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Continuous-time quantum Monte Carlo refers to a class of algorithms designed to sample the thermal
distribution of a quantum Hamiltonian through exact expansions of the Boltzmann exponential in terms of
stochastic trajectories which are periodic in imaginary time. Here, we show that for (sign-problem-free) quantum
many-body systems with discrete degrees of freedom—such as spins on a lattice—this sampling can be done in a
rejection-free manner using transition path sampling (TPS). The key idea is to converge the trajectory ensemble
through updates where one individual degree of freedom is modified across all time while the remaining unaltered
ones provide a time-dependent background. The ensuing single-body dynamics provides a way to generate
trajectory updates exactly, allowing one to obtain the target ensemble efficiently via rejection-free TPS. We
demonstrate our method on the transverse field Ising model in one and two dimensions, and on the quantum
triangular plaquette (or Newman-Moore) model. We show that despite large autocorrelation times, our method is
able to efficiently recover the respective quantum phase transition of each model. We also discuss the connection
to rare event sampling in continuous-time Markov dynamics.
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I. INTRODUCTION

Statistical mechanics has facilitated the study of many-
body systems through Monte Carlo sampling for several
decades. Originally developed for classical Hamiltonians,
classical Monte Carlo methods allow the sampling of the
Boltzmann distribution by proposing updates to a configu-
ration together with a criterion, such as Metropolis [1,2] or
Glauber [3], to accept or reject the changes. At the same
time, Monte Carlo sampling can be generalized to study the
Boltzmann distribution of quantum many-body Hamiltonians
[4]. However, a complication here is that the weights of the
configurations require the evolution to be computed in imagi-
nary time.

A standard approach is to split the imaginary-time evo-
lution of the quantum partition sum into discrete time steps,
giving rise to trajectories of configurations in discretized
imaginary time, where the weightings of the trajectories can
be estimated for small time steps through a Trotter-Suzuki
decomposition [5,6]. This procedure can be made exact by
considering a continuous-time expansion instead, in terms
of a perturbative expansion of the Boltzmann exponential
in the interaction picture and to all orders, yielding a sum
over classical trajectories in continuous time [7–10]. In either
of these approaches, there is added complexity in relation
to the classical case, as imaginary-time trajectories have to
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be sampled by making changes to the temporal degrees of
freedom in addition to the spatial ones [11].

In this paper, we focus on the continuous-time expansion
of the quantum Boltzmann distribution through trajectory en-
sembles. For systems with discrete local degrees of freedom
(and in the absence of a sign problem [12,13]), we show
how the trajectories that define the quantum partition sum
can be sampled through the realization of the so-called Doob
dynamics (see, e.g., Refs. [14–16]), which optimally samples
rare events. Specifically, we show how this can be achieved
efficiently through exact trajectory updates which are local
in space but extensive in time. In this way we can generate
ensembles of trajectories using a version of transition path
sampling (TPS), which is rejection-free (in the sense it does
not require any acceptance criteria) [17,18].

We illustrate the method by studying the transverse field
Ising model (TFIM) in one and two spatial dimensions. In
this case, we sample many-body trajectories by updating the
trajectories of individual spins, while keeping the other spins
as an effective time-dependent background. This approach is
similar to the one in Ref. [17], which studied the TFIM on the
Bethe lattice, and to the one in Ref. [18], which studied transi-
tion events of the classical 2D Ising model. It also generalizes
the approach adopted in Ref. [19], which studied the ground-
state properties of the 1D TFIM via time- and space-local TPS
updates. Here, we demonstrate that this approach is capable of
predicting the well-known continuous phase transitions for the
1D and 2D TFIMs, despite the fact that the local updates suffer
from large autocorrelation times close to criticality. It is im-
portant to note that there exist update schemes which can over-
come the difficulties of criticality, for example, cluster updates
[20,21] (a generalization of the Swendsen-Wang algorithm
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[22] to continuous-time ensembles), and the Worm algorithm
[23]. Reference [24] demonstrates the use of our approach
where these alternative methods are difficult to formulate.

We also show how to use our approach with more complex
spin interactions by means of customized local updates. As
a concrete example, we study the quantum Newman-Moore
model [19,24–29], also known as the quantum triangular pla-
quette model (QTPM). This model builds on the classical
TPM [30–32], a system of spins with three-body interactions
studied in the context of glasses, making it quantum by adding
a transverse magnetic field. For the QTPM, we devise local
updates by simultaneously changing the trajectories of three
neighboring spins. Our method can effectively recover the
first-order quantum phase transition of the QTPM [19,24–
26,28]. We further show how thermal annealing can be im-
plemented to improve sampling close to the transition point.

The paper is structured as follows. Section II formalizes
the connection between the quantum Boltzmann distribution
and rare-trajectory sampling, explaining how observables can
be estimated from trajectories. Section III then explains how
the optimal Doob dynamics can be used to sample trajec-
tories from the quantum Boltzmann distribution. Section IV
demonstrates how this approach can be used to incorpo-
rate a single-spin update scheme for spin models with a
simple transverse field, in analogy to Ref. [17], by imple-
menting the method for the 1D and 2D TFIM. Section V
generalizes the method to Hamiltonians with more complex
interaction terms, using the QTPM as a concrete exam-
ple. We give our conclusions in Sec. VI, where we discuss
the possibility of more involved schemes, including updates
which are collective in space. Appendix B demonstrates how
to use our approach for rare event sampling in classical
continuous-time Markov dynamics, where we determine the
dynamical large deviations (LDs) of the TFIM and QTPM as
an example.

II. MONTE CARLO SAMPLING
OF THE BOLTZMANN DISTRIBUTION

A. The quantum partition function and continuous-time
stochastic dynamics

We consider a system with a Hamiltonian Ĥ and a discrete
set of configurations that defines a basis {|x〉} of its Hilbert
space, H [33]. In this basis, the Hamiltonian can be decom-
posed into a diagonal and an off-diagonal part, Ĥ = Ĥ c − K̂ ,

Ĥ c =
∑

x

Hc
x |x〉〈x|, (1)

K̂ =
∑

x,y �=x

K̂x→y ≡
∑

x,y �=x

Kx→y|y〉〈x|. (2)

We will refer to operators which act on the whole Hilbert
space by symbols with a hat (e.g., Ĥc), and their individual
matrix elements by symbols without a hat.

The statistical properties of Ĥ at some finite temperature
are characterized by the partition function:

Zβ = Tr[e−βĤ ] =
∑

x

〈x|e−βĤ |x〉. (3)

Equation (3) can be expressed as a sum over stochastic paths
by considering its Dyson series expansion [34],

Zβ =
∞∑

M=0

∑
x0,··· ,xM

∫
dtM . . . dt1〈x0|e−(β−tM )Ĥ c

×
M∏

m=1

[K̂xm−1→xm e−(tm−tm−1 )Ĥ c
]|x0〉, (4)

where the integrals over times tm are performed with the
limits β � tM � · · · � t0. Note that the product and integrals
in Eq. (4) are omitted for the case of M = 0.

Each path in Eq. (4) can be interpreted as a classical
stochastic trajectory in continuous time with time extent β,
where the operator K̂xm−1→xm makes the instantaneous tran-
sition xm−1 → xm at the time tm. We denote a stochastic
trajectory of time extent β with M jumps as

x = {(t0, x0), . . . , (tM, xM )}. (5)

Note that the last jump occurs at tM � β. We then represent
Eq. (4) as a sum over these jumps,

Zβ =
∑
{x}

δ[x(0), x(β )] e− ∫ β

0 dt H c
x(t )

K(x)∏
m=1

Kxm−1→xm , (6)

where x(t ) denotes the configuration of the trajectory x at time
t , the delta function δ[x(0), x(β )] allows only for trajectories
which are periodic in time, and K(x) is the trajectory observ-
able (which will henceforth be denoted by a calligraphic font)
which returns the number of transitions, M, which occur in the
trajectory x. The sum over {x} indicates a sum over all paths
for any number of jumps, M ∈ [0,∞). We can then write the
probability of the trajectory x as

Pβ (x) = 1

Zβ

δ[x(0), x(β )]e− ∫ β

0 dt H c
x(t )

K(x)∏
m=1

Kxm−1→xm . (7)

The probability Eq. (7) can be related to that for trajecto-
ries generated by a continuous-time Markov dynamics in the
following way. We define the Markov generator Ŵ = K̂ − R̂,
with the transitions given by K̂ and their associated escape
rates, R̂,

R̂ =
∑
x,y �=x

Kx→y|x〉〈x| =
∑

x

Rx|x〉〈x|. (8)

Since we consider quantum systems without a sign problem
[12,13], we can assume that the probabilities Eq. (7) are posi-
tive real numbers. With these definitions, the relation between
the Hamiltonian and the stochastic generator is

Ĥ = −(Ŵ + R̂ − Ĥ c). (9)

It follows that the trajectories that define the partition func-
tion Eq. (6) are related to those generated by the stochastic
dynamics of Ŵ with the following properties:

(1) The trajectory must start and finish in the same con-
figuration, i.e., it should be a stochastic bridge. A trajectory
which does not meet this criterion has zero probability of
occurring.
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(2) The probability of a trajectory that satisfies (i) is
exponentially biased (with respect to the probability of oc-
curring under Ŵ ) by the time integral of Ĥ c − R̂ along the
trajectory. That is, its probability is multiplied by the factor

e− ∫ β

0 dτ (H c
x(t )−Rx(t ) ).

