see Figs. 1(b) and 1(c).
At these low temperatures, the performance enhancement is
far greater than that identified in systems of two interacting
spins [42–45]. The improvement in work output is particu-
larly pronounced, with a maximum work output ∼102 times
larger than the noninteracting ensemble. The behavior is qual-
itatively similar in all cases p = 1, 2, 3,∞ after rescaling
interactions by gc(p), which we define to be the point at which
∂2
/∂g2|ω=ω0

has a maximum (see Appendix A). Here 
 is
the energy gap to the first excited state. The improvement
increases monotonically up to g ≈ gc(p), before dropping
abruptly.

We now derive an approximate analytic theory that quanti-
tatively describes the performance enhancement for low-spin
excitation and qualitatively describes the performance en-
hancement generally. The spin operators can be written in
terms of bosonic operators via a Holstein-Primakoff trans-
formation [69]. Expanding to quadratic order in bosonic
operators gives an analytically tractable theory. To low-
est order in g/ω and for large N and β we obtain (see
Appendix B)

ln Z ≈ NGp(βg)e−β
, (3)

where Ne−β
 is the low-temperature free energy of N two-
level systems with level splitting 
(ω) = ω − ω0g/gc. We
have assumed a frame where the ground-state energy is
zero. The factor Gp(βg) arises from thermal fluctuations and
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depends on p,

Gp(βg) ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
1

2πβgζ (p−2) , p > 3,√
1

πβg(3+ln βg) , p = 3,

1
3βgζ (2) , p = 2,

1, p = 1,

(4)

with ζ (s) = ∑∞
m=1 1/ms the Riemann zeta function.

Using Eq. (3), the system energy 〈Ei〉 at the four points
i = 1, 2, 3, 4 in the cycle in Fig. 1(a) under adiabatic operation
are

〈E1〉 = N
(rω0)Gp(βH g)e−βH 
(rω0 ),

〈E2〉 = N
(ω0)Gp(βH g)e−βH 
(rω0 ),

〈E3〉 = N
(ω0)Gp(βCg)e−βC
(ω0 ),

〈E4〉 = N
(rω0)Gp(βCg)e−βC
(ω0 ). (5)

We neglect a correction term ∂Gp(βg)/∂β = O(β−1Gp(βg))
in Eq. (5), which is valid for low temperatures. Equation (5)
gives

W = Nω0(r − 1)
[
Gp(βH g)e−βH 
(rω0 ) − Gp(βCg)e−βC
(ω0 )

]
,

η = 1 − 
(ω0)


(rω0)
. (6)

For g < gc(p), increasing g decreases 
(ω). From examina-
tion of Eq. (6), this increases low-temperature work output
as W ∼ WNIeβH ω0g/gc , consistent with the exponential increase
in Fig. 1(b), and efficiency as η ∼ ηNI/(1 − g/rgc). Above
gc the system transitions to the ferromagnetic state and 
,
and therefore ∂2 ln Z/∂β∂ω, changes sign. The cycle therefore
no longer functions as a heat engine [50], resulting in the
abrupt drop in performance above gc in Figs. 1(b) and 1(c).
The analytic result Eq. (6) for p = ∞ is shown in Figs. 1(b)
and 1(c).

The bosonic approximation above permits a calculation
of the bipartite entanglement of the spin chain. For low
temperatures, a thermal state can be approximated by ρ1 ≈
(|0〉 〈0| + e−β
 |1〉 〈1|)/(1 + e−β
), with |0〉 the ground state,
|1〉 = ∑N

i=1 σ̂
(i)
+ |0〉 /

√
N the approximate first excited state

(independent of p) and σ̂
(i)
+ = σ̂ (i)

x + iσ̂ (i)
y . In Appendix C, we

show that ρ1 is entangled according to the Peres-Horodecki
criterion [70–72]. The performance enhancement, Eq. (6),
requires access to an entangled thermal state, and so coincides
with many-body quantum effects. The entanglement of |1〉 is
also directly evident from the entanglement entropy, which is
S = ln(N/2) for a partition dividing the spin chain in half,
see Appendix C. In contrast, in a mean-field approximation,
the interaction of spin i with the remaining spins is replaced
by −g�iσ̂

(i)
x . Here �i = 2

∑
j �=i Ji js j is an effective transverse

drive and s j = 〈σ̂ ( j)
x 〉mf is a mean-field approximation for

spin j. The energy gap of spin i then increases with g as√
ω2 + g2�2

i and interactions degrade performance.
In the limit of large N , a chain with nearest-neighbor inter-

actions maps onto a system of noninteracting fermions with
energies [73]

Eω(θ ) =
√

ω2 + g2 − 2ωgcos θ. (7)

FIG. 2. Engine performance for a spin chain operating adia-
batically at low temperature (βH = 10ω−1

0 , βC = 2βH , N = 10).
(a) Work output and (b) efficiency as a function of compression ratio
for g = gc(p), with dotted lines indicating the noninteracting results
WNI and ηNI (WNI is scaled by a factor of 100). The gray horizontal
line in (b) is the Carnot efficiency.

