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Steering-induced phase transition in measurement-only quantum circuits
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Competing measurements alone can give rise to distinct phases characterized by entanglement entropy—such
as the volume-law phase, symmetry-breaking (SB) phase, and symmetry-protected topological (SPT) phase—
that can only be discerned through quantum trajectories, making them challenging to observe experimentally. In
another burgeoning area of research, recent studies have demonstrated that steering can give rise to additional
phases within quantum circuits. In this work we show that new phases can appear in measurement-only quantum
circuits with steering. Unlike conventional steering methods that rely solely on local information, the steering
scheme we introduce requires the structure of the circuit as an additional input. These steering-induced phases
are termed “informative” phases. They are distinguished by the intrinsic dimension of the bitstrings measured
in each circuit run, making them substantially easier to detect in experimental setups. We explicitly show this
phase transition by numerical simulation in three circuit models that were previously studied: the projective
transverse-field Ising model, the lattice gauge-Higgs model, and the XZZX model. When the informative phase
coincides with the SB phase, our steering mechanism effectively serves as a “preselection” routine, making the
SB phase more experimentally accessible. Additionally, an intermediate phase may manifest, characterized by
a discrepancy that arises between the quantum information captured by entanglement entropy and the classical
information conveyed by bitstrings. Our findings demonstrate that steering not only adds theoretical richness but
also offers practical advantages in the study of measurement-only quantum circuits.
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I. INTRODUCTION

The interplay between unitary dynamics, measurements,
and entanglement serves as a cornerstone in the study of fun-
damental quantum mechanics. As we transition into the noisy
intermediate-scale quantum (NISQ) era [1], characterized by
the imminent realization of powerful quantum computers
[2,3], the quantum circuit model emerges as an ideal platform
for validating theoretical predictions through experiments. A
case in point is the measurement-induced entanglement phase
transition, a field to which substantial research has been de-
voted. These phase transitions have not only been simulated
numerically [4–36] but also verified experimentally [37–40].
Within this realm, measurement-only circuits stand out due
to their lack of unitary evolution gates. Contrary to the prior
belief that measurements primarily function to disentangle
quantum states, recent findings reveal that noncommuting
measurements alone can also lead to a volume-law state
[41]. Even when measurements hinder entanglement growth,
conflicting measurements can still induce phase transitions
between distinct area-law phases, such as the symmetry-
protected topological (SPT) [42–48] and symmetry-breaking
(SB) phases [47–52].

From an experimental perspective, the detection of these
phases poses significant challenges. Typically, the relevant
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information is embedded in individual quantum trajecto-
ries, which makes the measurement of entanglement entropy
complex and resource-intensive. Duplicating the same state
multiple times is required; however, due to Born’s rule,
achieving the same trajectory again necessitates exponential
resources—a problem often referred to as “postselection”
[4,5]. Various approaches have been suggested to mitigate
these costs, such as the use of reference qubits [53,54] or
employing cross entropy [55]. Steering emerges as another
promising strategy [56]. In conventional measurement-based
steering schemes, adaptive steering gates are applied based
on the outcome of measurements, typically targeting a rep-
resentative state [57–60]. With a proper steering scheme, the
associated entanglement phase transition can be observed at
the level of the density matrix. Furthermore, steering has
been shown to give rise to entirely new phases [61–67]. In
a unified framework, the first scenario could be interpreted
as one where steering is intentionally configured to make
the boundary of the newly induced phase coincide with that
of the entanglement phase. In this way, observing the phase
transition induced by steering effectively serves as a measure-
ment of the entanglement phase transition itself. It is worth
noting that previous work mainly focuses on transitions from
volume-law to area-law phases. The detection of phase tran-
sitions between different area-law phases, however, remains
largely unexplored.

In this work we explore phase transitions induced by steer-
ing in measurement-only quantum circuits. Specifically, we
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FIG. 1. Phase diagrams for different models considered in this
work. (a) Phase diagram for the pTF-Ising model and XZZX model
with only X errors. pi means the critical point for an informative
phase transition, while pe denotes the entanglement phase transition.
The informative phase coincides with the SB phase. (b) Phase di-
agram for the lattice gauge-Higgs model. The red lines show the
parameter-scanning range in Sec. III B. (c) Phase diagram for XZZX
model with Z errors only. pi and pe have the same meanings as in (a).
There is an intermediate phase which is already symmetry breaking,
and yet the bitstrings are not informative.

investigate the potential for steering to introduce an additional
“informative phase” within the SB phase [68]. Our findings
reveal that an appropriately designed steering scheme can in-
deed give rise to this new informative phase as shown in Fig. 1,
characterized by a significant reduction in the intrinsic dimen-
sion of bitstrings measured from the circuit’s final states. In
the informative phase, the intrinsic dimension is greatly re-
duced and this reduction capability reveals some information
about the state, thus justifying the name “informative.” Our
proposed steering scheme differs from conventional methods
by requiring not just local measurement outcomes but also
the circuit’s structural information as inputs, while past mea-
surement outcomes remain irrelevant. The aim is to design a
steering unitary gate that does not alter previously measured
results, which we will illustrate with concrete examples later.
The rationale for adopting a different steering scheme can
be understood as follows. Earlier research primarily focused
on steering within circuits but without competing measure-
ments, and it often identified a “dark state” towards which
the circuit would eventually evolve into [56,61–63]. However,
in measurement-only circuits with at least two competing
measurement operations, there is no such dark state to steer
toward, as any other measurement operation, regardless of
how infrequent, would drive the state away.