Condition (i) is needed due to the imposition of periodic
paths in Eq. (4). The bias in (ii) accounts for the difference
in the diagonal parts of Ŵ and Ĥ . Many methods have been
developed to efficiently sample biased dynamics as in (ii). One
popular approach is TPS, see, e.g., Refs. [19,35,36]. Here, we
will use TPS, focusing on techniques for sampling trajectory
updates which are local in space, cf. Refs. [17–19], and which
also account for (i).

B. Calculating observables

The thermal expectation value of an observable Ô is given
by

〈Ô〉β =
∑

x 〈x|Ô e−βĤ |x〉
Zβ

. (10)

This can be rewritten as an imaginary-time average by notic-
ing that we can arbitrarily move Ô through the exponential
due to the properties of the trace:

〈Ô〉β = 1

β

∫ β

0
dt

∑
x 〈x|e−(β−t )Ĥ Ôe−t Ĥ |x〉

Zβ

. (11)

To consider how to compute Eq. (11) from trajectories, we
will deal separately with the cases when Ô is diagonal and
off-diagonal.

For the case of a diagonal operator, Ôdiag = ∑
x O(x)|x〉〈x|,

Eq. (11) can be directly written as a sum over all trajectories
with the probability given by Eq. (7). This leads to

〈Ôdiag〉β = β−1
∑
{x}

Pβ (x)O(x), (12)

where O(x) = ∫ β

0 dt O(x(t )) is the time-integrated trajectory
observable. That is, we average the value of the observable
over all times and over all trajectories.

For an off-diagonal operator, Ôoff−diag = ∑
y �=x Ox→y|y〉〈x|,

we can expand both exponentials in Eq. (11). This expansion
in the integrand of Eq. (11) gives a sum over all trajectories
which have the transition x → y at the time t , summed over
y �= x. Compared to Eq. (6), the jumps at time t appear with
factors Ox→y rather than Kx→y. Thus, if we want to express
〈Ôoff−diag〉 as a sum over trajectories with the probability given
by Eq. (7), we need to account for the change Kx→y → Ox→y

at time t . Furthermore, since we are time averaging, we can
replace the integration over time by Kx→y(x) which counts
the number of jumps x → y which occur in trajectory x. We
can then write

〈Ôoff−diag〉β = β−1
∑
{x}

Pβ (x)
∑
x �=y

Kx→y(x)

Kx→y
Ox→y. (13)

III. OPTIMAL SAMPLING

We now explain how trajectories can be sampled efficiently
and exactly from the partition function Eq. (6) by means of a

rejection-free form of TPS. A general method for converging
to an ensemble of trajectories such as Eq. (7) is TPS, a form
of Monte Carlo sampling in trajectory space [35]. A typical
problem with standard TPS is that acceptance of trajectory up-
dates can become exponentially small in system size (and/or
the length of the trajectory), thus slowing down convergence.

In the language of stochastic dynamics, the procedure we
now describe is sometimes referred to as obtaining the Doob
dynamics [14–16], a proper (normalized) stochastic dynamics
derived from the original generator Ŵ , which generates tra-
jectories with a conditioned/biased probability Pβ (x), such as
Eq. (7). While this approach is exact in theory, it often relies
on the computation of expressions which are, in practice,
analytically (and often numerically) intractable. However, we
will show later in the paper that we can in fact implement this
general idea via optimal local updates.

A. Edge configurations

The first obstacle is to sample the initial/final configuration
of trajectories, x0. While Eq. (6) has no explicit probability
distribution for the initial configuration x0, its probability will
be decided by its possible transitions and its diagonal compo-
nent in Eq. (1). That is, we choose some initial configuration,
x0, with probability

P(x0) = 〈x0|e−βĤ |x0〉
Zβ

. (14)

Once the trajectory edges have been selected, we can then
sample the remainder of the trajectory from the subset of tra-
jectories which have the required boundary conditions. That
is, we want to sample from the reduced dynamics

Zβ (xi, xf ) = 〈xf |e−βĤ |xi〉, (15)

where xi and xf are the initial and final configurations. Note
that, although we are only interested in trajectories which have
xi = xf , it will be useful to solve the more general problem
later for the TFIM and QTPM.

B. Continuous-time dynamics

The continuous-time Monte Carlo (CTMC) method
[37–39] is a dynamical protocol which can be employed to
sample the dynamics of Eq. (6). While this method is straight-
forward for a normalized time-homogeneous dynamics, it will
be useful to formulate the general case of time-dependent
dynamics for what follows.

Consider time-dependent instantaneous transition rates,
K̃x→y(t ; β, xf ) � 0, for transitions from configuration x to
configuration y at time t � β. We use the tilde to distinguish
these from the off-diagonal entries of the Hamiltonian, cf.
Eq. (2), and also allow for a dependence on the final config-
uration, xf , and the overall trajectory time, β. The associated
escape rate from configuration x at time t is

R̃x(t ; β, xf ) =
∑
y �=x

K̃x→y(t ; β, xf ). (16)
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The escape rate, in turn, determines the distribution for the
waiting time τ , Px, for a jump out of x after t :

Px(τ ; t, β, xf ) = R̃x(t + τ ; β, xf )

× exp

[
−
∫ t+τ

t
dt ′ R̃x(t ′; β, xf )

]
. (17)

After a waiting time has been drawn from Eq. (17), the transi-
tion into y at time t + τ is chosen with probability

Px(y | t + τ ; β, xf ) = K̃x→y(t + τ ; β, xf )∑
z �=x K̃x→z(t + τ ; β, xf )

. (18)

C. Optimal transition rates

Given a dynamics defined by transition rates
K̃x→y(t ; β, xf ), the CTMC method generates trajectories
with probability density

P̃β (x) = δ[xi, x(0)] e− ∫ β

0 dt R̃x(t ) (t ;β,xf )

×
K(x)∏
m=1

K̃xm−1→xm (tm; β, xf ) (19)

for trajectories starting from xi (where xf acts as a parameter
in the definition of the rates). However, we are interested in
sampling trajectories from the (conditioned and tilted) distri-
bution Eq. (7) where the final configuration is xf , that is,

Pβ (x) = δ[x(β ), xf ]δ[x(0), xi]

Zβ (xi, xf )
e− ∫ β

0 dtH c
x(t )

×
K(x)∏
m=1

Kxm−1→xm . (20)

In the expression above, we allow (for later convenience) the
final configuration to be fixed to a different value from the
initial one. As written, Eq. (20) is not the distribution of trajec-
tories generated with transition rates Kxi−1→xi due to Eq. (20)
satisfying conditions (i) and (ii) above (the former generalized
to some fixed initial and final configurations), and the need
for the explicit normalization Zβ (xi, xf ). Furthermore, while
Eq. (19) appears simpler than Eq. (20) due to the apparent
absence of the conditioning of the boundary conditions in
time, this is accounted for by the fact that the transition rates
in Eq. (19) are time dependent.

