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Disorder-induced decoupling of attracting identical fermions: Transfer matrix approach
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We consider a pair of identical fermions with a short-range attractive interaction on a finite lattice cluster in
the presence of strong site disorder. This toy model imitates a low-density regime of the strongly disordered
Hubbard model. In contrast to spinful fermions, which can simultaneously occupy a site with minimal energy
and thus always form a bound state resistant to disorder, for the identical fermions the probability of pairing on
neighboring sites depends on the relation between the interaction and the disorder. The complexity of “brute-
force” calculations (both analytical and numerical) of this probability grows rapidly with the number of sites
even for the simplest cluster geometry in the form of a closed chain. Remarkably, this problem is related to the
old mathematical task of computing the volume of a polyhedron, known as NP-hard. However, we have found
that the problem in the chain geometry can be exactly solved by the transfer matrix method. Using this approach,
we have calculated the pairing probability in the long chain for an arbitrary relation between the interaction
and the disorder strengths and completely describe the crossover between the regimes of coupled and separated
fermions.
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I. INTRODUCTION

The interplay of disorder and interaction is one of the
central problems of condensed matter physics. It gives
rise to a plethora of fundamental phenomena, including
metal-insulator and superconductor-insulator transitions, “bad
metals,” and spin and electron glasses, to mention just few
[1–6]. Recently, some of these traditionally condensed matter
topics have also become a subject of interest in systems of
ultracold atoms in optical traps [7,8].

A paradigmatic platform to study these phenomena in a
quantum ensemble of interacting particles is the seminal Hub-
bard model [9] with its very rich and complicated physics. In
this paper we consider a simplified version of this model for
identical fermions with a short-range attractive interaction in
the limiting regime of low density and strong site disorder.
Assuming the intersite hopping parameter is small compared
to both the interaction and the disorder, we get a system where
the quantumness of particles is suppressed (except for the
fermionic statistics), and they may be considered to be located
on different lattice sites [10]. Finding the ground state and cor-
relation functions for this kind of electron glass reduces to a
statistical, but still rather complicated, problem. The particles
can form clusters whose size distribution is determined by the
relative strength of the interaction and the disorder.

Here, as the first step towards the solution of the many-
particle problem, we study a toy model of just two identical
fermions restricted to a finite strongly disordered lattice with
N sites, so 2/N is an effective fermion “density” (filling
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factor). The quantity of interest is the probability Pb of
forming the “bound pair” of fermions due to their attrac-
tive nearest-neighbor interaction. In the case of nonidentical
fermions with an attractive on-site interaction, the model
would be trivial: two fermions occupy a site with minimal
energy and thus always form a bound state. But identical
fermions should occupy different sites, and if the disorder is
stronger than the interaction, it may happen that the fermions
located on neighboring sites have higher energy than those
located on some separated (non-neighboring) sites.

The probability to find two neighboring sites for which
the energy of the attracting fermions is minimal increases
with the increase of the system size. Therefore, such particles
in an infinite system necessarily form a bound state despite
the presence of the disorder. However, in a finite-size cluster
the problem of an energetically advantageous arrangement
of two attracting fermions on neighboring or on distant sites
becomes quite challenging. The probability Pb should be
calculated as a function of N and of the interaction and
disorder strengths. Moreover, it depends on the connectivity
of the lattice. For simplicity, keeping in mind the possibility
of an exact analytical approach, we restrict our analysis to the
one-dimensional case and consider a system in the form of a
closed N-site chain.

The condition that the bound state corresponds to the mini-
mal energy is represented by a set of (∝ N2) linear inequalities
for random potentials on the system sites, and the probability
Pb is determined by the averaging of these inequalities over
the realization of the disorder. Remarkably, with the simplest,
boxlike distribution of the disorder this problem is equivalent
to the calculation of the volume of a domain (polyhedron)
in the N cube restricted by a set of (∝ N2) hypersurfaces.
This problem is known to be NP-hard: owing to the rapidly
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(perhaps, faster than exponentially in N) growing complexity
of the system, the possibility of straightforward brute-force
calculations, both analytical and numerical, is practically re-
stricted to small N .

Nevertheless, somewhat surprisingly for a disordered sys-
tem [11], it turns out that the considered problem in the chain
geometry allows for the transfer matrix approach. The eigen-
states and eigenvalues of this transfer matrix obey an intricate
integral equation. Another surprise is that this integral equa-
tion turns out to be solvable analytically. Implementing this
approach, we have calculated the pairing probability Pb in the
large-N limit for an arbitrary relation between the interaction
and the disorder strengths.