For β−1
H � ω0, g, only the lowest-energy states are appre-

ciably occupied. Considering only the ground state and
eigenstates with singly occupied fermions gives

ln Z ≈ N

π

∫ π

0
e−βEω (θ ) dθ. (8)

In the adiabatic limit, the system energies 〈Ei〉 computed from
Eq. (8) are

〈E1〉 = N

π

∫ π

0
Erω0 (θ )e−βHErω0 (θ ) dθ,

〈E2〉 = N

π

∫ π

0
Eω0 (θ )e−βHErω0 (θ ) dθ,

〈E3〉 = N

π

∫ π

0
Eω0 (θ )e−βCEω0 (θ ) dθ,

〈E4〉 = N

π

∫ π

0
Erω0 (θ )e−βCEω0 (θ ) dθ. (9)

The performance computed from Eq. (9) is plotted alongside
the full numerical results in Figs. 1(b) and 1(c) and agrees well
with the p = ∞ results for g < gc.

B. Effect of compression ratio

Increasing the compression ratio increases performance
until r = r′, with r′ ∼ 1.1 at g = gc(p). For larger compres-
sion ratio the performance abruptly drops, see Fig. 2. Unlike
the noninteracting case, the peak work output and efficiency
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FIG. 3. The (a) work output and (b) efficiency for increasing
system size for g = 0.4ω0, showing nonextensive scaling for p = 1.
The perturbative prediction W ∼ N1+βH g is also shown (black dotted
line). [(c),(d)] p = 1 performance for additional values of g/ω0 (blue
symbols) along with the perturbative predictions for W (matching
black dotted lines). The gray lines in (b) and (d) are the Carnot
efficiency. All results are for βH = 10ω−1

0 , βC = 2βH and r = rmax
NI .

can both occur at a comparable compression ratio. Equa-
tion (6) describes this behavior: within this approximation,
performance increases until 1 − 
(ω0)/
(rω0) ∼ ηC , with
ηC = 1 − βH/βC ≡ 1 − 1/rC the Carnot efficiency. Hence
r′ ≈ rC − (rC − 1)g/gc + O(g2) decreases with increasing g.
As a result, for g ∼ gc(p) we can have high efficiency at
small compression ratios r ∼ rmax

NI . Without interactions, the
efficiency is maximum for a compression ratio rC � rmax

NI .
Choosing ω0 and r to maximise the work output in Eq. (6)

gives the same efficiency as a cold two-level atom at max-
imum work output (ignoring corrections due to Gp). This is
approximately the Curzon-Ahlborn efficiency [74]. The value
of ω0 obtained satisfies (1 − g/gc)βCω0 ≈ 1 + η−1

C ln rC . For
η−1

C ln rC ∼ 1 and βCω0 � 1, we are close to this regime only
if g ≈ gc.

C. Finite-size scaling

The dependence of work and efficiency on chain size
N is shown in Fig. 3. For p = ∞ and p = 3 the perfor-
mance tends toward extensive scaling as N is increased.
Finite-size effects are slightly more pronounced for p = 2;
however, the scaling is close to extensive. For p = 1 the

performance increases nonextensively due to a dependence of

 on N [see inset to Fig. 6(a) in Appendix A]. Nonextensive
thermodynamics is expected in systems with long-range in-
teractions [75,76]. The critical point gc also depends on N for
p = 1. In the cold, perturbative limit (see Appendix B), 
 ∼
ω − g(γ + ln N ) with γ the Euler-Mascheroni constant. The
two-level approximation, Eq. (6), then gives W ∼ N1+βH g.
This approximation captures the dependence of work on par-
ticle number for small g/gc, see Fig. 3(c). Increasing either
g or N increases g/gc and the perturbative approximation
W ∼ N1+βH g breaks down. Scaling g by gc effectively Kac
renormalizes the interactions, rendering the long-range sys-
tem extensive [55,63,77–79].