Our aim is to find a dynamics K̃x→y(t ; β, xf ) such that
P̃β (x) = Pβ (x); that is, the optimal dynamics (or Doob dynam-
ics) for sampling Pβ (x) [15]. These optimal transition rates
can be computed from the probability that the transition x →
y occurs at the time t under the original dynamics, conditioned
by the probability that the trajectory is in configuration x at
time t ,

K̃x→y(t ; β, xf ) = 〈xf |e−(β−t )Ĥ K̂x→ye−t Ĥ |xi〉
〈xf |e−(β−t )Ĥ |x〉〈x|e−t Ĥ |xi〉

= 〈xf |e−(β−t )Ĥ |y〉
〈xf |e−(β−t )Ĥ |x〉Kx→y

= Zβ−t (y, xf )

Zβ−t (x, xf )
Kx→y, (21)

where in the second line we have inserted the definition of
K̂x→y, Eq. (2), and in the third line we used Eq. (15). From this,
we are able to calculate the escape rate from the configuration
x at time t ,

R̃x(t ; β, xf ) =
∑

y

K̃x→y(t ; β, xf )

= 〈xf |e−(β−t )Ĥ K̂|x〉
〈xf |e−(β−t )Ĥ |x〉

= H c
x − ∂

∂t
ln Zβ−t (x, xf ), (22)

where we have used Eq. (2) to account for all possible tran-
sitions out of x and the derivative of Eq. (15) to obtain the
last line. Based on the rates from Eqs. (21) and (22), this
time-dependent dynamics gives P̃β (x) = Pβ (x) if the distribu-
tion of initial configurations is set to be xi [40]. Appendix A
explains how the optimal transition rates can be used with
the CTMC algorithm from the previous section to sample the
time-dependent dynamics.

D. Example: Single two-level system

As an illustration of the ideas above, we consider a simple
problem which will be important later in this paper: a single
two-level system with the states σ = {−1,+1}, which we will
refer to as a spin.

A generic Hamiltonian for such a system reads

Ĥ spin = −X̂ − gẐ, (23)

where X̂ , Ŷ , and Ẑ are the usual Pauli operators. By calculat-
ing the matrix exponential of Eq. (23), is can be shown that
the reduced dynamics, Eq. (15), takes the form

Zt (σi, σ f ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cosh(θt ) + g√
1+g2

sinh(θt ), σi, f = 1

cosh(θt ) − g√
1+g2

sinh(θt ), σi, f = −1

1√
1+g2

sinh(θt ), σi �= σ f ,

(24)

where θt = t
√

1 + g2. Using Eq. (24), we are able to define
a time-dependent stochastic dynamics which allows us to ex-
actly sample trajectories with probabilities given by Eq. (7).
The initial/final configuration σ0 is chosen with probability
Zβ (σ0, σ0)/

∑
σ Zβ (σ, σ ), and the time-dependent transition

rates for the dynamics are

K̃σ→−σ (t ; β, σ0) = Zβ−t (−σ, σ0)

Zβ−t (σ, σ0)
. (25)

By simply running this dynamics, we sample the trajecto-
ries we need for computing thermal averages in this problem.
The results are shown in Figs. 1(a) and 1(b) for the average
magnetizations 〈X̂ 〉 and 〈Ẑ〉 for various inverse temperatures
β. The data points show the trajectory-averaged values using
Eqs. (12) and (13). The numerical results coincide with the
exact averages:

〈Ẑ〉 = g〈X̂ 〉 = g√
1 + g2

tanh(β
√

1 + g2). (26)
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(a) (b)

FIG. 1. Sampling of a single spin. The magnetizations (a) 〈X̂ 〉
and (b) 〈Ẑ〉 for the Hamiltonian Eq. (23), measured from trajectory
sampling (data points) and compared to the exact result (solid lines)
for various inverse temperatures β.

IV. TRANSVERSE FIELD ISING MODEL
IN DIMENSIONS ONE AND TWO

We now show how the trajectory sampling approach can be
used to sample from the Boltzmann distribution of the TFIM
with N spins,

Ĥ = −h
N∑

i=1

X̂i − J
∑
〈i, j〉

ẐiẐ j, (27)

where X̂i and Ẑi are the Pauli operators acting on site i, and
nearest neighbors are denoted by 〈i, j〉. The method we use
in this section can be equally adapted to accommodate for
any other potential (the second summation) with the same
single-body kinetic term, see Appendix B for an example with
a global diagonal operator. In the next section, we demonstrate
how to deal with other kinetic terms.

In what follows, we set h = 1 and consider periodic bound-
ary conditions in space. Sampling directly from the full
partition function Eq. (4) is difficult. We instead use a single-
spin update scheme, whereby we update the entire trajectory
for a single spin, keeping the trajectories of all other spins
fixed by sampling directly from a reduced partition function.

A. Redrawing trajectories for an individual spin

We now explain how our formulation can be used to per-
form single spin updates of the many-body trajectories. These
updates adjust the entire trajectory of a single spin within the
many-body trajectory, modeling the other spins as an effective
time-dependent environment (or heat bath [17]). We stress that
this update is equivalent to that presented in Ref. [17], which
considered Eq. (27) on the Bethe lattice, and similarly that
of Ref. [18] for the classical Ising model. Here, we instead
use this approach on the TFIM in 1D and 2D to demonstrate
how the update can be used to investigate the ground-state
properties and phase transitions of quantum lattice models.

1. Factorization of the partition function

We consider the many-body trajectory ω as a collection of
the N individual spin trajectories, ω = {σ1, · · · , σN }, with σ j

denoting the time series of transitions for spin j,

σ j = {(
t j
0 , σ

j
0

)
,
(
t j
1 , σ

j
1

)
, · · · ,

(
t j
Mj

, σ
j

Mj

)}
, (28)

each with a total of Mj transitions. The partition function
becomes

ZTFIM
β =

∑
{ω}

[
N∏

i=1

δ[σ i(0), σ i(β )]

]
e
∫ β

0 dt
∑

〈i, j〉 Jσ i (t )σ j (t )

×
N∏

j=1

K(σ j )∏
m=1

K
σ

j
m−1→σ

j
m
. (29)

In the above, all Kσ→σ ′ = 1, cf. Eq. (27), but we keep them in
the expression to keep track of the spin transitions.

At this point, we notice that we are able to factorize
Eq. (29) into a factor which depends on a specific σ l , and a
factor which does not,

ZTFIM
β =

∑
{ω}

(
δ[σ l(0), σ l(β )] e

∫ β

0 dt
∑

i;〈i,l〉 Jσ i(t )σ l(t )

×
K(σ l )∏
m=1

Kσ l
m−1→σ l

m

)∏
p�=l

(
δ[σ p(0), σ p(β )]

× e
∫ β

0 dt 1
2

∑
j �=l;〈 j,p〉 Jσ p(t )σ j(t )

K(σ p)∏
n=1

Kσ
p

n−1→σ
p

n

)
, (30)

where {i; 〈i, l〉} denotes sites i which are nearest neighbors of
l , and { j �= l; 〈 j, p〉} sites j different from l which are nearest
neighbors of p.

We can now express Eq. (30) as a sum over each spin l and
for each l over the partial trajectories

σ (l ) = {σ1, · · · , σ l−1, σ l+1, · · · σN }, (31)

that is, the individual trajectories of all the spins other than
l . The first factor in Eq. (30) depends on the trajectory of
spin l and its neighboring spins through the interactions∑

i;〈i,l〉 Jσ i(t )σ l (t ), which we rewrite in the form of an effec-
tive time-dependent longitudinal field:

gl (t ) := g(t | σ (l ) ) =
∑
i;〈i,l〉

Jσ i(t ). (32)

The second factor in Eq. (30) only depends on the trajectories
of the spins p �= l , and we denote it N (σ (l ) ). The partition
function can now be written as

ZTFIM
β = N−1

∑
l

∑
{σ (l )}

N (σ (l ) )
∑
{σ l }

δ[σ l(0), σ l(β )]

× e
∫ β

0 dt gl(t )σ l(t )
K(σl )∏
m=1

Kσ l
m−1→σ l

m

= N−1
∑

l

∑
{σ (l )}

N (σ (l ) ) Zl
β[gl ]. (33)

Now suppose we have some many-body trajectory ω, and
we have randomly chosen to update site l . The partition func-
tion for spin l is Zl

β[gl ], with the time-dependent longitudinal
field gl (t ) which is piecewise constant, meaning it remains
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(a) (b) (c)

FIG. 2. Single-spin update scheme for the 1D TFIM. The spin l is updated while all the other spins are kept fixed. Only the spins l − 1
and l + 1 (red) contribute to the dynamics of the lth spin. These spins change at the times τm (dashed grey lines). The update proceeds through
the following steps: (a) The trajectory for spin l is discarded. (b) We then sample the configurations σm (blue circles) at the times in which the
effective longitudinal field instantaneously changes, as explained. (c) We then sample bridges between each of the σm under a static longitudinal
field to construct the full trajectory (blue line).