In Sec. II we describe the model and formulate a set of
conditions imposed on the random potentials to yield the ex-
istence of the bound state. Section II also illustrates the exact
brute-force approach in the simplest nontrivial case, a chain
with N = 4 sites, and describes problems of extending this
approach to higher N . In Sec. III we present the results of nu-
merical (stochastic) experiments and quantitatively interpret
them for the weak interaction case. In Sec. IV we develop the
transfer matrix approach and calculate the probability Pb in the
large-N limit for an arbitrary relation between the interaction
and the disorder strengths. In Sec. V we summarize the ob-
tained results and discuss possible issues for future research.

II. THE MODEL

We consider a pair of identical fermions in a finite lattice
cluster described by the Hubbard model [9] with the nearest-
neighbor attractive interaction Ũ . The short-range hopping
amplitude is assumed to be much smaller than both Ũ and
the disorder distribution width W . Thus, the hopping has an
almost negligible influence on the ground state of the strongly
disordered system and can be ignored. The aim of our work
is to find the probability Pb that two fermions in the ground
state are “bound,” i.e., occupy two neighboring sites. In an
infinite cluster with the number of sites N → ∞ the prob-
ability Pb → 1 for any nonzero Ũ , while in a finite cluster
it depends on relations between the parameters Ũ , W , and
N , as well as on the geometry (connectivity matrix) of the
cluster. Calculation of Pb as a function of these parameters
is a quite nontrivial problem. Here, we restrict our analysis
to the simplest cluster in the form of a closed chain, where
the solution can be obtained by the transfer matrix method.
For the random on-site potentials Ṽi we choose the box proba-
bility distribution p(Ṽi ) = θ (W − Ṽi )θ (Ṽi)/W , although some
of the derived expressions hold for a generic bell-shaped
distribution. The system Hamiltonian can be presented in the
dimensionless form

H =
N∑

i=1

Vini − U
N∑

i=1

nini+1, (1)

where ni is the number of fermions (one or zero fermions) on
site i and the total number of fermions on the chain equals two.
The interaction constant and the random potentials are mea-
sured in units of the disorder distribution width W : U = Ũ/W
and Vi = Ṽi/W , so the disorder box-distribution function

takes the form

p(Vi ) = θ (Vi)θ (1 − Vi ). (2)

For a given disorder realization, the condition that the ground
state of the two-fermion system corresponds to the fermions
located on some neighboring sites (say, i and i + 1) means
that the energy Vi + Vi+1 − U is less than energies of all
other arrangements of fermions. If U � 1, this condition of
forming the bound state is fulfilled for any realization of
disorder, so Pb(U � 1) = 1. Indeed, if the site i corresponds
to the minimal (in the given realization) potential Vi, then
the energy Vi + Vi±1 − U < Vj + Vl for any pair ( j, l ) of non-
neighboring sites, as Vi < Vj and Vi±1 − U < 0 < Vl .

In the other limiting case, U = 0, the noninteracting
fermions occupy two sites with minimal potentials. As the
random potentials on different sites are distributed indepen-
dently, the probability for two fermions to occupy neighboring
sites is simply given by the ratio of the number N of such
arrangements (in the considered ring geometry) to the total
number C2

N of possible arrangements:

Pb(U = 0) = 2/(N − 1). (3)

For brevity, we will refer to the fermion pair located on neigh-
boring sites as the “bound pair” even at U = 0, although the
quantity (3) is purely combinatoric. Note that Pb(U = 0) → 0
when N → ∞.

Our task is to find Pb(U ) in the interval 0 < U < 1. Due
to the symmetry of the considered ring cluster, the probability
Pb = NPb

12, where Pb
12 is the probability that the first and sec-

ond sites are occupied, i.e., the energy V1 + V2 − U is lower
than the energies of all other arrangements. This requirement
is provided by a set of inequalities:

V1 + V2 − U < Vj + Vl , j = 2, N − 2, l = j + 2, N ; (4)

V2 − U < Vl , l = 3, N − 1; (5)

V1 + V2 < Vj + Vj+1, j = 2, N − 1; V2 < VN , (6)

where the overlines indicate the intervals for site numbers j
and l . Inequalities (4) and (5) mean that the energy of the
fermion pair on sites 1 and 2 is lower than that for fermions
occupying non-neighboring sites. Inequalities (6) ensure that
the selected pair of sites (1,2) provides lower energy compared
to that for other neighboring arrangements. The probability
Pb(U ) is determined by the averaging of the above conditions
over the realizations of the random potentials:

Pb(U ) = N

〈
θ (VN − V2)

N−1∏
j=2

θ (Vj + Vj+1 − V1 − V2)

×
N−2∏
j=2

N∏
l= j+2

θ (Vj + Vl − V1 − V2 + U )

×
N−1∏
l=3

θ (Vl − V2 + U )

〉
. (7)

Here, 〈· · · 〉 means the averaging over the disorder. For the box
distribution (2), this means multiple integrals over the unit
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FIG. 1. Dependence of the probability to observe a bound state
Pb on the interaction U (in units of the disorder width) for the number
of sites N = 4.

