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Entanglement phase transitions in non-Hermitian quasicrystals
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The scaling law of entanglement entropy could undergo qualitative changes during the nonunitary evolution of
a quantum many-body system. In this work, we uncover such entanglement phase transitions for free fermions in
one-dimensional non-Hermitian quasicrystals (NHQCs). We identify two types of entanglement transitions with
different scaling laws and critical behaviors due to the interplay between non-Hermitian effects and quasiperiodic
potentials. The first type represents a typical volume-law to area-law transition, which happens together with a
PT-symmetry breaking and a localization transition. The second type features an abnormal log-law to area-law
transition, which is mediated by a critical phase with a volume-law scaling in the steady-state entanglement
entropy. These entangling phases and transitions are demonstrated in two representative models of noninteracting
NHQCs. Our results thus advance the study of entanglement transitions in non-Hermitian disordered systems and
further disclose the rich entanglement patterns in NHQCs.
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I. INTRODUCTION

Along with the increase of measurement rates, the
competition between unitary time evolution and projective
measurements could prompt the steady state of a quantum
many-body system (either interacting or noninteracting) to
switch from a volume-law-entangled phase to a quantum Zeno
phase with an area-law entanglement entropy (EE) [1–5]. Ever
since its discovery, this measurement-induced entanglement
phase transition has attracted great attention in both theoreti-
cal [6–52] and experimental [53–55] studies, with important
implications for the understanding of quantum information
dynamics and the simulation of quantum many-body sys-
tems [56–58]. Recently, entanglement phase transitions have
also been studied in the context of non-Hermitian physics
[59–66]. There, the effect of measurement is taken into ac-
count by considering a nonunitary evolution generated by a
non-Hermitian Hamiltonian. The dissipation-gap formation
and the non-Hermitian skin effect are further identified as two
typical mechanisms of producing entangling-disentangling
phase transitions [62,63]. Yet, these discoveries are estab-
lished with a focus on pristine non-Hermitian lattice models.

The non-Hermitian quasicrystal (NHQC) forms a typi-
cal category of disordered non-Hermitian setup [67–69]. In
an NHQC, the interplay between correlated disorder and
gain/loss or nonreciprocal effects could yield rich phases
and phenomena including parity-time-reversal (PT-)symmetry
breaking transitions, localization transitions, topological tran-
sitions, and mobility edges [70–75]. Despite great theoretical
efforts [76–107], NHQCs have also been experimentally re-
alized by nonunitary photonic quantum walks [108,109].
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However, much less is known regarding entanglement phase
transitions in NHQCs [104,105]. This question can be in-
teresting, as a PT-broken NHQC could belong to either a
localized phase [71] or an extended phase [70]. In the latter
case, the delocalized bulk states should prefer a volume-law
scaling in the steady-state EE after a long-time evolution,
while the dissipation gap in the complex energy spectrum
may favor an area-law entanglement scaling. The competition
between these two opposite trends may lead to new scaling
laws and exotic critical behaviors for the EE. Moreover, an
NHQC could possess a point gap instead of a line gap on
the complex energy plane [70,71], and the implication of a
point dissipation gap on entanglement phase transitions is
largely unclear. In addition, whether and how entanglement
transitions would accompany other phase transitions (e.g.,
PT-symmetry breaking, localization, etc.) in NHQCs remain
to be uncovered.

To resolve these puzzles, we explore in this work the entan-
glement phase transitions of free fermions in NHQCs, with a
focus on two “minimal” and mutually dual non-Hermitian lat-
tice models [72,79]. In Sec. II, we introduce these models and
review their known spectral and localization properties. The
entanglement phase transitions in these models are explored
in detail in Sec. III. A different type of log-law to area-law
entanglement transition, mediated by a volume-law critical
entangling phase, is identified. In Sec. IV, we summarize
our results, comment on related issues, and discuss potential
future directions.

II. MODELS

We focus on the entanglement phase transitions in two
“minimal” non-Hermitian variants of the noninteracting
Aubry-André-Harper (AAH) model. They will be denoted by
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NHAAH1 and NHAAH2 for brevity. We first go over some
of their key physical properties in this section. Throughout
the discussions, we will set the lattice constant a = 1 and the
Planck constant h̄ = 1.