constant except for a discrete number of times, M̃, when it
instantaneously transitions to some other value. M̃ is the total
number of times any of the neighboring spins transition. The
partition function can now be written in the following way:

Zl
β[gl ] =

∑
σ0,··· ,σM̃

M̃∏
m=0

Z�τm (σm, σm+1; gl (τm)). (34)

The spin configurations σm = σ l (τm) are the configurations
of spin l at the times τm where the field gl (t ) instantaneously
changes, and we set σM̃+1 = σ0. Equation (34) is a sum over
all possible spin configurations at each of these times. The
weight for each sequence of spin configurations {σm} is given
by the product in Eq. (34). The factors Z�τm (σm, σm+1; gl (τm))
are exactly the partition function of the single spin problem,
Eq. (24), with time extent �τm = τm+1 − τm and longitudinal
field gl (τm), which is taken to be the value after the mth
transition of neighboring spins, and can be written as

Z�τm (σm, σm+1; gl (τm))

=
∑
{σ l

m}
δ[σ l (τm), σm] δ[σ l (τm+1), σm+1]

× egl (τm )
∫ τm+1
τm

dt σ l (t )
K(σ l

m )∏
km=1

Kσ l
km−1→σ l

km
. (35)

In the above equation, σ l
m = σ l (τm : τm+1) denotes the partial

trajectory of spin σ l between times τm and τm+1. It is simple
to check that Eq. (34) with Eq. (35) gives Zl

β [gl ].
We now explain the strategy to update a trajectory ω, mak-

ing use of the above equations and Fig. 2, which demonstrates
the update for the 1D TFIM. We first randomly select a spin
l ∈ {1, . . . , N} to update, keeping the trajectories for all other
spins fixed. The trajectories of spins neighboring l define the
time-dependent longitudinal field gl (t ). The process of select-
ing spin l and determining the time-dependent field takes us
from Eq. (29) to Eq. (33), and allows us to sample a trajec-
tory for spin l through the partition function Zl

β[gl ]. We then
exploit the fact that the longitudinal field is constant in be-
tween the transition times τm for spins neighboring l . In
particular, we write Zl

β[gl ] as a sum over all edge configu-
rations, σm, which gives Eq. (34). The edge configurations

can be sampled using transfer matrices, which is explained
in Sec. IV A 2, see Fig. 2(b). Finally, we sample stochastic
bridges between configurations σm and σm+1 as explained in
Sec. IV A 3, see Fig. 2(c).

2. Sampling the edge configurations

Given some time-dependent longitudinal field gl (t ), we
wish to sample the states of the spin σm = σ l (τm) at the times
τm which the longitudinal field changes value. The probability
of observing the sequence of configurations {σ0, · · · , σM̃+1}
is

P(σ0, · · · , σM̃+1)

= 1

Zl
β[gl ]

M̃∏
m=0

Z�τm (σm, σm+1; gl (τm)). (36)

Each of the partition functions Z�τm (σm, σm+1; gl (τm)) has
four possible values. Note that if we were to think of each
σm as a spin on a periodic 1D lattice with M̃ + 1 lattice sites,
then Z�τm (σm, σm+1; gl (τm)) can be thought of as a transfer
matrix between lattice sites m and m + 1.

To efficiently sample the sequence of configurations, we
start by sampling σ0. The probability of observing some σ0 is
given by

P(σ0) = 1

Zl
β[gl ]

∑
σ1,··· ,σM̃

M̃∏
m=0

Z�τm (σm, σm+1; gl (τm)), (37)

with σM̃+1 = σ0. Note that calculating P(σ0) is equivalent to
performing M̃ + 1 matrix multiplications (for 2 × 2 matrices),
and can then be calculated numerically. The configurations σm

for m = 1, . . . , M̃ can be calculated recursively using

P(σm | {σ0, · · · , σm−1})

=
∑

σm+1,··· ,σM̃

∏M̃
m=0 Z�τm (σm, σm+1; gl (τm))

P(σm−1 | {σ0, · · · , σm−2})
. (38)

The numerator is calculated as a multiplication over M̃ + 1 −
m matrices and m real numbers, and the denominator is known
from the previous iteration of the calculation. It is simple to
show that sampling from each of these M̃ + 1 distributions
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yields a sequence of configurations sampled with probability
given by Eq. (36).

3. Sampling the full trajectory

After we have sampled the configurations σm, all that is
left to do is to sample from each of the partition functions
Z�τm (σm, σm+1; gl (τm)). That is, we must sample stochastic
bridges between configurations σm and σm+1 as was done
previously for the two-level system. This indicates that the
trajectory between times τm and τm+1 is sampled from a dy-
namics initialized in configuration σm, with transition rates

K̃σ l →−σ l (t ; �τm, σm+1) = Z�τm−t (−σ l , σm+1; gl (τm))

Z�τm−t (σ l , σm+1; gl (τm))
. (39)

Each partial trajectory between times τm and τm+1 is sampled
with probability

P(σ l
m | σ (l ) ) = δ[σm, σ l (τm)] δ[σm+1, σ

l (τm+1)]

Z�τm (σm, σm+1; gl (τm))

× eg(τm )
∫ τm+1
τm

dt σ l (t )
K(σ l

m )∏
km=1

Kσ l
km−1→σ l

km
. (40)

Concatenating the partial trajectories gives the fully sampled
trajectory for the spin σ l , which is sampled with probability

P(σ l |σ (l ) ) = 1

Zβ[gl ]

M̃∏
m=0

[
Z�τm (σm, σm+1; gl (τm))P

(
σ l

m|σ (l )
)]

.

(41)

Note that the trajectories are defined to be piecewise continu-
ous, and so we can drop the intermediate δ[σm, σ (τm)] terms
in Eq. (40):

P(σ l | σ (l ) ) = δ[σ (β ), σ (0)]

Zβ[gl ]
e
∫ β

0 dt
∑

i;〈i,l〉 Jσ i (t )σ (t )

×
K(σ )∏
k=1

Kσk−1→σk . (42)

4. Detailed balance

For the trajectory update to be rejection-free, it must obey
detailed balance with respect to Eq. (29). It can be verified that
this is true by considering the transition probabilities. That
is, given some trajectory ω, the probability to generate a new
trajectory ω̃ is

P(ω̃ | ω) = N−1P(σ̃ l | σ (l ) ), (43)

where the factor of N comes from the fact that site l is chosen
randomly. Note that since P(σ l | σ (l ) ) ∝ Pβ (ω), it follows that

P(ω̃ | ω)

P(ω | ω̃)
= P(σ̃ l | σ (l ) )

P(σ l | σ (l ) )
= Pβ (ω̃)

Pβ (ω)
(44)

and detailed balance is obeyed.

B. Monte Carlo method

The method of resampling a trajectory for a single spin
given in the previous section can now be used to implement a

Monte Carlo algorithm to sample the many-body trajectories
using the following steps:

(1) Create some initial seed trajectory, ω = (σ1, · · · , σN )
with inverse temperature β.

(2) Choose a random lattice site l ∈ [1, N].
(3) Generate a new trajectory, σ l , for the spin.
(4) Repeat from step 2 until convergence.
There are various ways to generate an initial seed trajec-

tory. The key requirement is periodicity in the time interval
[0, β]. The simplest way to achieve this is to generate the
trajectory for each spin independently with a noninteract-
ing dynamics, but allowing for the possibility of a local
longitudinal field (see Sec. III D). The choice of the initial
trajectory can be guided by the phase one is trying to target.
For example, for the TFIM with J/h > 1, we expect to see
ferromagnetic behavior, and so we could choose a large local
longitudinal field to force an initial trajectory with a higher
likelihood of magnetic ordering. A second approach, which
we discuss in Sec. V B, is thermal annealing.

For |J/h| > 1, there is spontaneous breaking of the sym-
metry at the level of the ground state. Indeed, depending on
the initial trajectory seed, the single-spin update approach will
break the Z2 symmetry and will only be ergodic over one of
the ground states. In practice, one should randomly perform
the global update σ i(t ) → −σ i(t ) for all spins simultaneously
to ensure both states are explored. To investigate the effects of
the local updates, we choose not to do this here.