We perform numerical simulations on three previously
studied measurement-only circuit models known for their en-
tanglement phase transitions: the projective transverse-field
Ising (pTF-Ising) model [49–52], the lattice gauge-Higgs
model [47], and the XZZX model [48]. For the simulations
we begin with simple product states and utilize a stabilizer
formalism for efficiency, given the absence of unitary gates
in these circuits [69–71]. Importantly, the critical points of
the entanglement phase transitions in these models are unaf-
fected by steering [7]. Our numerical results allow us to locate
the transition points of the informative phase and compare
them with established entanglement phase transitions. In the
pTF-Ising and lattice gauge-Higgs models, we discover that,

with appropriate steering, the informative phase coincides
with all SB phases. In the XZZX model, the coincidence
of the informative phase with the SB phase persists when
only X errors are introduced. However, the introduction of
Z errors may result in an intermediate phase. This phase
can be interpreted as a state in which quantum information
(reflected by nontrivial entanglement) is not captured by the
measured bitstrings, which only reflect the state’s classical
information. This intermediate phase also appears when both
X and Z errors are present. Remarkably, by adopting a stricter
steering scheme—where every measurement in the circuit is
subject to steering—the informative phase expands within the
phase diagram while remaining being inside the SB phase.
Based on these findings, we propose that the integration of
steering into measurement-only quantum circuits is both ex-
perimentally beneficial and theoretically compelling. From
an experimental standpoint, the informative phase transition
is much more readily observable, thus providing a practical
method for detecting SB phase boundaries when they co-
incide with informative ones. Notably, in the gauge-Higgs
model, simply detecting the informative phase is sufficient
to delineate all phase boundaries due to the absence of a
direct phase transition between the trivial and SPT phases.
Theoretically, future research could focus on identifying the
conditions under which informative and SB phases coincide,
extending these concepts to SPT phases or other complex
phases, and developing an analytical framework to explain
this novel phase transition.

The paper is organized as follows. In Sec. II we introduce
our steering scheme implemented in this study. Detailed pro-
cedures for measuring bitstrings are provided, along with an
explanation of how principal component analysis (PCA) is
used to define the order parameter specific to the informative
phase. In Sec. III we discuss the concrete models considered
in this work, including the pTF-Ising model, lattice gauge-
Higgs model, and XZZX model. Minor adjustments to our
steering schemes provide numerical evidence that informative
phases can occur within the SB phase. For the first two mod-
els, the boundary of the informative phase coincides with that
of the SB phase, allowing for a clear distinction between all
phases present within these models. In the case of the XZZX
model, we present numerical evidence of an intermediate
phase and discuss its physical implications. In Sec. IV we
detail a comparative analysis of the resource requirements for
directly detecting the SB phase versus identifying the infor-
mative phase. Our findings suggest that when the informative
phase overlaps with the SB phase, the phase transition can
be easily observed experimentally, avoiding the complications
associated with postselection. Finally, we conclude our work
with some further discussions in Sec. V. Some auxiliary ma-
terials are relegated to the Appendixes.

II. SETUP

In this section we introduce our settings, including the
steering scheme and how we utilize PCA to define the order
parameter for the informative phase. We begin by detailing
the specific steering scheme employed in this study. Our dis-
cussion starts with a comprehensive overview of the general
framework before delving into its particular implementation
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in the pTF-Ising model as a concrete example. Subsequently,
we outline the methodology for defining the order parameter
of the informative phase, a process that involves two key steps:
the acquisition of a bitstring followed by subsequent PCA of
the data. The choice of operators for measuring the bitstring
may vary depending on the model under consideration.