In the position representation, the Hamiltonian of the
NHAAH1 takes the form

Ĥ1 = J
∑

n

(ĉ†
nĉn+1 + ĉ†

n+1ĉn) + V
∑

n

e−i2παnĉ†
nĉn. (1)

Here, ĉ†
n (ĉn) creates (annihilates) a fermion on the lattice

site n. J denotes the nearest-neighbor hopping amplitude and
V denotes the amplitude of on-site potential Vn = Ve−i2παn.
2πα describes the wave number of the superlattice [110]. Ex-
panding a general state as |ψ〉 = ∑

n ψnĉ†
n|∅〉, the eigenvalue

equation Ĥ1|ψ〉 = E |ψ〉 of NHAAH1 can be expressed in the
following form:

Jψn+1 + Jψn−1 + Ve−i2παnψn = Eψn. (2)

Here, |∅〉 denotes the vacuum state and the amplitude ψn is
normalized as

∑
n |ψn|2 = 1. It is clear that the NHAAH1

is non-Hermitian due to the complex on-site phase factor
e−i2παn. It further possesses the PT symmetry, with the parity
P : n → −n and the time-reversal T = K, where K performs
the complex conjugation. The quasicrystal nature of the sys-
tem comes about by setting α as an irrational number, so
that the on-site potential is spatially quasiperiodic. The energy
spectrum of the system under the periodic boundary condition
(PBC) was found to take the conjectured form of [72]

E =
{

2J cos k, |V | � |J|(
V + J2

V

)
cos k + i

(
V − J2

V

)
sin k, |V | > |J|. (3)

Here, k ∈ [−π, π ) is an artificial parameter that tells us the
eigenenergies fill either the region of a line segment or an
ellipse [111]. Therefore, the spectrum is real for |V | < |J| (PT
invariant) and complex for |V | > |J| (PT broken). There is a
PT transition in the energy spectrum at |V | = |J|.

The Hamiltonian of the NHAAH2 in the position represen-
tation is given by

Ĥ2 = J
∑

n

ĉ†
n+1ĉn + 2V

∑
n

cos(2παn)ĉ†
nĉn, (4)

and the related eigenvalue equation reads

Jψn−1 + 2V cos(2παn)ψn = Eψn. (5)

It is clear that the nearest-neighbor hopping is unidirectional
from left to right, making the system non-Hermitian. The
NHAAH1 and NHAAH2 differ in both their hopping and on-
site potential terms, so that neither of them can be viewed as a
special case of the other. The NHAAH2 is also quasiperiodic
if α is irrational [110]. Taking a rational approximation for
α � p/q (with p, q being co-prime integers) and performing
the discrete Fourier transformation ψn = 1

L

∑L
�=1 φ�ei2πα�n

under the PBC (ψn = ψn+L), Eq. (5) can be transformed to
the momentum space [71] as

V φ�+1 + V φ�−1 + Je−i2πα�φ� = Eφ�, (6)

where L denotes the length of lattice. It is now clear that the
NHAAH2 also possesses the PT symmetry, with P : � → −�
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FIG. 1. Phase diagrams of the (a),(b) NHAAH1 and
(c),(d) NHAAH2 under the PBC [112]. We choose α =

√
5−1
2

and the length of lattice, L = 610, for all panels. The red dashed
lines show the phase boundaries J = ±V . The NHAAH1 stays in a
PT-invariant extended phase for |V | < |J| and goes to a PT-broken
localized phase for |V | > |J|. The NHAAH2 resides in a PT-broken
extended phase for |V | < |J| and switches to a PT-invariant localized
phase for |V | > |J|.

and T = K. The energy spectrum of the system under the
PBC is further given by the conjectured expression,

E =
{(

J + V 2

J

)
cos k + i

(
J − V 2

J

)
sin k, |V | < |J|

2V cos k, |V | � |J|, (7)

where k ∈ [−π, π ) is again an artificial parameter [111].
Therefore, the spectrum is real for |V | > |J| (PT invariant)
and complex for |V | < |J| (PT broken). The PT transition of
NHAAH2 also happens at |V | = |J| [79].