IV. ADIABATIC PERFORMANCE FOR INCREASING
TEMPERATURE

As the temperature increases, thermal fluctuations render
Eq. (6) invalid and we find that the performance enhance-
ment relative to the noninteracting system is diminished, see
Figs. 4(a) and 4(b). A performance enhancement is present
as long as βH � 4ω−1

0 , coinciding with the regime where
only the ground and first excited state are appreciably occu-
pied, see Fig. 4(c). The interaction strength gmax that gives
maximum work output increases toward gc(p) for decreas-
ing temperature, consistent with the discussion in Sec. III B,
see inset to Fig. 4(a). Curiously, we see a gradual increase
in gmax above gc(p) for very low temperatures. This is not
accounted for by Eq. (9), and so we expect is due to finite-size
effects.

The transverse Ising model gives a qualitative understand-
ing of the diminished performance enhancement at higher
temperatures. The energy levels of this model are sums of
fermion energies Eω(θk ), with θk = 2πk/N (k = 0, ..., N −
1) [73]. Interactions diminish fermion energies with cos θk >

g/ω, with the most pronounced reduction occurring for the
lowest energy fermion (k = 0). Hence, the enhancement is
largest when only the first excited state is occupied, and
diminishes as more excited states are occupied [80]. The
efficiency enhancement is most robust to increasing temper-
ature for long-range interactions, see Fig. 4(b). At a given
temperature β � 4ω−1

0 , the ratio
∑2N −1

i=2 ni/n1 decreases as
the range of interactions increases, see Fig. 4(c). Here ni =
e−βEi/Z (β, ω) is the thermal occupation of energy level i =
0, ..., 2N − 1, indexed in order of increasing energy Ei. Hence
long-range interactions are most effective at suppressing fluc-
tuations beyond the approximation (6).

For sufficiently large βHω0, interactions degrade perfor-
mance, see Figs. 4(a) and 4(b). Expanding the dimensionless-
free energy in powers of β, we obtain

ln Z = ln Z∞ + Nβ2ω2

8
+ β2g2 ∑

i(�
′
i )

2

8
+ O(β4), (10)

with Z∞ = 2N the infinite temperature partition func-

tion and �′
i =

√
1
2

∑
j �=i J2

i j . At order β2, the free en-

ergy is indistinguishable from the mean-field free energy
ln Tr eβ

∑
i (ωσ̂ (i)

z +g�′
i σ̂

(i)
x ), in which case interactions degrade

performance. The scaling ln(Z/Z∞) ∝ β2 is clearly present
for temperatures βH � ω−1

0 , see Fig. 4(d). For tempera-
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FIG. 4. Adiabatic engine performance for varying temperature.
(a) Work output and (b) efficiency exceed the noninteracting values
(dotted lines) for βH � 4ω−1

0 [dark lines, g = gc(p); light lines, g =
0.8gc(p); r = 1.1]. The gray line in (b) is the Carnot efficiency. Inset
in (a) shows dependence of gmax/gc(p) on βH with r = rmax

NI ; dashed
line is gmax/gc(p) computed from Eq. (9). (c) Thermal energy-level

occupations n0 (dotted lines), n1 (solid lines), and
∑2N −1

i=2 ni (dashed
lines) at g = gc(p). The performance enhancement occurs when
occupation is predominantly in the ground and first excited state.
Long-range interactions suppress occupation beyond the first excited
state, resulting in the highest efficiency in (b). (d) Dimensionless free
energy ln Z at g = gc(p) showing the β2 scaling (dashed line) for
β � ω−1, coinciding with the regime of reduced performance. All
results are for N = 10 with βC = 2βH .

tures β ∼ ω−1
0 , we expect an interplay between mean-field

degradation and the enhancement (6), which will gov-
ern the dependence of gmax on temperatures βH � 8ω−1

0
[Fig. 4(a)].