N-dimensional hypercube. The θ functions in the integrand
yield conditions (4)–(6).

Being linear in random potentials, these conditions cor-
respond to a set of hyperplanes restricting the integration
domain to a very intricate N-dimensional polyhedron. Finding
the exact volume of a polyhedron is an old mathematical
problem; computing this volume is NP-hard (see, e.g., [12,13]
and references therein). Also, the direct analytical integration
is highly repetitive and tedious. For the particular integral
(7), a priori we can say only that it determines a polynomial
function of the N th order in U that obeys (3) and tends to
unity when U → 1. To illustrate the situation we consider the
simplest case N = 4, where the integral (7) can still be easily
calculated.

A. The simplest nontrivial case, N = 4

The ring of (N = 4) sites is the shortest one in which not
all sites are neighboring. Using conditions (4)–(6), we can
represent Pb (7) in the form

Pb = 4
∫

p(V1)p(V2) f (V1,V2) f (V2,V1)dV1dV2, (8)

where

f (V1,V2) =
∫

θ (V3 − V2 + U )θ (V3 − V1)p(V3)dV3,

f (V2,V1) =
∫

θ (V4 − V1 + U )θ (V4 − V2)p(V4)dV4. (9)

These expressions are valid for any distribution of random
potentials. Substituting the uniform distribution (2), we obtain
Pb = 4Pb

12

Pb = 1 − 1
3 (1 − U )4. (10)

In Fig. 1 we see that this analytical dependence coincides with
the results of a direct numerical calculation of the integral as

FIG. 2. Crossover between the coupling and decoupling regimes.
Dependences of the probability Pb on the interaction U calculated
in the numerical experiments for the number of sites N = 30 and
N = 100 are presented.

well as with the numerical (Monte Carlo) experiment. Even
this simple example demonstrates the basic features of the
effect: attracting fermions on a finite lattice (ring) are coupled
in the case of a relatively weak disorder (U = Ũ/W > 1),
but they can be decoupled in the case of a relatively strong
disorder (U = Ũ/W < 1); if the disorder is very strong (U =
Ũ/W � 1), the fermions are arranged almost independently.

III. NUMERICAL RESULTS
AND QUALITATIVE ANALYSIS

The crossover between the coupling and decoupling
regimes depends on the cluster size (ring length N); see the dot
results for the numerical (Monte Carlo) experiment in Fig. 2.
However, a description of these results by the brute-force
analytical or numerical calculations can hardly be achieved for
a high N : with the increase of the number of sites N , the time
required for calculations grows very rapidly (see Table I).

To gain more insight into the problem, we will develop
physical approaches and verify them with the results of nu-
merical experiments. The numerical experiments have been
performed as a search for the minimal energy in a particular
realization of disorder. Counting the cases in which the min-
imal energy corresponds to fermions occupying neighboring

TABLE I. The time required to calculate the volume of a poly-
hedron in N-dimensional space that determines the probability of
formation of a bound pair of identical fermions in a closed chain
of N sites. The results for interaction value U = 0.2 are presented.

N

4 5 6 7

Time (s) 3.407 32.500 632.812 13273.593
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sites, we have calculated the probability of a bound state using
10 000 realizations of the disorder.

We begin with the analysis of the weak interaction case
U � 1.

A. Weak interaction

To warm up, consider a linear in U � 1 correction to
Pb(U = 0) [Eq. (3)]. First, let us show how the latter follows
from the general expression (7) due to the inequalities (5): in
the noninteracting case they reduce to Vl > max {V1,V2} for
l ∈ (3, . . . , N ), so the multiple integral (7) takes the form

Pb(0) = 2N
∫

dV1 p(V1)
∫

dV2θ (V2 − V1)p(V2)

×
[∫

θ (V − V2)p(V )dV

]N−2

. (11)

Here, the integration goes over the sector V1 < V2, while the
contribution of the sector V2 < V1 is accounted for by the
factor of 2 before the integral. Twice applying the relation

p(V )