C. Continuous phase transition in the TFIM

We now demonstrate the effectiveness of our approach for
the 1D and 2D TFIM. For fixed h = 1, both models are known
to undergo a continuous phase transition at the critical points
Jc = 1 [41] and Jc ≈ 0.32747 [20,21,23], respectively. We in-
vestigate their ground state by using the previously described
trajectory sampling algorithm with β = 128 and a variety
of system sizes, N . Figures 3(a) and 3(b) show the average
transverse magnetization,

Mx = N−1
N∑

i=1

〈X̂i〉, (45)

in 1D and 2D, respectively, while Figs. 3(c) and 3(d) show the
two-spin correlator:

Mzz = N−1
∑
〈i, j〉

〈ẐiẐ j〉. (46)

For 1D, we compare our results for systems of size N = 16
to 1024 to those from infinite matrix product states (iMPS)
[42,43]. These methods allow us to determine the properties
of the 1D chain to high accuracy. In particular, we also use the
infinite time-evolving block decimation method [42,43]. For
2D, we show results for systems N = 4 × 4 to 32 × 32. These
demonstrate agreement with the 2D density matrix renormal-
ization group (DMRG) [44–46] for N = 4 × 4 (dashed line).

The characterization of a continuous phase transition is fa-
cilitated through the use of an order parameter which displays
a discontinuous derivative at the critical point Jc in the large
system-size limit. The commonly used order parameter for
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 3. Ground-state properties of the TFIM. Numerical results using the single-spin update for the 1D TFIM (top) for system sizes N = 16
to 1024 and the 2D TFIM (bottom) with N = L2 and L = 4 to 32. We show the average transverse magnetization, Mx , in (a) and (b); the average
two-spin correlator, Mzz, in (c) and (d); and the average magnetization, M|z|, in (e) and (f). Data points are the results from trajectory sampling.
The dashed black line in the top row of panels is from the iMPS, and from the 2D-DMRG with L = 4 for the bottom row. The value of Jc in
1D is Jc = 1 and Jc ≈ 0.32747 in 2D.

Ising models is the longitudinal magnetization,

M|z| = N−1

〈∣∣∣∣∣
N∑

i=1

Ẑi

∣∣∣∣∣
〉
. (47)

Figures 3(e) and 3(f) demonstrate a sharp increase for M|z| at
the critical point, J/Jc = 1.

D. Trajectory autocorrelations

We now investigate the autocorrelation properties of the
sampling dynamics using the single-spin update for the 1D
and 2D TFIM. Under TPS, we generate a Markov chain of tra-
jectories, {ω0 → ω1 → · · · → ωNtraj}. To test the convergence
to the target trajectory ensemble, cf. Eq. (7), we define the
autocorrelation between two trajectories in the Markov chain
separated by μ TPS updates,

C(ων,ων+μ) = 1

βN

N∑
j=1

∫ β

0
dτ σ j

ν (τ ) σ
j

ν+μ(τ ), (48)

where σ
j

ν (τ ) indicates the value of the j spin of the νth
trajectory at time τ . The trajectory ensemble average can then
be estimated from the Markov chain,

Cμ = 1

Ntraj − μ

Ntraj−μ∑
ν=1

C(ων,ων+μ) − 〈Ẑ〉2

1 − 〈Ẑ〉2 , (49)

where 〈Ẑ〉 is the equilibrium expectation value of Ẑi (for any
i). With the above definition, this autocorrelator is normalized
to be C0 = 1 and C∞ = 0 for Ntraj → ∞.

We show Cμ as a function of J/Jc in Fig. 4 for μ/N ∈
[1, 7], for (a) the 1D TFIM and (b) the 2D TFIM. The same
data is shown in Figs. 4(c) and 4(d) as a function of μ/N . Far

(a)

(b)

(c)

(d)

FIG. 4. Convergence in the TFIM. The autocorrelation between
trajectories Cμ as a function of J/Jc and μ/N ∈ [1, 7] for (a) the 1D
TFIM with N = β = 128 and (b) the 2D TFIM with N = L2, L =
32 and β = 128. (c), (d) The same data but as a function of μ/N
for various values of J/Jc. The black dashed lines show exponential
decay.
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from the critical point, the trajectory autocorrelation function
decays approximately exponentially. Near the critical point,
this decay indicates that trajectories remain correlated even
after a considerable number of TPS iterations. This is a mani-
festation of the expected slowdown of Monte Carlo sampling
near criticality at the level of trajectory sampling. This is a
shortcoming of the method when compared to methods which
use nonlocal updates, such as rejection-free cluster updates
[20,21] and Worm algorithms [7,8,23]. However, it is impor-
tant to note that it is not always easy to find cluster updates for
interaction terms which are more complex than the Ising in-
teraction in Eq. (27). On the contrary, the approach described
here can be generalized to investigate arbitrary diagonal terms
with a transverse field, see Ref. [24] for triangular plaquette
interactions and Appendix B for an example with a global
diagonal operator.

V. QUANTUM TRIANGULAR PLAQUETTE MODEL

We now show how the local update scheme can be gen-
eralized to models with more complex kinetic terms in their
Hamiltonians. As a concrete example, we consider the QTPM
[19,24–29], a generalization of the classical TPM studied in
the context of glassy systems [30–32]. This is a model defined
on a triangular lattice with interactions between a subset of the
triangular plaquettes and a magnetic field transverse to them.
We write the Hamiltonian of the QTPM as

Ĥ = −h
∑

{i, j,k}∈

X̂iX̂ j X̂k − J

N∑
i=1

Ẑi, (50)

where 
 indicates the upward pointing triangular plaquettes in
the triangular lattice; see Fig. 5. We have chosen a represen-
tation of the QTPM where the interactions are off-diagonal in
the classical basis and the magnetic field is longitudinal. This
corresponds to the dual model of the usual QTPM.

Most numerical studies [19,24,25] indicate that the QTPM
has a first-order quantum phase transition at |Jc/hc| = 1 be-
tween two distinct phases. In our recent paper, Ref. [24], we
used the method presented in Sec. IV with single-spin updates
on the Hamiltonian dual to Eq. (50). The aim of this section is
to demonstrate how the update scheme can be adjusted to
account for Hamiltonians like Eq. (50), using local updates
which redraw the trajectories for multiple spins, rather than a
single spin.

A. Plaquette updates

The obvious Monte Carlo update is to randomly select a
plaquette labeled by 
 encompassing three sites {i, j, k} ∈ 
.
The trajectory of this plaquette is η
 = {σ i, σ j, σk}. The cor-
responding transitions are those where the three spins in the
plaquette flip simultaneously, in accordance with the kinetic
term in Eq. (50). Given the eight different possible states of
these three spins, it might appear that one needs to consider
this eight-level system in the simulations. However, as we will
show below, what actually matters is the change in sign in the
plaquette magnetization,

M
 = σ i + σ j + σ k, (51)

FIG. 5. Elementary transitions in the TPM. A visualisation of the
allowed transitions in the TPM. A plaquette of three spins (spins
are shown by blue and red arrows), 
, can flip. On the level of the
individual plaquette, the plaquette can be in four different discon-
nected sectors, each containing two configurations and behaving like
a two-level system. Within each sector, the system can move between
the magnetizations M
 ↔ −M
. The plaquettes in the green (left)
box show plaquettes with total magnetization M
 = ±3. The three
orange boxes (right) show plaquettes with total magnetization M
 =
±1. The flipping of a neighboring plaquette, 
′, causes a single spin
within 
 to flip, moving 
 into a different sector, as demonstrated by
the arrows connecting boxes. If it moves between the M
 = |3| and
M
 = |1| sectors, then the sign of the magnetization M
 is preserved;
otherwise, the sign is flipped.

which reduces again the analysis to that of a local two-level
system, see Fig. 5.

The time-dependent effective dynamics for the plaquette
whose trajectory we choose to update is given by the six
neighboring plaquettes which contain any of the spins i, j,
or k. Generalizing the approach used for the TFIM above, we
do not modify the trajectories of these neighboring plaquettes
when updating plaquette 
. The neighboring plaquettes will
have a total of M̃ flips at times 0 � τ1 � τ2 � · · · � τM̃ � β.
These transitions will force a single spin in η
 to flip at each
of these times.