V. DIABATIC WORK EXTRACTION

For diabatic (finite-time) work extraction, interactions
generally degrade engine performance due to “quantum fric-
tion” [36,37,57]. This friction arises when the interaction
component of the Hamiltonian does not commute with the
driving component, and hence the density matrix develops
off-diagonal elements in the energy eigenbasis. The diabatic
performance of a p = ∞ engine with weak interactions is
shown in Fig. 5(a). The peak power output occurs for a time
step τ ≈ 4ω−1

0 (the precise value is dependent on g), at which

FIG. 5. (a) Diabatic work output WD and efficiency ηD for p = ∞
with weak interactions g/gc = 0.2. The maximum power output
PD (see inset) occurs at τ ≈ 4ω−1

0 (star), with performance rapidly
declining for smaller τ . The approximate counterdiabatic driving
[Eq. (11)] results in work output (WCD) and efficiency (ηCD) close
to the adiabatic performance even for rapid engine cycles. (Inset)
The power output with counterdiabatic driving PCD (red line) grows
∝ τ−1 (black dashed line). The blue line is PD. (b),(c) The effective-
ness of Eq. (11) diminishes for larger g/gc(p) or smaller p (results for
τ = ω−1

0 ; for p = ∞, we use the exact χi j , whereas for p = 1, 2, 3,
we set χi j = 1). All results are for N = 10 and r = rmax

NI .

point the efficiency is close to the adiabatic efficiency. For
faster cycles, the performance rapidly decreases.

In principle, quantum friction can be mitigated completely
using a counterdiabatic driving field Ĥcd [81,82]. In practice,
exact counterdiabatic driving in a many-body system requires
unrealistic interactions between all particles [83–89], and ap-
proximate protocols are required. A powerful approximation
method is to find Ĥcd variationally by minimizing the action
S = Tr[G(Ĥcd )2], with G(Ĥcd ) = ∂Ĥ/∂t + i[Ĥcd, Ĥ ] and Ĥcd

expanded in some truncated set of operators [90,91]. We
use Ĥcd = ∑

i j( j �=i) Ci j σ̂
(i)
x σ̂

( j)
y , which is the optimal coun-

terdiabatic drive over all one-body and two-body operators
(c.f. [92]). For large N in the paramagnetic phase, we obtain
(see Appendix D for details)

Ĥcd = −
N∑

i, j=1
( j �=i)

gω′(t )Ji j

2ω(t )2
χi j (t )σ̂ (i)

x σ̂ ( j)
y , (11)

with χi j (t ) = 1 + O(g2/ω2) given in Appendix D. The work
protocols f (t ) and f (τ − t ) satisfy f ′(0) = f ′(τ ) = 0, and
hence the net power transferred to the counterdiabatic drive
field is zero. This can be shown explicitly by integrating by
parts the instantaneous power 〈∂ (Ĥ + Ĥcd )/∂t〉 and noting
that only the boundary term remains.

024310-5



L. A. WILLIAMSON AND MATTHEW J. DAVIS PHYSICAL REVIEW B 109, 024310 (2024)

For nearest-neighbor interactions, χi j = 1/(1 + g2/ω(t )2)
and Eq. (11) drastically improves the diabatic engine opera-
tion for g � 0.3gc, see Fig. 5. For rapid cycles, the work output
approaches a constant with little cost in efficiency, and hence
the power output increases as τ−1, see inset to Fig. 5(a). In
practice, the time scale of the thermalization steps will limit
the engine to finite power [26,93]. Note η ∝ W irrespective
of counterdiabatic driving [Fig. 5(a)], hence QH depends only
weakly on τ .

For increasing g/gc there is a trade-off in the performance
gained from interactions and the performance lost from quan-
tum friction, with peak performance occurring for g/gc ≈
0.3 for τ = ω−1

0 . Here, the work output from a chain with
nearest-neighbor interactions is about 50% larger than the
noninteracting chain and both show comparable efficiency,
see Figs. 5(b) and 5(c). For p = 1, 2, 3, χi j (t ) is difficult
to engineer since the interactions must be reconfigured at
different times. To simplify, we expand to lowest order in
g/ω and set χi j (t ) = 1. While this is somewhat effective at
mitigating diabatic degradation for weak interactions, the per-
formance enhancement diminishes as the range of interactions
increases. Hence a chain with p = 1, g/gc � 0.3 and τ = ω−1

0
has approximately the same performance as a noninteracting
chain. Interestingly, we find that Eq. (11) is most effective
for βH � 10ω−1

0 , with reduced performance for colder tem-
peratures. This may be due to thermal fluctuations countering
quantum friction [94].