A. Steering scheme

In measurement-only quantum circuits, randomized mea-
surements are selected from a predetermined set and applied
at arbitrary positions. We only consider projective local mea-
surements in this work. We assume every measurement can
be described by a Pauli operator M, and we take ±1 as the
measurement outcomes. To be specific, the two projectors
associated with M are (I ± M)/2, with I is identity operator.
Before a measurement M takes place (except for the first one),
the state has a set of stabilizers denoted by P that comes from
our previous measurements. For example, this set could be

P = {(M1, 1), (M2,−1), (M3,−1), . . . }. (1)

Here we write out the stabilizer and its sign separately to be
clear. After M is measured, it’s added to P, and stabilizers
that anticommute with M are excluded if there are any. We
denote −1 as the outcome that needs to be steered, and if that
happens, the set of stabilizers now becomes P′ ∪ (M,−1),
where P′ only contains those stabilizers that commute with M.
The steering approach we employ in this study is designed to
alter only the outcome of the specific measurement operator
M while leaving all other previously measured compatible
outcomes unchanged. It’s worth noticing that the main dif-
ference here is that the steering scheme proposed in previous
studies allows the steering unitary gate to change the results
in P′ [61–63,67]. To achieve this goal, we only need to find a
Pauli operator Q that anticommutes with M while commuting
with the rest of stabilizers in P′ since

MQ |ψ〉 = −QM |ψ〉 = Q |ψ〉 , (2)

where M |ψ〉 = − |ψ〉. In this way, the sign in front of M
becomes +1 while other signs stay the same. This search can
be done by a classical computer with ease, and a concrete
example is given in the following. A few remarks are in order.
First, the Pauli operator Q always exists, since P′ ∪ (M,+1)
is also a valid set of stabilizers. It is usually not unique, and
any operator satisfying the condition above can be used as a
proper steering gate. Second, the Pauli operator Q may have
support on a large region. Nonetheless, it is still practical to
realize in experiment, since it’s just a direct product of single-
qubit gates. Third, the search only uses the information of
what kind of stabilizers are present, meaning that the steering
scheme only needs the circuit’s history structure as a further
input. Although in the following numerical simulation we
focus on a stabilizer circuit where the initial state is a stabilizer
state, it is worth emphasizing that the steering scheme here
requires no such constraint. The only difference is whether
P can uniquely define a state or not. Meanwhile, since the
outcome of the stabilizer measurement will not affect the
entanglement phase transition in measurement-only circuit,
the entanglement phase boundary remains the same under this
steering scheme.

For the pTF-Ising model [49–52], there are two kinds of
competitive measurements in the circuit: ZZ measurement
and X measurement. When the ZZ measurement dominates,
the system is in the SB phase. We do steering after every
ZZ measurement if the outcome is −1. To be concrete, we
show how to find the appropriate steering gate in detail for
this particular model. We set a bitstring s = 000 · · · 00 at the
beginning and update it according to the following rule. If
we measure ZiZi+1, we can set si = 1, and if we measure Xi,
we set si−1 = si = 0. When ZiZi+1 measures out to be
−1, we look at si−1 and si+1. If they are both 0, we apply
either an Xi or Xi+1 unitary gate at random. If only one of
them is 0, for example, si, then we apply an Xi unitary gate.
If both of them are 1, we choose either side at random, say,
right. Then we apply Xi+1, Xi+2, · · · , Xm unitary gates, until
we meet sm = 0 or reach the boundary. Note that there is
nothing special in using the X unitary gate; one could re-
place it with a Y unitary gate if desired. Without steering, the
ZZ measurement would bring sites into clusters of a quasi-
Greenberger-Horne-Zeilinger (GHZ) state. Take two qubits as
an example, and the state could be |00〉 + |11〉, |00〉 − |11〉,
|01〉 + |10〉, |01〉 − |10〉. With steering, only the first two
Ising-like states where all qubits are in the same state are now
possible. Thus, the quasi-GHZ cluster now becomes Ising-like
clusters and can be characterized by the order parameter to be
defined in the following.

B. Order parameter

The order parameter to characterize the informative phase
is defined as follows. After every run of circuit, we conduct
a series of commuting measurements on the final state and
get a bitstring xi = (x1

i , x2
i , . . . , xN

i ) of length N . Notice that
since they commute with each other, we can simultaneously
determine their values. With M bitstrings {xi} at hand, we
identify these as M samples with N features. We organize
the dataset into a matrix XM×N , and we conduct PCA on this
dataset. PCA is one of the most commonly used unsupervised
learning techniques, and it has been widely used in many-
body physics studies [72–75]. It was also previously shown
to be able to characterize the entanglement phase transition
by making the whole state as the input [76]. Specifically, we
find the eigenvector matrix V that satisfies

XTXV = λV, (3)

which consists of N ′ eigenvectors {vα} corresponding to the
largest N ′ eigenvalues of covariance matrix XTX. N ′ is the
reduced dimension number and N ′ � N . We then conduct the
dimensional reduction by x′

i = xiV , which makes x′ only has
N ′ features now. The eigenvectors composed of V are also
called weighting vectors; they specify principle directions,
and the dataset has the largest variance after projecting onto
these directions. Finally, the variance in the nth principle
direction is defined as

σn = var
({

x′n
i

}) =
∑

i

(
x′n

i −
∑

i x′n
i

M

)2

, (4)

where the biggest variance σ1 is identified as the order param-
eter. We also use the second biggest variance σ2 to locate the
critical point in the following, since it reflects the long-range
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fluctuation in the bitstring [74], while σ1 actually reflects the
intrinsic dimension of the measured bitstrings from the infor-
mation theory perspective [77]. When the order parameter is
high relative to the variance in other directions, it means that
the data’s dimension can be effectively reduced. This ability
of dimension reduction is the key information we utilize.