1. Factorization of the partition function

We start by writing the partition function as a sum over all
possible imaginary-time trajectories [47],

ZTPM
β =

∑
{ω}

e
∑

i

∫ β

0 dt Jσ i(t )
N∏

i=1

δ[σ i(0), σ i(β )]

×
∏



K(η
)∏
m=1

K
η



m−1→η



m
, (52)

where a plaquette trajectory is given by

η
 = {(t

0 , η



0 ), (t


1 , η


1 ), · · · , (t


M , η


M )}, (53)

and K
η



m−1→η



m

denotes the corresponding plaquette flip.
As in the case of the TFIM, we can write Eq. (52) in

a factorized form. Here, however, there will be three con-
tributions. The first will contain all degrees of freedom and
transitions within the plaquette 
. The second will contain
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all the transitions associated with the six other plaquettes
that contain any of the spins {i, j, k} ∈ 
, and it will de-
termine the effective dynamics for the plaquette 
. The

third factor contains all other contributions which do not
affect the dynamics of plaquette 
. The partition function
reads

ZTPM
β =

∑
{ω}

⎡
⎣∏

i∈

(δ[σ i(0), σ i(β )] e

∫ β

0 dt Jσ i (t ) )
K(η
 )∏
m=1

K
η



m−1→η



m

⎤
⎦
⎡
⎣∏


′

K(η
′
)∏

m′=1

K
η


′
m′−1

→η

′
m′

⎤
⎦

×
⎡
⎣∏

i �∈

(δ[σ i(0), σ i(β )] e

∫ β

0 dt Jσ i (t ) )
∏

′′

K(η
′′
)∏

m′′=1

K
η


′′
m′′−1

→η

′′
m′′

⎤
⎦, (54)

where 
′ labels the plaquettes which share a site with 
,
and 
′′ labels those which do not. We will now single
out and propose a trajectory update for just one of the N
plaquettes. The last factor does not depend on any of the
spins within plaquette 
: as before, we denote σ (
) the tra-
jectory of all the spins except from those {i, j, k} ∈ 
 and
write this factor as N
(σ (
) ). The second factor does de-
pend on the spins within plaquette 
, but corresponds to
plaquette flips which are not for plaquette 
. By this, we
mean each lattice site {i, j, k} ∈ 
 will belong to two other
plaquettes. When either of these plaquettes flip, so will the
spin σ {i, j,k}. However, the trajectory of each of these plaque-
ttes is fixed, and thus we call this factor M
({η
′}), where
{η
′} denotes the trajectories of all neighboring plaquettes.
The first factor corresponds to plaquette 
 and depends on
{η
′}. We can now rewrite ZTPM

β as a sum over all plaque-
ttes 
 and over all trajectories of plaquettes {η(
)} which
are not 
:

ZTPM
β = N−1

∑



∑
{η(
)}

N
(σ (
) )M
({η
′})Z

β [{η
′}]. (55)

The partition function Z

β [{η
′}] is the sum over all possible

trajectories for the plaquette 
, subject to the transi-
tions which occur in the neighboring plaquettes at fixed
times.

As was done for the TFIM, we can now factorize the
partition function into M̃ + 1 components, where M̃ is the
total number of times any of the neighboring plaquettes flip.
We can write

Z

β [{η
′}] =

∑
η0,··· ,ηM̃

M̃∏
m=0

Z

�τm

(η′
m, ηm+1), (56)

where �τm = τm+1 − τm. The plaquette configuration η′
m is

related to ηm by a single spin flip, which is predetermined by
the neighboring plaquettes. This is true for all m �= 0: periodic
boundary conditions in imaginary time gives the condition
η′

0 = η0 = ηM̃+1.

2. Determining the trajectory sector and sampling
the edge configurations

An important point to notice is that the trajectory space
of η
, for some chosen 
, is composed of four disconnected
sectors, which we refer to as the trajectory sectors. An initial

plaquette configuration η


0 = {σ i

0, σ
j

0 , σ k
0 } will belong to

one of the four local sectors shown in Fig. 5. At the times
τm when there is a transition in a neighboring plaquette

′, the sector of the plaquette 
 will transition to one
of the other three sectors, as shown in Fig. 5; however,
the sector it moves to is entirely determined by which
plaquette 
′ transitioned. Thus, the initial sector for η0 will
predetermine which local sector the plaquette will occupy at
any time.

This observation implies that the local plaquette effectively
behaves as a two-level (rather than an eight-level) system, and
the flipping of neighboring plaquettes at times tm changes the
energies of the two levels according to the rules shown in
Fig. 5. The configurations ηm in Eq. (56) can be sampled using
the transfer matrix approach as was done for the TFIM, see
Sec. IV A. While the transfer matrices for the QTPM are 8 × 8
matrices, the previous observation allows them to be treated as
four separate 2 × 2 matrices. This allows us to make use of the
results in Sec. II, which is computationally easier than solving
the original eight-level system. To determine the trajectory
sector the plaquette will lie in, we must first calculate Eq. (56)
for all four sectors and use this as a weighting to randomly
select one of the four sectors. Then, we can sample the edge
configurations ηm after each time τm, as was done in Sec. IV.
This gives a sequence of configurations {η0, · · · , ηM̃} which
are sampled with probability

P(η0, · · · , ηM̃ ) = 1

Z

β [{η
′}]

M̃∏
m=0

Z

�τm

(η′
m, ηm+1). (57)

3. Mapping to a spin and sampling stochastic bridges

The partition function Z

�τm

(η′
m, ηm+1) describes the en-

semble of all possible trajectories for the plaquette 
 between
the times τm < t < τm+1. Within these times, the plaquette can
only hop between two distinct configurations for some chosen
η′

m. These configurations will have opposite magnetization (cf.
Fig. 5). As such, it is convenient to treat the plaquette as a spin
κ
, with

κ
(t ) = sgn(σ i(t ) + σ j (t ) + σ k (t )), (58)

and an effective longitudinal field

g(t ) = J|σ i(t ) + σ j (t ) + σ k (t )|, (59)
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which is constant between times τm < t < τm+1. We can now
write

Z

�τm

(η′
m, ηm+1) =

∑
{η


m }
δ[η′

m, η
(τm)] δ[ηm+1, η

(τm+1)]

× eJ
∫ τm+1
τm

dt
∑

i∈
 σ i (t )
K(η


m )∏
km=1

K
η



km−1→η



km

=
∑
{κ


m }
δ[κ ′

m, κ
(τm)] δ[κm+1, κ

(τm+1)]

× eg(τm )
∫ τm+1
τm

dt κ
(t )
K(κ


m )∏
km=1

K
κ



km−1→κ



km

:= Zκ
�τm

(κ ′
m, κm+1; g(τm)), (60)

where η

m = η
(τm : τm+1) and κ


m = κ
(τm : τm+1) are par-
tial trajectories between times τm and τm+1 for the plaquette
and spin, respectively.

Now that the partition function is expressed as the dy-
namics of a single spin, it can again be sampled using the
results from Sec. III D with a longitudinal field g(τm), and then
mapped back onto the plaquette. The probability of generating
each stochastic bridge is

P(η

m | σ (
) ) = δ[η′

m, η(τm)] δ[ηm+1, η(τm+1)]

Z

�τm

(η′
m, ηm+1)

× eJ
∑

i∈

∫ τm+1
τm

dt σ i (t )
K(η


m )∏
km=1

K
η



km−1→η



km

. (61)

The probability of generating the full plaquette update is the
product of sampling the edge configurations and then sam-
pling stochastic bridges between them:

P(η
 | σ (
) ) = δ[η
(0), η
(β )]

Z

β [{η
′}]

× eJ
∑

i∈

∫ β

0 dt σi (t )
K(η
 )∏
k=1

K
η



k−1→η



k
. (62)

4. Detailed balance

We can now verify that the single plaquette update obeys
detailed balance and is thus rejection-free. Given some trajec-
tory ω, the probability to generate some new trajectory ω̃ is

P(ω̃ | ω) = N−1P(η̃
 | σ (
) ), (63)

where the factor N−1 comes from the fact the plaquette 
 is
chosen at random. Since P(η
 | σ (
) ) ∝ Pβ (ω), it follows that

P(ω̃ | ω)

P(ω | ω̃)
= P(η̃
 | σ (
) )

P(η
 | σ (
) )
= Pβ (ω̃)

Pβ (ω)
, (64)

and thus detailed balance is obeyed.

B. Thermal annealing

The expected first-order phase transition at Jc can slow
down the convergence for J ≈ Jc and large inverse temper-
atures, β. In particular, if the initial seed trajectory is chosen

to be in one of the two phases, there is the possibility that the
update procedure cannot explore the entire trajectory space,
thus remaining stuck in the incorrect phase. This is a conse-
quence of the large barriers which need to be overcome to
move between phases. Furthermore, making assumptions a
priori on which phase the trajectory should belong to for some
value of J could bias the results.