VI. CONCLUSIONS

We have shown that an engine of interacting spins outper-
forms a noninteracting engine in the paramagnetic phase for
low temperatures and adiabatic operation, due to a lowering
of the first excited state energy gap. The enhancement in
work output is particular pronounced, with W/WNI increas-
ing exponentially with increasing interactions. The efficiency
enhancement is largest for long-range interactions, which sup-
press occupation of energy levels beyond the first excited
state. A performance enhancement due to long-range inter-
actions has also been identified in Kitaev chains [95,96]. For
diabatic engine operation, quantum friction degrades perfor-
mance. We have presented one counterdiabatic method that
mitigates friction for weak interactions; however, other meth-
ods could be explored [83,89,94,97–102]. Modulating the
phase and detuning of the drive profile may better isolate the
two lowest energy eigenstates [103–107], limiting degrada-
tion due to thermal fluctuations and quantum friction. The
low-temperature performance enhancement coincides with
many-body quantum effects due to bipartite entanglement
arising from the first excited state. A more thorough investiga-
tion of the entanglement properties of the thermal spin chain
could reveal how entanglement changes for higher tempera-
tures [108–111] or diabatic operation.
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FIG. 6. (a) Energy gap 
 between ground and first excited state
for a 10-spin chain. The energy gap decreases as 
 = 1 − g/gc(p) +
O(g2), where gc(p) is the critical interaction strength separating the
paramagnetic and ferromagnetic phases. In the finite-sized system,
we define gc(p) to be the point where ∂2
/∂g2, shown in (b), is
a maximum. Inset in (a) shows the dependence of 
 on N for
g = 0.4ω.

APPENDIX A: DETERMINING gc(p)

In this Appendix we explain how we determine the crit-
ical interaction strength gc separating the paramagnetic and
ferromagnetic phases in a finite-sized spin chain. The en-
ergy gap 
 between the ground and first excited state is
shown in Fig. 6(a). The energy gap decreases approximately
linearly with increasing g/gc(p). In an infinite system with
nearest-neighbor interactions, the exact energy gap is 
 =
|ω − g| [73] and hence ∂2
/∂g2 = δ(ω − g). Finite-size ef-
fects regularize the divergence of ∂2
/∂g2, however, we still
observe a clear peak at a critical value of g, see Fig. 6(b). We
define gc(p) to be the value of g corresponding to this peak.
The critical value is close to ω for p = ∞ and decreases for
decreasing p. The critical value will depend on ω. We fix gc(p)
by defining this to be the critical value at ω = ω0.

APPENDIX B: BOSONIC SPIN-WAVE APPROXIMATION

In this Appendix we derive the bosonic spin-wave ap-
proximation for the Hamiltonian (1), which leads to the
approximation Eq. (6). We assume a large chain so that bound-
ary effects can be ignored and hence we approximate the
system as being translationally invariant (equivalently we can
impose periodic boundary conditions). The spin operators can
be converted to expressions in terms of bosonic operators via
a Holstein-Primakoff transformation [69],

σ̂ (i)
x − iσ̂ (i)

y → (√
1 − â†

i âi
)
âi, σ̂ (i)

z → 1
2 − â†

i âi. (B1)
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In the low-excitation regime we expand the Hamiltonian (1)
to quadratic order in the bosonic operators âi, â†

i . This
gives [69,112,113]

Ĥ = −ωN

2
+ ω

N∑
i=1

â†
i âi − g

4

N∑
i, j=1
( j �=i)

Ji j
(
âi + â†

i

)(
â j + â†

j

)
.

(B2)
Fourier transforming and carrying out a Bogoliubov transfor-
mation gives [114]

Ĥ = ε0 +
N−1∑
k=0

(
ω sign

(
ω − gJ̃k

)√
1 − 2g

ω
J̃k

)
b̂†

kb̂k, (B3)

with ε0 the ground-state energy, b̂k bosonic operators for the
quasiparticle modes, and

J̃k =
N−1∑
m=1

cos (2πkm/N )

mp
= CN−1

p

(
2πk

N

)
. (B4)

Here CN
p (θ ) = ∑N

m=1 cos(mθ )/mp is the finite-N generalized
Clausen function [115]. For nearest-neighbor interactions,
J̃k = cos(2πk/N ) and hence CN

∞(θ ) = cos θ . From hereon we
assume sign(ω − gJ̃k ) > 0.