The last problem is how to choose the appropriate commut-
ing measurements sets. Thinking intuitively, the SB phase can
be thought of as a Z-ordered phase where all qubits align with
each other along the z direction with steering. This reasoning
naturally suggests that measuring the z component could offer
distinctive bitstring outcomes as the system transitions into
the SB phase. More broadly speaking, one should focus on
measurements along the axis that coincides with the direction
of symmetry breaking. The choice can be further validated by
considering limiting cases, serving as a sanity check for the
chosen measurement scheme. Take the pTF-Ising model as an
example. With the aforementioned steering, the state is a sim-
ple superposition: |ψ〉 = |111 . . . 11〉 ± |000 . . . 00〉 if only
ZZ measurements are present while being |+ + + · · · + +〉
if there are only X measurements. Thus we choose the set to
be Z measurement on every single qubit. In the first case, the
bitstrings have only two possible configurations and thus the
dataset is actually one-dimensional, leading to a high σ1. In
the second case, the measured bitstring is completely random
and the variance in all directions would be almost the same,
which makes it impossible to reduce its dimension. Knowing
the limiting cases, the next step is to ask what would hap-
pen when both ZZ measurements and X measurements are
present. We answer it with numerical simulation in the next
section.

III. NUMERICAL SIMULATION

After establishing the framework, we provide numeri-
cal evidence that steering can indeed induce an informative
phase in various models by appropriately altering the set of
commuting measurements performed at the end of the cir-
cuit. To illustrate that this phenomenon is quite general, we
choose three different and previously studied measurement-
only circuit models: the pTF-Ising model [49–52], the lattice
gauge-Higgs model [47], and the XZZX model [48]. The
flowchart for numerical simulation is summarized and shown
in Fig. 2. To simulate large system sizes, we take the initial
state to be stabilizer states in all the following models to take
advantage of stabilizer formalism [69–71]. For a circuit with
length L, we evolve O(L2) time steps to get the final state, and
we conduct the simulation for system size up to 256. Open
boundary conditions are assumed throughout this work.

A. Projective transverse-field Ising model

In this model we choose the initial state to be
|+ + + · · · + +〉. At every time step, a ZZ measurement is
applied with probability p at an arbitrary location. Otherwise,
X -measurement is applied at an arbitrary position. If ZZ mea-
sures to be −1, we then apply the appropriate steering gate. At
the end of the circuit, we measure every qubit in the z direction
to get a bitstring. Every particular circuit structure is used only
once, and the dataset is generated by 1000 such bitstrings.

FIG. 2. A flowchart for the setup introduced in this work using
the pTF-Ising model as an example. The state is prepared initially
in x direction. Random ZZ measurements and X measurements are
applied. At the end of the circuit, we measure every qubit in the z
direction and get a bitstring. By repeating this procedure many times,
we get a dataset and analyze it by PCA. Finally, σ1 and σ2 are read
out.

After that, we get the σ1 and σ2 as defined in Sec. II B. To
estimate the error, we repeat the above procedure 10 times
to get the average values and standard errors of σ1 and σ2

for every p and L. The result is shown in Fig. 3(a). It can
be seen clearly that σ1 becomes significant at p = 0.5. A
larger system size would lead to larger σ1 when p > 0.5, since
longer bitstrings 111 · · · 111 and 000 · · · 000 are further away
from each other after the projection. This is the first evidence
of the presence of an informative phase.

To locate the critical point more accurately, we look at
σ2 and collapse the data as shown in Figs. 3(b) and 3(c).
The detailed data collapse and error estimation procedure
are described in Appendix A. We find that the critical point
is at pc = 0.504 ± 0.001 and the critical exponent is ν =
1.36 ± 0.08, which coincides with the entanglement phase
transition. While the entanglement phase transition can be
mapped to bond percolation in a two-dimensional square lat-
tice, it’s worth mentioning that it’s actually the same situation
here. With steering, every ZZ measurement is to cluster the
neighboring qubits. The only difference is that by steering,
the qubits in the cluster are now always in the same state,
rather than constituting a general quasi-GHZ state. On the
other hand, X measurement singles out one qubit from the
clusters. In the final bitstring, qubits that are connected by a
cluster would have the same measurement outcome.