By comparing Eqs. (2) and (6), we further observe a du-
ality relation between the NHAAH1 and NHAAH2, implying
the presence of a fixed point along |J| = |V |. In fact, it has
been identified that under the PBC and for any irrational α,
there is a PT spectral transition together with a localization-
delocalization transition at |J| = |V | for both the NHAAH1
and NHAAH2. When |V | < |J|, the NHAAH1 (NHAAH2)
resides in an extended phase with a real (complex) spectrum
and holding only extended eigenstates. When |V | > |J|, the
NHAAH1 (NHAAH2) switches to a localized phase with a
complex (real) spectrum and holding only localized eigen-
states [72,79]. The transitions between these phases could be
further captured by quantized changes of spectral topological
winding numbers [70,71]. In Fig. 1, we illustrate the phases
and transitions in NHAAH1 and NHAAH2 by investigat-
ing their spectra and inverse participation ratios (IPRs). The
〈ImE〉 [in Figs. 1(a) and 1(c)] and 〈IPR〉 [in Figs. 1(b) and
1(d)] are defined as

〈ImE〉 = 1

L

L∑
j=1

|ImEj |, (8)

〈IPR〉 = 1

L

L∑
j=1

L∑
n=1

∣∣ψ j
n

∣∣4
. (9)
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Here, Ej is the jth eigenenergy of Ĥ1 or Ĥ2 with the normal-
ized right eigenvector |ψ j〉 = ∑L

n=1 ψ
j

n ĉ†
n|∅〉. By definition,

we expect 〈ImE〉 = 0 (〈ImE〉 > 0) in the PT-invariant (PT-
broken) phase, and 〈IPR〉 → 0 (〈IPR〉 > 0) in the extended
(localized) phase. The numerical results presented in Fig. 1
clearly verified the theoretically predicted extended/localized
phases, PT transitions, and localization transitions in these
NHQCs [72,79].

Based on these known physical properties, one may expect
to also have entanglement phase transitions in the NHAAH1
and NHAAH2. For example, after a long-time evolution, the
EE of a typical initial state might be proportional to the sys-
tem size (volume law) in the PT-invariant phase and become
almost independent of the system size in the PT-broken phase
(area law) [63]. The PT transition of NHAAH1 or NHAAH2
should then accompany a volume-law to area-law entangle-
ment transition. Meanwhile, one may also expect the scaling
of steady-state EE to follow a volume law in the extended
phase and an area law in the localized phase. However, the
PT-invariant (PT-broken) phase of our system could also be
a localized (an extended) phase, making the real physical
situation more complicated. As will be demonstrated in the
following section, despite the more conventional volume-law
to area-law entanglement transitions, the steady-state EE of
an NHQC may follow an abnormal log-law scaling due to the
interplay between quasiperiodicity and non-Hermitian effects.
A log-law to area-law entanglement phase transition could
further be induced to happen across a critical point where the
EE follows a volume law.

III. RESULTS

In this section, we reveal the entanglement phase tran-
sitions in NHAAH1 and NHAAH2. We first discuss the
definition of EE and the calculation of its dynamics for a non-
Hermitian system. Next, we demonstrate the scaling relations
of steady-state EE with respect to the system and subsystem
sizes for our two NHQC models in Secs. III A and III B. These
relations allow us to clearly distinguish different entangling
phases in the considered systems. The entanglement phase
transitions are further uncovered by investigating the changes
of EE with respect to different system parameters. With all
this information, we finally establish the entanglement phase
diagrams for our NHQC models.

For a system that consists of noninteracting fermions, the
EE of an arbitrary subsystem and its time evolution can be ex-
tracted from the spectrum and dynamics of the single-particle
correlator. Consider a system described by the quadratic
Hamiltonian Ĥ = ∑

m,n ĉ†
mHmnĉn and prepared at time t = 0

in the initial state |�0〉; the normalized state of the system at
a later time t is given by

|�(t )〉 = e−iĤt |�0〉√
〈�0|eiĤ†t e−iĤt |�0〉

. (10)

Here, ĉ†
m (ĉn) creates (annihilates) a fermion at the lattice site

m (n). Note that for a non-Hermitian system, we generally
have Ĥ 	= Ĥ†, leading to a nonunitary time evolution. In our
calculations, we choose the initial state to be in the form of a

charge density wave for a half-filled lattice, i.e.,

|�0〉 =
∏
r∈Z

ĉ†
2r |∅〉, (11)

where r = 1, 2, . . . , 
L/2� − 1, 
L/2�. Other kinds of
pure initial states generate similar results regarding the
(sub)system-size scaling of steady-state EE. At a later time t ,
the element of the single-particle correlation matrix C(t ) in
position representation is given by

Cmn(t ) = 〈�(t )|ĉ†
mĉn|�(t )〉. (12)

Restricting the indices m and n to a subsystem A of size l and
diagonalizing the corresponding l × l block of C(t ) result in
the correlation-matrix spectrum {ζ j (t )| j = 1, . . . , l}. The EE
at time t can then be obtained as [62]

S(t ) = −
l∑

j=1

{ζ j (t ) ln ζ j (t ) + [1 − ζ j (t )] ln[1 − ζ j (t )]}.