The thermodynamic properties of the spin chain can be
determined from the partition function,

Z =
N−1∏
k=0

1

1 − exp

(
−βω

√
1 − 2g

ω
J̃k

) , (B5)

with logarithm

ln Z =
N−1∑
k=0

ln

⎡
⎢⎣ 1

1 − exp
( − βω

√
1 − 2g

ω
J̃k

)
⎤
⎥⎦,

≈
N−1∑
k=0

exp

(
−βω

√
1 − 2g

ω
J̃k

)
. (B6)

The latter approximation assumes low temperature. We have
ignored the ground-state energy, which adds an inconsequen-
tial constant to ln Z . To proceed analytically, we assume small
gJ̃k/ω and approximate

√
1 − 2gJ̃k/ω ≈ 1 − gJ̃k/ω. Hence

ln Z ≈ e−βω

N−1∑
k=0

exp
(
βgJ̃k

)
. (B7)

We reserve a discussion of p = 1 for later and for
now assume p > 1. For large N , CN−1

p (θ ) → Cp(θ ) =∑∞
m=1 cos(mθ )/mp and we can replace the sum over k in

Eq. (B7) by an integral

N−1∑
k=0

exp
(
βgJ̃k

) → N

π

∫ π

0
exp

(
βgCp(θ )

)
dθ ≡ NIp. (B8)

For even integers p,

Cp(θ ) = − (−1)p/2(2π )p

2p!
Bp

(
θ

2π

)
, (B9)

with Bp(x) the Bernoulli polynomials, which are polynomials
of order p. We obtain the following results for p = ∞ and
p = 2,

I∞ = I0(βg)
β→∞∼ eβg

√
2πβg

,

I2 = 2eβgπ2/6√
βgπ2

D

(√
βgπ2

2

)
β→∞∼ eβgζ (2)

3βgζ (2)
, (B10)

where I0(x) is the modified Bessel function, D(x) is Dawson’s
function (expressible in terms of the imaginary error function
erfi(x) via D(x) = (

√
π/2)e−x2

erfi(x)), and ζ (2) = π2/6.
In general, for p > 3 the integral∫ 1

0 exp ((mβgCp(2πx))) dx can be approximated at low
temperatures using the method of steepest descent,

Ip =
√

1

2πβgCp−2(0)
exp (βgCp(0)), p > 3, (B11)

where Cp(0) = ∑∞
m=1 m−p = ζ (p). This does not work for

p = 2 since C′
2(θ )|θ=0 �= 0. This reflects that the spectrum is

linear rather than quadratic around the lowest-energy state.
Nor does it work for p = 3, since C′′

3 (θ )|θ=0 diverges. We
observe numerically that exp (βgC3(θ )) is dominated by its
small θ behavior for large βg. Hence for p = 3 we expand
the Clausen function in a power series around the maximum
θ = 0,

C3(θ ) ≈ ζ (3) + 1
2θ2 ln θ − 3

4θ2 + O(θ4). (B12)

This gives

I3 ≈ eβgζ (3)

π

∫ π

0
exp

(
−βgθ2

4
(3 − 2 ln θ )

)
dθ,

= eβgζ (3)

π

∫ π

0
exp

(
−βgθ2

4

(
3 + ln(βg) − ln(βgθ2)

))
dθ,

= eβgζ (3)

π
√

βg

∫ π
√

βg

0
uu2/2 exp

(
−1

4
u2(3 + ln(βg))

)
du,

β→∞∼ eβgζ (3)

π
√

βg

∫ π
√

βg

0
exp

(
−1

4
u2(3 + ln(βg))

)
du,

= eβgζ (3)

√
πβg(3 + ln βg)

erf
(π

2

√
3βg + βg ln βg

)
,

β→∞∼ eβgζ (3)

√
πβg(3 + ln βg)

. (B13)

Hence we find a logarithmic correction ln βg to the parti-
tion function for p = 3, which interpolates between p = 2
and p > 3. The asymptotic behavior in the fourth line fol-
lows by replacing uu2/2 by limu→0+ uu2/2 = 1 due to exp ( −
1
4 u2( ln(βg) + 3)) being sharply peaked around the origin for
large βg. The validity of this approximation was confirmed
numerically. Equations (B10), (B11), and (B13) give ln Z =
NGp(βg)e−β
 with 
 = ω − gζ (p) and Gp(βg) arising from
thermal fluctuations and dependent on p.