Furthermore, the order parameter here can also be trans-
lated into percolation language. We explicitly show the
eigenvectors vα for the five largest directions in Figs. 4(a)–
4(c). As p becomes greater than 0.5, v1 starts to be uniform.
Recall that for every bitstring xi, the projected first feature is

x′1
i = v1 · xi. (5)

This means that the most important feature is actually just
the total number of 1s or 0s in the bitstring when p � 0.5,

024301-4



STEERING-INDUCED PHASE TRANSITION IN … PHYSICAL REVIEW B 109, 024301 (2024)

FIG. 3. Numerical results for the pTF-Ising model. Every point is averaged over ten runs, and each run uses 1000 bitstrings as the input.
(a) σ1 calculated by PCA. When p < 0.5 it remains at a low value, while it abruptly rises at p = 0.5, signifying a phase transition. A larger
system size would lead to larger σ1, as explained in the text. In the p = 1 limit, σ1 actually equals the system size L, since there are only
two points in the data space. (b) σ2 calculated by PCA. The peak in σ2 is at the phase transition point due to long-range fluctuation and is
reminiscent of the susceptibility. (c) Data collapse for σ2 used to locate the critical point and extract the critical exponent. Notice that we only
use the larger system size data for the data collapse to reduce the finite-size effect.

and fluctuations are comparably smaller. Putting it in another
form, this feature is to check that whether there exists a large
cluster of 1s or 0s in the bitstring. This is exactly a signature
of percolation transition [78,79]. Finally, we directly project
every bitstring to the first two directions in Fig. 4(d) and
Fig. 4(e). One can visually see that in the informative phase,
the data points are clustered around two points, which makes
the dataset “informative.” This is reminiscent of the PCA
result for the classical Ising model.

FIG. 4. PCA-related results for the pTF-Ising model. The system
is L = 128. (a)–(c) First five principle weighting vectors, with the
biggest one highlighted. One can see that the biggest weighting
vector learns to discriminate bitstrings by adding the bitstring up as
the system enters into the informative phase. (d)–(f) Projected data
onto the first two principle directions for 1000 samples. One can
clearly see that the data points are divided into two clusters in the
informative phase (f).

B. Lattice gauge-Higgs model

We next consider the lattice gauge-Higgs circuit model,
which was first discussed in Ref. [47]. We leave aside the
physical connection between this model and the original
Hamiltonian and treat it merely as another measurement-
only circuit with different measurement operations. A brief
overview of the model’s setup is provided here. For the sake of
simplicity, we make the assumption that the system contains
an odd number of qubits and we number them starting from 1.
There are four kinds of measurement operations in this model:

M1 = ZiZi+1Zi+2 (i mod 2 = 0),

M2 = XiXi+1Xi+2 (i mod 2 = 1),

M3 = Xi (i mod 2 = 0),

M4 = Zi (i mod 2 = 1). (6)

When referring to these operations in the following, we as-
sume they are acting on the correct sites implicitly. In this
setup, the only two pairs of anti-commuting operators are
(M1,M3) and (M2,M4), while other pairs commute with
each other. During each time step, two measurements are
taken from these paired sets. For the first measurement, M1 is
applied with a probability of p1 and M3 is applied otherwise.
The location for the action is chosen randomly. For the second
measurement, either M2 or M4 is chosen in a similar fashion,
controlled by a tuning probability p2. There are both SB
phases and SPT phase in this model, and the phase diagram
is shown in Fig. 1(b) [80].

Now we want to see whether informative phases are
still present in this more complicated model. While all en-
tanglement phase transitions in this model belong to the
same universality class as those in the pTF-Ising model,
the approach for identifying the informative phase necessi-
tates slight modifications. The critical questions that arise
are which measurements should be steered and what set of
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TABLE I. We summarize different settings for different line
scans in the lattice gauge-Higgs model. The checkmark means that
the operator needs to be steered in that case. The rule to determine
the setting is discussed in the main text. The critical point pc always
means the unfixed parameter in the line scan. Both pc and ν are
determined by the data collapse procedure. Notice that ν for p1 = 0.9
and p2 = 0.9 are close to the critical exponent determined for the
entanglement phase transition in Ref. [47].

p1 = 0.1 p1 = 0.9 p2 = 0.1 p2 = 0.9

XXX � � � �
Z � �
ZZZ � � � �
X � �
Measure direction x̂ ẑ ẑ x̂
pc 0.502(2) 0.497(2) 0.508(2) 0.494(3)
ν 1.45(8) 1.96(9) 1.35(9) 2.0(1)

commuting measurement operators should be employed. Take
the case where we fix p2 = 0.1 and tune p1 as an example. In
this scenario, we are looking at the competition between M1

and M3, while M2 and M4 are actually irrelevant. Thus we
steer M1 while leaving M3 unsteered, similar to the pTF-Ising
model. Meanwhile, we also steer the M2 and M4 to eliminate
their influences. Moreover, since we are looking at the phase
transition into the Z-ordered SB phase, we choose to measure
the z component of the qubits. Other situations can also be
determined in a similar way, and the settings are summarized
in Table I. In our numerical simulations, we concentrate on

four specific line cuts within the parameter space, as indicated
by the red lines in Fig. 1(b). The results are shown in Fig. 5.
One can see that informative phase can indeed be found in
this model. We also locate the critical point and the critical
exponent by data collapsing on σ2. The results are shown in
Table I, and the resultant phase diagram is shown in Fig. 1(b).
Remarkably, we find that the informative phase region again
coincides with the SB phases. This indicates that the orig-
inal entanglement phase transition is actually brought to a
classical level by steering and only looking at the bitstring
information. We argue that we can actually utilize this feature
to make the SB phase more transparent to experiments. A
comparative analysis is provided in Sec. IV to evaluate the
resources required for observing the phase transition both with
and without steering.