(13)

Note that the S(t ) here is the bipartite EE of a subsystem A. It
is defined by tracing over all the degrees of freedom belonging
to a complementary subsystem B of the size L − l , in the sense
that S = −Tr(ρA ln ρA) and ρA = TrB(|�(t )〉〈�(t )|). Numer-
ically, the EE of a Gaussian state can be efficiently computed
following the recipe listed in Appendix B of Ref. [62].

In the following sections, we study the EE of our two
NHQC models with the method outlined here. We focus on
systems under the PBC and set the irrational parameter α =
(
√

5 − 1)/2 (the inverse Golden ratio) for all our calculations.
Other choices of the irrational α lead to similar results.

A. NHAAH1

We first reveal entanglement phase transitions in the
NHAAH1 by investigating its steady-state EE S(L, l ), with L
and l being the length of lattice and the size of its subsystem
A. The system is prepared at t = 0 in the initial state |�0〉
[Eq. (11)] and then evolved according to Eq. (10), with the Ĥ
given by Eq. (1). The EE S(t ) at a later time t [Eq. (13)] is ob-
tained from the spectrum of correlation matrix C(t ) [Eq. (12)]
restricted to the subsystem A. Focusing on a long-time evo-
lution of duration T , we obtain the steady-state EE S(L, l )
by averaging S(t ) over a suitable time window t ∈ [T ′, T ]
with 1  T ′ < T . The scaling property of S(L, l ) can then
be analyzed by considering different choices of L and l .

In Fig. 2, we present the steady-state EE versus the system
size L and the subsystem size l for typical sets of system
parameters. In Figs. 2(a) and 2(c), we consider a equal bi-
partition of the system (l = 
L/2�). For |V | > |J|, we find
that the S(L, L/2) almost does not change with L, which
implies that the PT-broken localized phase of the NHAAH1 is
area-law entangled. This is expected, as in this case the point
dissipation gap on the complex energy plane [see Eq. (3)] and
the spatial localization of all eigenstates both tend to hinder
the spreading of quantum entanglement across the system. For
|V | < |J|, we instead observe that up to leading order, the EE
is proportional to the system size L, i.e., S(L, L/2) ∝ gL, with
the gradient g ≈ 0.1 ∼ 0.2. Therefore, in the PT-invariant ex-
tended phase of NHAAH1, the steady-state EE tends to satisfy
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(a) (b)

(c) (d)

FIG. 2. Steady-state EE of the NHAAH1 at half filling vs the system size L [under bipartition in (a) and (c)] and the subsystem size l
[under a fixed length of lattice L = 610 in (b) and (d)]. Other system parameters are set as (a),(b) J = 1 and (c),(d) V = 1. The time span of
the entire evolution is T = 1000 [113].

a volume law. Such a linear scaling is triggered by the quan-
tum information spreading due to delocalized bulk states with
real energies in the system. The gradient g of the volume-law
scaling decreases gradually, but remains finite until the critical
point of PT and localization transitions at |J| = |V |.

In Figs. 2(b) and 2(d), we consider a fixed system size L
and obtain the curve S(L, l ) vs the size l of subsystem A for
l ∈ (0, L). The results show that for |V | > |J|, the S(L, l ) is
almost independent of l up to slight fluctuations, which is
an expected situation for an area-law entangled phase. For
|V | < |J|, the S(L, l ) as a function of l can be numerically
fitted as S(L, l ) � A sin(π l/L) + B ln[sin(π l/L)] + C, where
A, B, and C are some fitting coefficients. This is typical for
a volume-law entangled phase. Putting together, we conclude
that the steady-state EE of NHAAH1 indeed follows quali-
tatively different scaling laws with respect to the (sub)system
size in different parameter regions, which implies the presence
of entanglement phase transitions in the system.

To further decipher the entanglement transitions in
NHAAH1, we present its steady-state EE S(L, L/2) versus
V and J for different system sizes L in Figs. 3(a) and 3(c).
Two distinct regions can be clearly figured out. In the region
with |J| < |V |, the EE shows an L independence, whereas
for |J| > |V |, the EE increases monotonically with L. A
marked change is observed at |J| = |V | in the L dependence
of S(L, L/2), which implies a transition in the scaling law

of EE. In Figs. 3(b) and 3(d), we obtain the gradient g by
fitting the steady-state EE S(L, L/2) with the function gL + s0

at different values of J and V . The results show that g � 0
[S(L, L/2) ∼ s0 ∼ L0] for |J| < |V | and g > 0 [S(L, L/2) ∝
L] for |J| > |V |, which are expected behaviors for area-law
entangled and volume-law entangled phases, respectively.
There is then a discontinuous change of g at |J| = |V |, which
signifies an entanglement phase transition in the NHAAH1.