For p = 1, Eq. (B4) at k = 0 diverges with N as J̃0 ≈
ln N + γ , with γ the Euler-Mascheroni constant. We separate
out this term in Eq. (B7). For k �= 0, Eq. (B4) converges and
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we have
∞∑

m=0

cos(mθ )

m
= C1(θ ) = − ln |2 sin(θ/2)|. (B14)

Hence

ln Z ≈ e−βωeβgγ N1+βg + e−βω�(βg) (B15)

with

�(βg) = 2−βg
N−1∑
k=1

(
sin

πk

N

)−βg

,

= 21−βg
(N−1)/2∑

k=1

(
sin

πk

N

)−βg

(B16)

arising from thermal fluctuations. We have assumed N is odd
in the second line in Eq. (B16), however, even N will give the
same final result below. The sum in �(βg) is dominated by
small k terms, hence we can use the small-angle approxima-
tion sin(θ ) ≈ θ ,

�(βg) = 2

(
N

2π

)βg (N−1)/2∑
k=1

k−βg,

N�1≈ 2

(
N

2π

)βg

ζ (βg). (B17)

This term is smaller than the first term in Eq. (B15) by a factor
∼N−1(2πeγ )−βg. Hence thermal fluctuations are suppressed
for low temperatures and large N , and we obtain

ln Z ≈ Ne−β
, (B18)

with 
 ≈ ω − g(ln N + γ ). The low-temperature work output
within this approximation is [see Fig. 3(a)],

W ≈ Nω0(r − 1)
(
e−βH 
 − e−βC


)
,

≈ ω0(r − 1)e−βH ω0 eβH gγ N1+βH g. (B19)

Summarizing, to lowest order in g/ω and for large N and
β, we obtain the dimensionless free energies,

ln Z ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
1

2πβgζ (p−2) e
−β
, p > 3,√

1
πβg(3+ln βg) e

−β
, p = 3,

1
3βgζ (2) e

−β
, p = 2,

e−β
, p = 1,

(B20)

with 
(ω) = ω − ω0g/gc.

APPENDIX C: CALCULATION OF ENTANGLEMENT

In this Appendix we calculate the low-temperature entan-
glement of the spin chain. Within the bosonic approximation
in Appendix B, the first excited state is a state with one
excitation uniformly spread across all spins,

|1〉 = 1√
N

N∑
i=1

σ̂
(i)
+ |0〉 . (C1)

We consider a partition dividing the chain in half. The en-
tanglement entropy of state |1〉 with respect to this partition
is

S = − TrR(ρL ln ρL ), (C2)

with ρL = TrL(|1〉 〈1|) and TrR(L) a partial trace over states in
the right(left) half of the chain. It is straightforward to show
that this gives S = ln(N/2).

For low temperatures, we can qualitatively describe the
system by the thermal state

ρ1 = 1

1 + e−β


(|0〉 〈0| + e−β
 |1〉 〈1|), (C3)

where 
 = ω − ω0g/gc for small g/ω. The Peres-Horodecki
criterion states that a separable density matrix has pos-
itive partial trace [70,71]. Hence, if the density matrix
does not have positive partial trace, the state is entan-
gled (“non-PPT entanglement”). Due to the symmetry of
the state, a sufficient condition for ρ1 to exhibit non-PPT
entanglement is Tr(M̂ ⊗ M̂ρ1) < 0, with M̂ any Hermitian
operator acting on either the left (M̂⊗) or right (⊗M̂)
partition of the chain [72]. We choose M̂ ⊗ M̂ = ∏N

i=1 m̂i

with

m̂i = 1

(1 + α)1/N

[
σ̂

(i)
− σ̂

(i)
+ − ασ̂

(i)
+ σ̂

(i)
−

]
, (C4)

with α > 0 a free parameter. This gives

Tr(M̂ ⊗ M̂ρ1) = 1 − αe−β


(1 + α)(1 + e−β
)
. (C5)

We can make Tr(M̂ ⊗ M̂ρ1) arbitrarily close to −(1 + eβ
)−1

by choosing α to be large (α � eβ
). This choice of M̂ gives
negative Tr(M̂ ⊗ M̂ρ1) and hence the state exhibits non-PPT
entanglement.