C. XZZX model

Finally, we consider the XZZX measurement-only circuit
model. This model was initially introduced and studied thor-
oughly in Ref. [48]. There are both SB phase and SPT phase in
this model, and they could coexist in some parameter ranges.
We mainly consider three different scenarios: cases with only
X errors, only Z errors, and those where both types of errors
are present.

First, we consider the case where there is only one type of
error in the circuit (meaning two competing measurements):

M1 = XiZi+1Zi+2Xi+3,

M2 = Xi, (7)

FIG. 5. Numerical results for the lattice gauge-Higgs model. p1 and p2 are chosen according to the red dashed lines in Fig. 1(b). Notice
that we only consider the case where there are odd numbers of qubits in the system for simplicity. The first row is the result for σ1, the second
row the result for σ2, and the third row is the data collapsing result. (a)–(c) p1 = 0.1. When p2 > 0.5, the system is in the informative phase
and coincides with the X-ordered SB phase. (d)–(f) p2 = 0.1. When p1 > 0.5, the system is in the informative phase and coincides with the
Z-ordered SB phase. (g)–(i) p1 = 0.9. When p2 < 0.5, the system is in the informative phase and coincides with the Z-ordered SB phase.
(j)–(l) p2 = 0.9. When p1 < 0.5, the system is in the informative phase and coincides with the X-ordered SB phase.
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FIG. 6. Numerical results for the XZZX model. (a)–(c) With X
error only. The informative phase again coincides with the SB phase.
(d)–(f) With Z error only. One can see that the shape of the curve is
qualitatively different from the case with X error. With data collaps-
ing, we determine that pc = 0.514 ± 0.007 and ν = 3.5 ± 0.7. The
universality class here remains unclear.

and with probability p, M1 is measured at a random loca-
tion. From the frustration graph point of view, this model
is equivalent to the pTF-Ising model where the SB phase
transition occurs at p = 0.5. We choose to steer after every
M1 measurement if the outcome is −1. The choice of com-
muting measurement set requires further consideration. Here,
the symmetry-breaking “direction” is actually characterized
by XY X . If one regards the XZZX as ZZ in the previous
case, the proper “Z” in this case now should be XY X , since
XiZi+1Zi+2Xi+3 = XiYi+1Xi+2 · Xi+1Yi+2Xi+3. Thus the proper
set of commuting measurements at the end of each circuit
run should now be {XiYi+1Xi+2}. Since we are considering
open boundary conditions, the measured bitstring would have
length N = L − 2, where L is the total qubit number and xn

i
is now the measurement outcome of XiYi+1Xi+2. Under this
setting the result is shown in Figs. 6(a)–6(c). The critical point
is found to be at pc = 0.506 ± 0.001, and the critical exponent
is ν = 1.33 ± 0.08. One can see that the informative phase
coincides with the SB phase as it does in previous models.
However, the situation changes if we consider the case where
M2 = Zi. The SB phase transition still occurs at p = 0.5,
and there is also SPT phase transition at the same point. For
the informative phase, as is shown in Figs. 6(d)–6(f), the
phase transition point is now at pc = 0.514 ± 0.007. Thus
we suspect that an intermediate phase may appear, and the
phase diagram is shown in Fig. 1(c). In the intermediate phase,
although the system exhibits a symmetry-breaking nature, as
evidenced by specific entanglement measures, this charac-
teristics does not readily translate to the bitstrings. In other
words, the classical information carried by these bitstrings
is insufficient to reveal the underlying SB phase within this
intermediate zone. It is worth noticing that the circuit with

FIG. 7. Numerical results for the XZZX model with both X
error and Z error at different steering strengths. (a)–(c) Steering
gate only applies when XZZX measures to be −1. We determine
pc = 0.945 ± 0.003 and ν = 2.14 ± 0.07, which suggests the pres-
ence of an intermediate phase. (d)–(f) The steering gate is applied
after every measurement if the measurement outcome is −1. We have
pc = 0.736 ± 0.002 and ν = 2.2 ± 0.1 now. It clearly shows that the
region of informative phase grows.

Z error does not have a percolation picture when looking at
the measured bitstrings. The impact of a Z measurement is
considerably more intricate than that of an X measurement.
Unlike an X measurement, which typically isolates a single
qubit from an XY X cluster, a Z measurement has the capacity
to reconfigure the states of adjacent qubits, potentially form-
ing an entirely new cluster. A more detailed example is given
in Appendix B. Thus there is no constraint that the informative
phase transition should coincide with the SB phase transition
in this scenario.