The physics behind the different scaling laws of EE is as
follows. For our NHAAH1, initial excitations could propagate
and spread uniformly across the whole lattice with the in-
crease of time for |V | < |J|, i.e., in the PT-invariant extended
phase, and the entanglement is building up throughout the
system before reaching a steady state. When the steady state
is reached, an extensive entanglement is retained across any
spatial cuts in the lattice. The resulting bipartite EE then
follows a volume law (gL) vs the system size. For |V | > |J|,
all the eigenstates are localized and any initial excitations
could not propagate and spread in the system after an initial
transient time window. Moreover, the on-site gain and loss are
strong enough when |V | > |J| so as to disentangle degrees of
freedom at different spatial locations. Therefore, any exten-
sive entanglement could not be established across the system
due to the collaboration between strong disorder and strong
gain/loss (which may also be viewed as strong measure-
ment backactions [63]). The result is an area-law scaling of
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(a) (b)

(c) (d)

FIG. 3. (a),(c) Bipartite EE of the steady state at half filling and (b),(d) the related gradient g in the scaling law of steady-state EE for the
NHAAH1. Other system parameters are set as (a),(b) J = 1 and (c),(d) V = 1. The time span of the entire evolution is T = 1000 [113]. The
values of g are obtained from the linear fitting S(L, L/2) ∼ gL + s0 of EE vs the lattice size L at given system parameters.

steady-state EE versus the system size in the PT-broken local-
ized phase of our system.

Collecting together the scaling properties of steady-state
EE with respect to the lattice size L for a half-filled and
bipartite system, we arrive at the entanglement phase diagram
of NHAAH1 under the PBC in Fig. 4. A summary of the key
features of NHAAH1 is given in Table I. We find that there are
indeed two phases with different entanglement nature, which
are separated by an entanglement transition at |J| = |V |. In
the PT-broken localized phase (|J| < |V |), the system is found
to be area-law entangled [S(L, L/2) ∼ L0 ]. The spectrum is

TABLE I. Summary of main results for the quasicrystal
NHAAH1 [Eq. (1)]. The real-spectrum (PT-invariant), extended
phase is volume-law entangled. The complex-spectrum (PT-broken),
localized phase is area-law entangled. The PT, localization, and en-
tanglement phase transitions happen all together at |V | = |J| [see,
also, Figs. 1(a), 1(b), and 4].

NHAAH1 |V | < |J| |V | = |J| |V | > |J|
Energy spectrum real PT transition complex
Eigenstates extended localization transition localized
Steady-state EE volume-law entanglement transition area-law

complex with a point dissipation gap at E = 0 on the complex
energy plane [see Eq. (3)] and all the eigenstates are localized,

area law

area law

volume lawvolume law

FIG. 4. Entanglement phase diagram of the NHAAH1. Different
colors correspond to different values of the gradient g extracted
from the linear fitting S(L, L/2) ∼ gL + s0 of steady-state EE vs the
system size L.
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(a)

(d)(c)

(b)

FIG. 5. Steady-state EE of the NHAAH2 vs the system size L at half filling and under equal bipartition. Other system parameters are set
as (a),(b) J = 1 and (c),(d) V = 1. The time span of the entire dynamics is T = 1000 [113].

both compelling the termination of entanglement spreading
in this case. In the PT-invariant extended phase (|J| > |V |),
the system is instead volume-law entangled [S(L, L/2) ∝ L
up to the leading order]. Since the system possesses a real
spectrum [Eq. (3)] and all its eigenstates are extended in
this case, the quantum information is forced to spread and
a volume-law entangled phase results. Such a volume-law
to area-law entanglement phase transition was identified be-
fore in clean non-Hermitian systems due to different physical
mechanisms [62,63]. In the next section, we will demonstrate
that an even more exotic type of entanglement phase transition
could emerge in NHQCs due to the interplay between disorder
and nonreciprocity.