APPENDIX D: CALCULATION OF COUNTERDIABATIC
DRIVE

In this Appendix we derive the approximate counterdia-
batic drive Eq. (11). We find the coefficients Ci j in Ĥcd =∑

i j( j �=i) Ci j σ̂
(i)
x σ̂

( j)
y by minimizing the action

S = Tr (G(Ĥcd )2), (D1)

with G = ∂Ĥ
∂t + i[Ĥcd, Ĥ ] [90,91]. Hence we need to solve

∂S

∂Ci j
= 2 Tr

(
G

∂G

∂Ci j

)
= 0. (D2)
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For notational simplicity, we set Jii = Cii = 0. We have

G = −ω′(t )
∑

p

σ̂ (p)
z − iω(t )

∑
i, j,p

Ci j
[
σ̂ (i)

x σ̂ ( j)
y , σ̂ (p)

z

] − ig
∑

i, j,p,q

Ci jJpqσ̂
(i)
x

[
σ̂ ( j)

y , σ̂ (p)
x σ̂ (q)

x

]

= −ω′(t )
∑

p

σ̂ (p)
z + ω(t )

∑
i, j,p

Ci j
(
σ̂ (i)

x σ̂ ( j)
x δp j − σ̂ (i)

y σ̂ ( j)
y δpi

) − g
∑

i, j,p,q

Ci jJpqσ̂
(i)
x

(
σ̂ (p)

z σ̂ (q)
x δ j p + σ̂ (p)

x σ̂ (q)
z δ jq

)

= −ω′(t )
∑

p

σ̂ (p)
z + ω(t )

∑
i, j

Ci j
(
σ̂ (i)

x σ̂ ( j)
x − σ̂ (i)

y σ̂ ( j)
y

) − 2g
∑
i,p,q

JpqCipσ̂
(i)
x σ̂ (q)

x σ̂ (p)
z . (D3)

Hence

∂G

∂Cmn
= ω(t )

(
σ̂ (m)

x σ̂ (n)
x − σ̂ (m)

y σ̂ (n)
y

) − 2g
∑

�

Jn�σ̂
(m)
x σ̂ (�)

x σ̂ (n)
z . (D4)

We now want to calculate the trace of G∂G/∂Cmn (m �= n). The three terms in G and the two terms in ∂G/∂Cmn gives a total of
six terms. Three of these are zero, since the trace of terms with an odd number of spin-1/2 operators is zero. The three remaining
terms are

Tr

⎡
⎣2gω′(t )

∑
p

σ̂ (p)
z

∑
�

Jn�σ̂
(m)
x σ̂ (�)

x σ̂ (n)
z

⎤
⎦ = 2N gω′(t )Jmn

8
. (D5)

Tr

⎡
⎣ω(t )2

∑
p,q

Cpq
(
σ̂ (p)

x σ̂ (q)
x − σ̂ (p)

y σ̂ (q)
y

)(
σ̂ (m)

x σ̂ (n)
x − σ̂ (m)

y σ̂ (n)
y

)⎤⎦ = 2N ω(t )2Cmn

4
. (D6)

Tr

⎡
⎣4g2

∑
p,q,r

JpqCpr σ̂
(r)
x σ̂ (q)

x σ̂ (p)
z

∑
�

Jn�σ̂
(m)
x σ̂ (�)

x σ̂ (n)
z

⎤
⎦ = 2N g2

(
Jmn(JC)nn + 1

2 (J2)nnCmn − J2
mnCmn

)
8

. (D7)

Combining terms gives the coupled linear equations that determine Cmn,

gω′(t )Jmn + 2ω(t )2Cmn + g2
(
Jmn(JC)nn + 1

2 (J2)nnCmn − J2
mnCmn

) = 0. (D8)

This gives

Cmn = − gω′(t )Jmn + g2Jmn(JC)nn

2ω(t )2 + g2
[

1
2 (J2)nn − J2

mn

] . (D9)

Multiplying both sides by g2Jnm and summing over m gives

g2(JC)nn = −(gω′(t ) + g2(JC)nn)λn, (D10)

with

λn =
∑

m

g2J2
mn

2ω(t )2 + g2
[

1
2 (J2)nn − J2

mn

] . (D11)

Equation (D10) can be rearranged to give

g2(JC)nn = −gω′(t )λn

1 + λn
. (D12)

Substituting this into Eq. (D9) gives

Cmn = − gω′(t )
(

1
1+λn

)
Jmn

2ω(t )2 + g2
[

1
2 (J2)nn − J2

mn

] . (D13)

For an infinite chain with Jmn = 1/|m − n|p, (J2)nn/2 = ζ (2p), and λn = λ is independent of n. For nearest-neighbor interac-
tions, λ = g2/ω(t )2, and

Cmn = − gω′(t )

2(ω(t )2 + g2)
δn,m+1. (D14)

Using Mathematica, we find that λ can be evaluated analytically for selected values of p. For example, for p = 1, λ = 1 − x cot x
with x = πg/

√
2ω(t )2 + ζ (2)g2.
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