A common technique used in Monte Carlo sampling to
overcome such metastability is thermal annealing. In this
approach, we start from a small inverse temperature, β = 0.1,
and gradually increase it to the target inverse temperature,
β = 128. Our annealing schedule is to make N updates to
the trajectory and then increase β by �β = 0.1 for β < 32,
and �β = 1 for β � 32. When the inverse temperature is
increased, we have to modify the trajectory to account for this.
In practice, we just stretch the trajectory time by a factor of
(β + δβ )/β. After reaching the target inverse temperature, we
do N × 102 updates, and then restart the process. We repeat
this procedure 103 times.

We find this approach to work well. Indeed, when suffi-
ciently far from J = 1, the generated trajectories (at the target
dynamics) have behavior corresponding to their correct phase
with high accuracy. However, when close to J = 1, the trajec-
tories can have properties which correspond to either phase (in
practice, we find that the process picks just one of the phases
for each run of the annealing process). While we cannot be
certain this approach guarantees the correct amount of mixing
between the phases, it provides a less biased way to propose
initial trajectory seeds, and still demonstrates the first-order
behavior of the transition point.

C. First-order quantum phase transition of the QTPM

We now demonstrate how the plaquette update scheme
with temperature annealing can be used to investigate the
quantum phase transition of the QTPM. As described in
Ref. [24], the finite size study of the QTPM has to be done
with care, since, depending on the size and aspect ratio
of the system used, Eq. (50) can have many or no sym-
metries. We focus on square lattices N = L × L, with L =
{4, 5, 8, 11, 16, 23, 32} chosen such that there are no such
symmetries [24]. We also compare our results against those
from 2D DMRG for N = 4 × 4.

Figure 6(a) shows the average transverse three-spin
correlator:

Mxxx = N−1
∑

{i, j,k}∈

〈X̂iX̂ j X̂k〉. (65)

The inset shows the results close to the transition point.
Figure 6(b) shows the average longitudinal magnetization:

Mz = N−1
N∑

i=1

〈Ẑi〉. (66)

As we increase the system size, the crossover between the
two phases becomes increasingly steplike, suggesting a
first-order singularity in the large-size limit. The behavior of
the magnetic susceptibility,

χZ (J ) = dMz

dJ
, (67)
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(c)(a) (b)

FIG. 6. Ground-state phase transition in the QTPM. Results using TPS with exact plaquette updates and simulated annealing for N = L × L
and L = {4, 5, 8, 11, 16, 23, 32}. We show (a) the three spin correlator, Mxxx; (b) the longitudinal magnetization, Mz; and (c) the magnetic
susceptibility, χz(J ) = dMz/dJ . The data points show results from trajectory sampling, and for comparison, the dashed lines show results
from DMRG for N = 4 × 4. The insets show the behavior close to the transition point.

is consistent with this interpretation, with its peak getting
higher and narrower around J = 1 with the system size, see
Fig. 6(c).

VI. CONCLUSIONS

In this paper, we have leveraged the connection between
the continuous-time expansion of the quantum Boltzmann
distribution and the rare-event sampling in stochastic dynam-
ics for systems which have no sign problem. In particular,
we have focused on the so-called stoquastic Hamiltoni-
ans, where computing the partition sum is equivalent to
sampling imaginary-time trajectories of a continuous-time
Markov chain. Each trajectory in the ensemble is condi-
tioned to return to the initial configuration, and its probability
is exponentially biased (or tilted) due to the difference
between the Hamiltonian and the associated stochastic gen-
erator. Such trajectories can be accessed with a method
like TPS, i.e., Monte Carlo for trajectory ensembles. Specif-
ically, we showed that in systems with finite-state local
degrees of freedom (such as spins on a lattice), one can
use an approach similar to that of Refs. [17,18] to devise
a rejection-free TPS scheme by means of an exact local
generation of trajectory updates which is especially sim-
ple in spin-1/2 models. In fact, as we showed above, this
gives the optimal, or Doob, dynamics for sampling the rare
trajectories.

We illustrated the effectiveness of this approach by study-
ing the quantum phase transitions of two classes of models.
The first included the TFIM in 1D and 2D, where the tran-
sition is well known to be continuous. We showed that the
rejection-free TPS method correctly characterises their quan-
tum phase transition, even in the near-critical regime where
trajectories take many TPS iterations to decorrelate. The sec-
ond class of models we considered are quantum plaquette
models. In particular, we studied the QTPM and showed
how to generalize the rejection-free method to local mul-
tispin updates. While less understood than the TFIM, the
QTPM has a quantum phase transition which is first-order.
Again, the rejection-free method efficiently recovered the
quantum phase transition. As a by-product, we also com-
puted to high accuracy the statistics of dynamical observables
(both in the LD regime and for finite imaginary times) in

the trajectory ensembles that resolve the quantum partition
sums of both the TFIM and the QTPM, which is shown in
Appendix B.

The method described here was used recently in
Refs. [24,48], where the ground-state phase transitions of
various spin models were characterized for large system sizes.
We foresee that our approach will be useful for numerical
investigations of glassy models, where nonlocal updates could
be difficult to formulate. While the method we used here
is based on local updates, the key property is not locality
but simplicity, which allows the sampling of exact trajec-
tory moves by solving Eqs. (21) and (22) that define the
Doob dynamics. It would be interesting to find other (perhaps
nonlocal) moves that also solve Eqs. (21) and (22). While
finding exact updates might prove difficult, one might be able
to formulate an approximately optimal dynamics, with the
error accounted for in an acceptance test, such as Metropolis
in a TPS scheme. The difficulty here is finding a dynamics
which provides improvements in sampling while defined in
terms of transition rates which remain computationally cheap
(perhaps building on the use of tensor networks for optimal
sampling [49]). A second proposition could be to implement
more advanced sampling methods to overcome local minima,
such as parallel tempering. While this could present some
technical challenges, it might be advantageous for the sam-
pling of glassy models.

The data shown in the figures is available at Ref. [50].
Example code used to generate the data can be found
at Ref. [51].
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APPENDIX A: SAMPLING TIME-DEPENDENT
OPTIMAL DYNAMICS

Suppose we are able to resolve the optimal dynamics given
in Sec. III C, with the transition rates given by Eq. (21). This
is a time-dependent dynamics which is defined through the
reduced dynamics Eq. (15). To sample dynamics from it, we
follow the process drawn out in Sec. III B, which requires ran-
domly drawing waiting times from the distribution Eq. (17),
and then randomly selecting a configuration to jump to from
the distribution Eq. (18).

Determining a random transition time, τ , is easily done by
considering the cumulative distribution function of Eq. (17):

Cx(τ ; β, xf , t ) = 1 − exp

[
−
∫ t+τ

t
dt ′ R̃x(t ′; β, xf )

]
. (A1)

It is well understood that by drawing some uniformly random
number r ∈ [0, 1] and inverting Cx(τ ; β, xf , t ) = r, one can
pick τ with a probability density given by Eq. (17). Using
Eq. (22), we find

Cx(τ ; β, xf , t ) = 1 − Zβ−t−τ (x; xf )

Zβ−t (x; xf )
e−τHc

x . (A2)

While analytically inverting Eq. (A2) is difficult, this can be
done numerically to arbitrary accuracy using the bisection
method if one is able to calculate Zt (x; xf ). This is due to the
fact that Cx(τ ; β, x f , t ) is a monotonically increasing function
between Cx(0; β, xf , t ) = 0 and Cx(β − t ; β, xf , t ) < 1. Note
that if r > Cx(β − t ; β, xf , t ), then no transition time is drawn,
and the system remains in state x until the terminating trajec-
tory time, β.

Once a transition time, τ , has been drawn, the state which
the system transitions to can be determined using Eq. (18):

Px(y | t + τ ; β, xf ) = Kx→y Zβ−t−τ (y; xf )∑
z �=x Kx→z Zβ−t−τ (z; xf )

. (A3)

APPENDIX B: TRAJECTORY STATISTICS

The connection between the quantum partition function
and the ensemble of (conditioned/biased) stochastic trajec-
tories naturally motivates the investigation of the trajectory
statistics of the imaginary-time dynamics. Given some tra-
jectory ensemble, such as one defined by Eq. (7), and some
inverse temperature (or trajectory time), β, we can define its
probability distribution function over a trajectory observable,
O(x), through

Pβ (O) =
∑
{x}

π (x)δ[O(x) − O]. (B1)

For simplicity, we will only consider trajectory observables
which are obtained by time integrating diagonal operators:

O(x) =
∫ β

0
dt O(x(t )). (B2)

In practice, the computation of Eq. (B1) for some arbi-
trary inverse temperature β is difficult. However, in the
low-temperature limit, β → ∞, one can estimate Eq. (B1)
using the framework of LD theory (for reviews, see, e.g.,
Refs. [52–55]).