B. NHAAH2

We now explore the entanglement phase transitions in the
NHAAH2 [Eq. (4)] by inspecting the steady-state EE S(L, l )
of a subsystem A, where L is the length of lattice and l is the
subsystem size. The initial state of the system is still at half
filling and described by the wave function |�0〉 in Eq. (11).
Evolving |�0〉 over a long-time duration T from t = 0, we ob-
tain the EE S(t ) at each t ∈ [0, T ] according to Eqs. (10)–(13).
The steady-state S(L, l ) is then extracted by averaging S(t )
over a time duration t ∈ [T ′, T ] for an appropriately chosen

1  T ′ < T . We could then analyze the scaling behavior of
S(L, l ) with respect to the system size L or the subsystem size
l at any given set of system parameters (J,V ).

Similar to the NHAAH1, we first consider a bipartite sys-
tem with l = 
L/2� for the NHAAH2. The L dependence of
S(L, L/2) for some typical cases is then obtained and shown
in Fig. 5. We find that the EE almost does not change with L
for |V | > |J|, which suggests that the PT-invariant localized
phase of the NHAAH2 is area-law entangled. At J = V = 1,
we find that up to the leading order, S(L, L/2) ∼ gL, with
the gradient g ≈ 0.1. The same scaling law is found for other
values of J = V 	= 0, which indicates that the NHAAH2 is
volume-law entangled along the critical lines J = ±V of the
PT-breaking and localization transitions. Interestingly, we find
that up to the leading order, S(L, L/2) ∼ g ln L for the cases
with |V | < |J|, where the coefficient g ≈ 0.34. Therefore, the
PT-broken extended phase of the NHAAH2 tends out to be
log-law entangled. Such an abnormal entanglement behavior
is clearly distinct from typical scaling laws of steady-state EE
found in other non-Hermitian systems due to non-Hermitian
skin effects or line dissipation gaps [62,63]. The qualitative
change in the scaling law of steady-state EE from |V | < |J|
to |V | > |J| further suggests a log-law to area-law entangle-
ment transition, which is mediated by a critical volume-law
entangled phase along |V | = |J|. To further decode the
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FIG. 6. Steady-state EE of the NHAAH2 vs the subsystem size l at half filling and under a fixed length of lattice, L = 610. Other system
parameters are (a),(b) J = 1 and (c),(d) V = 1. The time span of the entire dynamics is T = 1000 [113].

entanglement transitions in the NHAAH2, we consider the
EE S(L, l ) versus the subsystem size l for a fixed L, with
typical results at different system parameters shown in Fig. 6.
For the cases with |V | > |J|, we find that the S(L, l ) is almost
independent of l up to small oscillations, which is typical for
an area-law entangled phase. At J = V = 1, the S(L, l ) has
the shape of the function A sin(π l/L) + B ln[sin(π l/L)] + C
with a small offset at l = L/2. Interestingly, our numerics
suggest the following generic form of EE for |V | < |J|:

S(L, l ) � c

6
ln[sin(π l/L)] + S0, (14)

where S0 is a nonuniversal constant. Away from the transition
point |V | = |J|, the value of c is found to be 2 with the numer-
ical error of the order of 10−3. Referring to the typical form
of S(L, l ) for a one-dimensional (1D) quantum critical system
[62], Eq. (14) implies a central charge c = 2 for the PT-broken
extended phase of the NHAAH2. The physical origin of this
central charge might be understood from the fact that at half
filling, there are two Fermi points with E = 0 at k = ±π/2
on the Fermi surface [see Eq. (7)]. Each of them makes a
contribution to the central charge c. Compared with the forms
of S(L, l ) in Figs. 2(b) and 2(d) for the NHAAH1, we further
realize that the NHAAH2 should indeed possess a phase with
a unique entanglement nature as described by the scaling
relation (14). Combining the information obtained from the

scaling properties of EE with respect to the system size, we are
now ready to reveal the entanglement phase transitions in the
NHAAH2. In Figs. 7(a) and 7(c), we present the steady-state
EE versus V and J for different system sizes. A clear peak can
be identified at J = V , whose height increases monotonically
with the increase of the lattice size L. The presence of such a
sharp peak in S(L, L/2) clearly hints at the occurrence of a en-
tanglement transition at J = V . In Figs. 7(b) and 7(d), we use
the relations S ∼ gL + s0 and S ∼ g ln L + s0 to fit the data
at different L for |J| � |V | and |J| > |V |, respectively. The
results suggest that the scaling form of EE could undergo a
discontinuous change from a log law (|V | < |J|) with a finite g
in S ∼ g ln L + s0 to an area law with g � 0 in the linear fitting
S ∼ gL + s0 (|V | > |J|). There is thus an entanglement phase
transition at |V | = |J| accompanying the PT and localization
transitions in the NHAAH2.