Now we consider a more complicated situation where there
are both X measurements and Z measurements in the circuit.
For simplicity, we assume that the probabilities for them to
occur are equal and the circuit structure is now captured by

M1 = XiZi+1Zi+2Xi+3, with probability p

M2 = Xi, with probability
1 − p

2

M3 = Zi, with probability
1 − p

2
. (8)

In this case, an SB phase transition was shown to occur at
pc ≈ 0.56, and the SPT phase is absent as long as p �= 1. We
first choose to steer only on M1, as was previously done.
The result is shown in Figs. 7(a)–7(c). The critical point
for the informative phase transition here is determined as
pc = 0.945 ± 0.003 by data collapsing. Thus, an intermediate
phase apparently appears. Traditionally, steering strength is
modulated by a probability term which governs whether a
steering gate is applied after an undesired measurement out-
come. Increasing this probability generally leads to a more
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expansive region for the steering-induced phase within the
phase diagram [61,62]. In our models we find that when the
steering probability is anything other than 1, no informative
phases emerge (data not shown). Alternatively, we investi-
gate the effect of modifying steering strength by selectively
applying steering to a greater or lesser number of measure-
ment operators. As an example, we choose to steer on all
the measurements in the circuit and the result is shown in
Fig. 7(b). The critical point is now greatly shifted to be at
pc = 0.736 ± 0.002. As expected, the informative phase in-
deed grows in region with a stronger steering strength while
still staying inside the SB phase. Our findings suggest that
enlarging the set of measurements subjected to steering results
in a broader informative phase region.

IV. COMPARISON OF RESOURCES

Having demonstrated that the informative phase bound-
ary consistently occurs within the SB phase in three distinct
models, we are now poised to think about the physical sig-
nificance of the coincidence of phase boundaries of SB phase
and informative phase. It was previously pointed out that one
could make the entanglement phase transition coincide with
another easy-to-measure classical ordering transition by steer-
ing the system into a unique representative wave function,
which is named a “preselection” [56]. The situation here is
similar but with a major difference that the representative
wave function is not unique. The competition was usually
between unitary gates and a single measurement operation in
previous studies, while here we are considering competition
between different measurements. Take ZZ measurement and
X measurement as an example. Although a reasonable target
representative state is |ψ〉 = |111 · · · 11〉 ± |000 · · · 00〉, the X
measurement would drive the state away from it as long as the
probability of an X measurement occurring is nonzero. Thus
the steering can be seen as a generalization of “preselection”
to a measurement-only circuit when the informative phase
coincides with the SB phase. It is then natural to ask whether
detecting the informative phase requires fewer experimental
resources than directly detecting the SB phase. We now com-
pare them in detail.

The cost of directly measuring the SB phase transition
is threefold. First, one needs to get the same trajectory by
postselection, which is exponential in the system size. Second,
the same trajectory needs to be prepared many times to deter-
mine its property, such as expectation values or entanglement
entropy. Finally, one needs to average over many different
random circuits. The total cost is the product of the three.
In contrast, for the informative phase we significantly reduce
these complexities. We get rid of the need to postselect by
applying a series of steering gates. Moreover, we only need
to run a single circuit for once. In the numerical simulation
above, the 1000 bitstrings come from different random cir-
cuits. This comparison is summarized in Table II. Thus we
argue that the resource needed to observe the informative
phase transition is much less than the SB phase transition. A
notable consequence is observed in the context of the lattice
gauge-Higgs model. The absence of a direct boundary be-
tween the trivial phase and the SPT phase, combined with the
complete overlap of the informative phase with the SB phases,

TABLE II. Comparison for the cost of resources to observe the
SB phase transition and the informative phase transition. Costs in the
same column are multiplied to get the final cost. Notice that for the
informative phase, we ignore the cost of finding the proper steering
gate to act, which is relatively small. We also overestimate the cost
of applying the steering gate by assuming that every gate has the
support on the whole system, which is usually not the case.

SB Informative

Postselection 2L2
pL3 single-qubit gate

Trajectory ∼1000 ∼1000
Circuit >100

offers a unique advantage for experimental measurements.
Specifically, all the phase transitions in this model become ex-
perimentally accessible through the use of steering, followed
by PCA on the measured bitstrings.

V. SUMMARY AND DISCUSSION

In this study, we integrate steering mechanisms into
measurement-only quantum circuits to explore their phase
behavior. We discover an informative phase, defined via an
easily measurable order parameter related to the intrinsic di-
mensions of bitstrings. Utilizing a specialized steering scheme
that requires nonlocal information, we demonstrate the emer-
gence of these informative phases within existing SB phases.
Our findings are substantiated through numerical simulations
across three distinct models. When the boundaries of these
phases overlap, our approach offers a viable method for exper-
imentally detecting entanglement phase transitions, serving as
a form of preselection without the need for a single “dark
state.” Additionally, we identify the potential for an interme-
diate phase that exhibits symmetry-breaking characteristics in
terms of entanglement, yet their bitstrings remain noninforma-
tive. For this case, it is interesting to ask whether there could
be some phases that coincide with the SB phase by applying
another steering scheme and looking at other easy-to-measure
order parameter. A future direction for study involves explor-
ing how we can classify models based on the possibility of
revealing the SB phase transition in an experimentally feasible
way.