In the low-temperature limit, both the probability distribu-
tion of O and its moment generating function (MGF),

Zβ (s) =
∑
{x}

Pβ (x) e−sO(x), (B3)

take the LD forms

Pβ (O) � e−βϕ(O/β ), Zβ (s) � eβθ (s), (B4)

respectively. Here, ϕ is the rate function, and θ is the
scaled cumulant generating function, with the two related
through the Legendre transform, θ (s) = − mino[so + ϕ(o)],
where o = O/β.

The MGF has a form similar to the partition function,
Eq. (3). In terms of trajectories, it reads cf. Eq. (4):

Zβ (s) =
∑
{x}

Pβ (x)e−s
∫ β

0 dt O(x(t ))

= 1

Zβ

∑
{x}

δ[x(0), x(β )]e− ∫ β

0 dt [H c
x(t )+s O(x(t ))] (B5)

K(x)∏
m=1

Kxm−1→xm . (B6)

Furthermore, from Eq. (B6) we also see that the MGF can be
written as

Zβ (s) = Tr[e−βĤs ]

Zβ

, (B7)

where Ĥs is a tilting [52] of the original Hamiltonian:

Ĥs = Ĥ + sÔ. (B8)

This means that in the limit of small temperatures, Eq. (B4),
we get that θ (s) = Es − E , where Es is the ground-state en-
ergy of Ĥs and E that of Ĥs=0 = Ĥ . For the following, we use
this to connect quantum phase transitions to transitions in the
LD statistics of trajectory observables.

1. TFIM

We first use the methods of Sec. IV to investigate the
trajectory statistics of the TFIM in 2D. The first trajectory
observable we consider, cf. Eq. (B2), is the time integral of
the two-point correlator:

Mzz(ω) =
∫ β

0
dτ
∑
〈i, j〉

σ i(τ ) σ j (τ ). (B9)

We focus on the low-temperature limit, β � 1, corresponding
to the ground-state behavior, where LD theory can be applied.
The LD statistics are retrieved from the ground-state proper-
ties of the tilted Hamiltonian,

Ĥs = −h
N∑

i=1

X̂i − (J − s)
∑
〈i, j〉

ẐiẐ j, (B10)

which is the same as the original Hamiltonian with J →
J − s. Figure 7 shows the rate function, −ϕ(Mzz/β ),
cf. Eq. (B4), for the 2D TFIM with (a) J/Jc = 1,
(b) J/Jc = 0.5, and (c) J/Jc = 1.5. At criticality, we
observe a broadening in this distribution, demonstrat-
ing the divergence in correlation lengths. In contrast,
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(a)

(b)  (c)

(d)

FIG. 7. Dynamical fluctuations of the imaginary-time trajec-
tories of the 2D TFIM. The low-temperature trajectory statistics
are encoded in the dynamical LDs. We show the rate function,
−ϕ(Mzz/β )/N , for the two-point correlator, Mzz, for (a) J/Jc = 1.0,
(b) J/Jc = 0.5, and (c) J/Jc = 1.5. The data points show results
from trajectory sampling with β = 128. The dashed line shows the
2D DMRG for N = 4 × 4. (d) Rate function −ϕ(M|z|/β )/N for
J/Jc = 1.0 and β = 64. The dotted line shows the rate function for
the time integral of the longitudinal magnetization of a single spin
from Eq. (23), with 〈σ̂ z〉 = 0.45.

away from the critical point the distributions become
narrower.

The second trajectory quantity we consider is the time-
integral of the order parameter:

M|z|(ω) =
∫ β

0
dτ

∣∣∣∣∣
N∑

i=1

σ i(τ )

∣∣∣∣∣. (B11)

The corresponding tilted Hamiltonian is

Ĥs = −h
N∑

i=1

X̂i − J
∑
〈i, j〉

ẐiẐ j + s

∣∣∣∣∣
N∑

i=1

Ẑi

∣∣∣∣∣. (B12)

To simulate dynamics with Eq. (B12), we can use the
single-spin update scheme previously described, but we must

(b) (c)

(a)

FIG. 8. Large deviations in the long imaginary-time trajectories
of the QTPM. The long imaginary-time trajectory statistics can be
captured through the LDs. We show the rate function, −ϕ(Mz )/N ,
for (a) J = 1.0, (b) J = 0.8, and (c) J = 1.2. The data points
show results from trajectory sampling for N = L × L with L =
{4, 5, 8, 11, 16, 23, 32}, and the dashed line from 2D DMRG for
L = 4. For comparison, the dotted lines show the rate functions for
the single spin Eq. (23) case, where g is chosen to fit the mean to the
peak of the QTPM distributions.

now consider the trajectories of all other spins when con-
structing the time-dependent dynamics due to the coupling
introduced via M|z| in Eq. (B12). While this makes the
procedure more costly, we are still able to run dynamics
for moderate N . We show the rate function in Fig. 7(d).
Here, the broadening at criticality is more pronounced; for
comparison, we show the rate function for the longitudinal
magnetization of a single spin (dashed line). This broaden-
ing suggests a diverging magnetic susceptibility in the large
size limit.

2. QTPM

We now investigate the effects of the first-order phase
transition of the QTPM at the level of the imaginary-
time trajectories. We consider the statistics of the trajectory
observable:

Mz(ω) =
∫ β

0
dτ

N∑
i=1

σ i(τ ). (B13)

They are encoded in the tilted Hamiltonian,

Ĥs = −h
∑

{i, j,k} ∈

X̂iX̂ j X̂k − (J − s)

N∑
i=1

Ẑi, (B14)

which corresponds to the original Hamiltonian with J → J −
s. Figure 8 shows the rate function −ϕ(Mz/β ) for various J .
The rate function at Jc is shown in Fig. 8(a): the rate function
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FIG. 9. Trajectory statistics at finite imaginary times in the
QTPM. The estimated distribution of the time-integrated magneti-
zation for L = 16 for various finite times (inverse temperatures) at
J = 1 from trajectory sampling. The curves are calculated using a
Gaussian kernel with δ = 0.005.

flattens with increasing system size, indicating the existence
of large fluctuations. This behavior is characteristic of a (dy-
namical) first-order phase transition due to the coexistence of
two distinct (dynamical) phases. For comparison, we show the
LDs of the single-spin problem from Eq. (23) (dotted lines),
where the value of g is chosen to fix the mean of the distribu-
tion. Figure 8(a) shows the LDs of the single-spin problem
with 〈Mz〉 = 0.42 and 0.8, which approximately match the
tails of the distribution for the QTPM. The interpretation
is clear: the two coexisting phases are homogeneous phases
of distinct Mz, and intraphase fluctuations are uninteresting
(thus the modes are well approximated by a single spin); the
broadening in ϕ in the QTPM is due to a Maxwell construct

between these modes due to the fact that intermediate values
of Mz are realized by coexistence, i.e., space-time regions
of one phase separated by sharp interfaces from space-time
regions of the other phase. In Figs. 8(b) and 8(c), we also
show the rate functions away from the transition point for
J = 0.8, 1.2, respectively. While there is a slight broadening
in the tails of these distributions, they still describe single
phases far from coexistence.

It is also possible to reasonably estimate the probability
distribution Pβ (Mz ) for finite β through sampling. This is
shown in Fig. 9 at the transition point for L = 16 for various
inverse temperatures. We use our annealing strategy to sam-
ple Ntraj = 106 trajectories for each inverse temperature. The
results are used to approximate the probability distribution
function using the Gaussian kernel,

Pβ (Mz ) ∼
Ntraj∑
i=1

exp

(
− [Mz − Mz(ωi )]2

2δ2

)
, (B15)

where Mz(ωi ) is the time-integrated magnetization of the ith
trajectory and δ = 0.005 is the width of the filter. Notice that
at small inverse temperatures, the distribution looks approxi-
mately Gaussian. However, with increasing β, the distribution
becomes bimodal, explicitly demonstrating the coexistence
of phases. For the largest inverse temperatures shown here,
trajectories with phase coexistence (trajectories with time-
averaged Mz between the two phases) are improbable. The
broadening observed in Fig. 8(a) can only be seen for in-
verse temperatures much larger than the ones considered here,
where phase coexistence within trajectories can be realized by
rare transitions between the two phases.
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