To have a more balanced comparison between the scaling
laws in different parameter regions, we could assume a fitting
function S(L, L/2) ∼ glnL + g′L + s0. Our numerical calcu-
lations then suggest that g � 0.34 and g′ � 0 in the region
|V | < |J|, while g � 0 and g′ � 0 in the region |V | > |J|.
These two regions thus correspond to log-law and area-law
entangled phases. Right at |V | = |J|, we find g � 2.4 and
g′ � 0.1, and the volume-law scaling dominates with the in-
crease of L. Finally, we establish the entanglement phase
diagram of the NHAAH2 by extracting the scaling laws of
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(a) (b)

(c) (d)

FIG. 7. (a),(c) Bipartite EE of the steady state at half filling and (b),(d) the related gradient g in the scaling law of steady-state EE for the
NHAAH2. Other system parameters are set as (a),(b) J = 1 and (c),(d) V = 1. The time span of the entire evolution is T = 1000 [113]. The
values of g are obtained from the linear fitting S ∼ gL + s0 (S ∼ g ln L + s0) of EE vs the system size L for J � V (J > V ) in (b) and (d).

steady-state EE versus the system size L for a half-filled and
bipartite lattice under the PBC, as shown in Fig. 8. We observe
that the EE indeed satisfies an area law [S(L, L/2) ∼ L0 ]
in the PT-invariant localized phase (|J| < |V |), and fulfills
an anomalous log-law scaling [S(L, L/2) ∝ ln L ] in the PT-
broken extended phase (|J| > |V |). Along the phase boundary
(|J| = |V |), the EE shows a volume-law critical scaling be-
havior [S(L, L/2) ∝ L ], which is similar to the NHAAH1. In
addition, the entangled phases and entanglement transitions
in the NHAAH2 are rather different from those that appeared
in NHAAH1. A summary of the key features of NHAAH2 is
given in Table II.

A possible reason behind these differences is as follows.
In the PT-broken extended phase of NHAAH2 (|J| > |V |),
the asymmetric hopping overcomes the block of quasiperiodic
disorder and allows the spreading of quantum information
across the system, yielding the tendency of forming an exten-
sively entangled phase. However, the spectrum of the system
in the PT-broken phase possesses a point gap on the com-
plex energy plane at E = 0 [see Eq. (7)]. The presence of
such a dissipation gap tends to suppress the quantum in-
formation spreading and prefers an area-law scaling for the
steady-state EE. The competition between these two oppo-

area law

area law

log lawlog law

volume law

volume law

FIG. 8. Entanglement phase diagram of the NHAAH2. Different
colors correspond to different values of the gradient g extracted from
the fitting S ∼ gL + s0 (S ∼ g ln L + s0) of steady-state EE vs the
system size L for |V | � |J| (|V | < |J|).
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TABLE II. Summary of main results for the quasicrystal
NHAAH2 [Eq. (4)]. The complex-spectrum (PT-broken), extended
phase is log-law entangled. The real-spectrum (PT-invariant), lo-
calized phase is area-law entangled. The PT, localization, and
entanglement transitions happen all together at |V | = |J|, where the
steady-state EE follows the volume law as in NHAAH1 [see, also,
Figs. 1(c), 1(d), and 8].

NHAAH2 |V | < |J| |V | = |J| |V | > |J|
Energy spectrum complex PT transition real
Eigenstates extended localization transition localized
Steady-state EE log-law volume-law area-law

site tendencies ends up with a compromise, as reflected by
the log-law entangled phase in Fig. 8. In the PT-invariant
localized phase of NHAAH2 (|J| < |V |), the disorder is
strong enough to prevent the information from spreading and
stabilizes the system in an area-law entangled phase, even
though the energy spectrum is fully real [see Eq. (7)]. The
very different entanglement dynamics in our mutually dual
NHQC models could thus be understood. The clear differ-
ences between the entanglement transitions discovered here
and some typical situations encountered in previous studies
[59,62,63] further highlight the interesting role played by dis-
order in non-Hermitian systems from a quantum information
perspective.