The deep reason that the informative phase transition can
be observed with ease in the experiment can be summarized
as follows. By steering, we narrow down the possible final
outcomes of the circuit to a certain subset of all possible ones.
Thus the final state should be described by a mixed state rather
than a single pure state. After that, we look at whether the state
has a large cluster where all qubits are in the same state by
PCA. While the particular cluster size and location is different
across all the pure states comprising the mixed state, the infor-
mation whether or not there exists a large cluster is shared by
all of them. This is the key point why we don’t need postselec-
tion to observe such transition. Meanwhile, this also suggests
that the informative phase coming from this recipe should
always lie inside the SB phase, since there couldn’t be a large
cluster if there is no symmetry breaking. The next question
naturally arises: Could there also be steering-induced phases
within SPT phases? This presents a challenge since, in SPT
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phases, information is globally encoded and shielded from
local measurements. Consequently, gaining insights from bit-
strings obtained through local commutative measurements
may prove difficult. One avenue for future research might
involve nonlocal commutative measurements. Alternatively, a
more sophisticated approach could seek to identify high-level
features akin to the large clusters found in SB phases but
specific to SPT phases. We leave this subject to future work.

To define the information carried by bitstrings, we use PCA
and think of the ability to reduce the data’s dimension as
the useful information contained in them. It is reminiscent
of discovering both quantum and classical phase transitions
by various unsupervised machine learning methods [81–83],
where the bitstrings are generated either in experiments or by
Monte Carlo sampling. It is interesting to ask whether using
other more advanced techniques would squeeze more infor-
mation from the bitstring, such as a diffusion map [84,85],
two-NN [86–89]. A notable difference is that these methods
usually work when sampling over a partition function, where
the ground state always has the highest probability to occur. In
our case, however, no such ground state appears. For example,
in the pTF-Ising model, the state where all qubits point in
the same direction is always not the most probable state to
occur unless p = 1. We conjecture that this may prevent other
methods from working better than PCA.
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APPENDIX A: DATA COLLAPSE

For σ2, we hope to fit the curve according to a proper
scaling hypothesis that σ2 = Lα f [(p − pc)L1/ν]. Here α char-
acterizes the degree of divergence while ν is the usual critical
exponent. The data collapse procedure goes as follows. For a
given combination of pc, ν, and α, we can rescale a particular
data point (p, L, σ2) to be

x = (p − pc)L1/ν, y = σ2L−α. (A1)

After rescaling all the data points, we fit the rescaled data with
a 12th-order polynomial and we get the residue for the best fit.
The residue ε(pc, ν, α) is then defined as the target function.
By applying the Nelder-Mead algorithm, we find the minimal
point (pmin

c , νmin, αmin) and the minimal value εmin.

FIG. 8. Determine the uncertainty in pc and ν. The residues are
rescaled by dividing εmin. The red circle is where the residue equals
1.05εmin, and the green diamond is where the minimal point is. The
uncertainty can be approximated to be pc = 0.504 ± 0.001 and ν =
1.36 ± 0.08.

To estimate the uncertainty in pc and ν, we fix α = αmin

and draw out ε = ε(pc, ν, α
min). We take the threshold to

be 1.05εmin to determine the uncertainty. Figure 8 shows an
example for estimating the error for the pTF-Ising model.

APPENDIX B: EFFECT OF Z ERROR

We give an illustrative example to show that the effect of
Z error on the bitstring is different from the case for X error.
Consider a system with eight qubits. Starting from the state
where every qubit is in |1〉, we first measure XZZX at all
possible positions. If we measure the bitstring by {XY X } now,
the result would be all 1s or 0s, since the whole system is in
one XY X cluster. Now, if we further measure Z on the fifth
qubit and we assume that the outcome is 1, the state can be
represented by stabilizers:

{X1Z2Z3X4, X3Z4Z5X6, X4Z5Z6X7, X2Z3Z4Z6Z7X8,

Z3Z6, Z1Z3Z7, Z2Z5Z8, Z5}. (B1)

We then measure the bitstring by measuring {XY X } and de-
note the result of XiYi+1Zi+2 as xi. The possible outcomes
are 111111, 110001, 001110, 000000. One would find that
{x1, x2, x6} are in the same cluster while {x3, x4, x5} are in
another cluster. Thus Z error creates a new cluster instead of
simply driving one qubit out of the XY X cluster in this sim-
plest case. Moreover, the situation becomes more complicated
if one again measures Z on, for example, the sixth qubit and it
eventually loses a simple picture to describe its effect.
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