IV. CONCLUSION AND DISCUSSION

In this work, we revealed entanglement phase transitions
in representative 1D NHQCs. In a system with on-site gain
and loss, a volume-law to area-law transition in the steady-
state EE was found to go hand in hand with PT-breaking and
localization transitions induced by non-Hermitian quasiperi-
odic potentials. In a system with nonreciprocal hopping, the
steady-state EE instead showcased an area-law to log-law
entanglement transition with the increase of the hopping
asymmetry, which was mediated by a critical entangling phase
whose EE followed a volume-law scaling versus the system
size. This transition also went hand in hand with PT-breaking
and delocalization transitions due to the interplay between
hopping nonreciprocity and spatial quasiperiodicity. Even
though the two considered models can be viewed as dual
to each other, they exhibited rather different entanglement
dynamics except at critical points, which were demonstrated
in detail by our numerical analysis of their EE scaling laws
and entanglement phase diagrams. Our findings thus unveiled
the richness of entanglement phases and transitions in non-
Hermitian disordered systems, which may find applications
in quantum error correction and quantum information storage
against decoherence.

As we focused on phases and entanglement dynamics
of the bulk of NHQCs, the PBC was taken throughout our
calculations. A consistent framework regarding PT transi-
tions, localization transitions, and entanglement transitions
was then established for our “minimal” NHQC models un-
der PBC, and rich patterns of entanglement transitions were
identified. Under open boundary conditions, there could be
edge states in our models, whose numbers are much smaller

than the bulk states. The NHAAH2 would further show
non-Hermitian skin effects. A complete treatment of their
interplay with entanglement transitions under different bound-
ary conditions would thus be an interesting direction of future
research.

In Figs. 2 and 6, some asymmetries are observed in S(L, l )
vs l with L = 610 when the system parameters are approach-
ing the phase boundaries (|J| = |V | for both models). One
possible origin of these asymmetries is the instability of
numerical calculations around the critical points of phase
transitions. Another possible source is that at the critical point
of localization transition, the quasicrystal may show multi-
fractal properties, and correction terms other than the volume
law or log law may appear in the subsystem-size scaling of
EE, even though the volume-law or log-law behavior still
dominates. Our numerical resolutions could not figure out all
these correction terms at present. An in-depth analysis about
the critical properties and universality classes of entangle-
ment phase transitions in NHQCs is thus necessary in future
studies.

Our model NHAAH1 [Eq. (1)] possesses on-site gain and
loss. In theory, it might be viewed as the no-click limit of
a monitored AAH model. The gain and loss in the system
may then be understood as imaginary chemical potentials
induced by measurement backactions [52,63]. In practice,
cold atom systems [114–118] could be considered as candi-
dates to realize our models. For fermions, one may introduce
state-selective atom loss by using a near-resonant laser beam
to kick atoms out of a trap [117]. The negative imaginary
part of on-site potential in our NHAAH1 then describes the
loss rate. Realizing atom gain for fermions is more chal-
lenging. One may instead add a uniform background loss
−iγ

∑
n ĉ†

nĉn with γ > 0 to our NHAAH1 and let γ > |V |. In
this case, there is no gain in the system, yet the Hamiltonian
loses its PT symmetry in the strict sense. Nevertheless, we
can still find the spectrum transformation from a line seg-
ment (with |V | < |J|) to an ellipse (with |V | > |J|), which
is now centered at (0,−iγ ) on the complex plane. The par-
ticle dynamics and EE dynamics are not affected by such a
uniform background loss according to Eqs. (10)–(13). Addi-
tionally, the unidirectional hopping of our NHAAH2 might
be realized by implementing asymmetric quantum walks of
cold atoms in momentum space [118], which is not sen-
sitive to particle statistics. Put together, our non-Hermitian
fermionic models should be physically realizable in near-term
experiments.

Although our results are obtained by investigating two
“minimal” NHQC models, we expect to find similar pat-
terns of entanglement phase transitions in other 1D NHQCs
with simultaneous PT and localization transitions, such as
those considered in Refs. [70,71,108]. In more general sit-
uations, the extended and localized phases of an NHQC
could be separated by a critical phase, in which extended
and localized eigenstates coexist and are separated by mo-
bility edges. The entanglement transition in NHQCs with
mobility edges thus constitutes another interesting direction
of future research. In addition, much less is known regard-
ing entanglement transitions in non-Hermitian disordered
systems beyond one spatial dimension, with uncorrelated dis-
order [119–121], and with many-body interactions [122,123].
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Concrete experimental signatures of entanglement phase tran-
sitions in non-Hermitian systems also deserve more thorough
considerations.

Note added. Recently, we became aware of Ref. [124],
which also explored entanglement phase transitions in
NHQCs with a focus on the interplay between disorder and
non-Hermitian skin effects.
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