[∫
θ (V ′ − V )p(V ′)dV ′

]M

= − 1

M + 1

d

dV

[∫
θ (V ′ − V )p(V ′)dV ′

]M+1

, (12)

we arrive at Eq. (3). Naturally, this combinatoric result holds
for an arbitrary distribution function p(V ). To find the linear in
U correction P(lin)

b to Eq. (3) one should sequentially expand
the θ functions in the integrand of Eq. (7), θ (V + U ) →
θ (V ) + Uδ(V ). Summing up the contributions from all θ

functions, we obtain P(lin)
b (U ) in the following form:

P(lin)
b (U ) = 2N (N − 3)U

∫
dV1 p(V1)

∫
dV2θ (V2 − V1)

× p2(V2)

[∫
dV θ (V2 − V )

]N−3

. (13)

Because of the δ function, the probability distribution for
one of the sites is squared, and quite expectably, the integral
depends on the explicit shape of the distribution. For the
considered box distribution (2) we obtain

P(lin)
b (U ) = 2N (N − 3)

(N − 2)(N − 1)
U . (14)

The coefficient of U tends to 2 for large N .
Putting the obtained linear dependences (14) in the results

of the numerical experiment (Fig. 3), we observe that the
linear asymptotics are true in the region U � 1/N but deviate
from the experiment at 1/N � U .

B. Crossover

A wider range of the interaction strength 1/N � U � 1
can be described with the following reasoning. The average
energy distance between N on-site potentials, randomly dis-
tributed over the unit energy interval, is 1/N . An average
number of sites with random potentials V < ηU , where η �
1, is given by K = ηUN and obeys the inequality 1 � K �
N . If two such sites are neighboring, the fermion pair located

FIG. 3. Dependence of the bound state probability Pb(U ) on the
relative interaction strength U in the range of U � 1 for the number
of sites N = 30.

on them will certainly (for η < 1/2) or with good probability
(if 1/2 < η � 1) have a negative energy; that is, it will be
bound. The probability Pb that a fermion pair is bound can
be represented as Pb = 1 − Ps, where Ps is the probability that
the two fermions are separated, that is, among the K sites
there are no neighboring ones. This elementary combinatorial
problem gives (in the limit 1 � K � N ) Ps = exp(−K2/N ).
Combining with Eqs. (3) and (14), we arrive at the interpola-
tion formula for Pb(U ) at U � 1:

Pb(U ) ≈ 2

N
+ 2U + 1 − e−η2NU 2 ≈ η2NU 2, (15)

where the last equality corresponds to the narrower inter-
mediate interval 1/N � U � 1

√
N and shows the dominant

quadratic dependence of the function Pb(U ) on U presented
in Fig. 3. Although the numerical constant η � 1 still re-
mains uncertain (it will be fixed in Sec. IV), Eq. (15) allows
us to infer that the crossover between the regimes of al-
most decoupled and almost coupled fermions occurs at U ∼
1/

√
N . These behaviors agree with the numerical experiment

(dots in Fig. 2).
We note in passing that the above qualitative analysis of

the crossover can be extended to a cluster of arbitrary di-
mension d , resulting in the expression Ps = exp(−dη2U 2N ).
This allows us to conjecture that the estimate U ∼ 1/

√
N for

the crossover range is universal. A regular description of the
crossover will be developed below for the one-dimensional
cluster (chain) using the transfer matrix approach.

IV. TRANSFER MATRIX METHOD

A. Basic equations

Consider the case where the ground state corresponds
to separated fermions, i.e., occupying two non-neighboring
sites, e.g., the first and the kth ones (k = 2, N). Due to the
equivalence of configurations (1, k), (2, k + 1), etc., the
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probability Ps(1, k) of this particular arrangement is simply
connected to the total probability Ps = 1 − Pb of the realiza-
tion of separated fermions:

Ps = N

2

N−1∑
k=3

Ps(1, k). (16)

To correspond to the ground state, the energy of the config-
uration with fermions located on the first and kth sites, V1 +
Vk , should obey a set of obvious inequalities, such as V1 +
Vk < Vi + Vi+1 − U , V1 + Vk < Vi + Vk (i = 1, k − 1, k, k +
1), etc. The probability Ps(1, k) is determined by averaging
these inequalities over the disorder:

Ps(1, k)(U ) =
〈
θ (VN − ε1)

N−1∏
i=k+1

[θ (Vi+1 − ε)θ (Vi+1 + Vi − U − E )θ (Vi − ε)] θ (Vk+1 − εk )

× θ (Vk−1 − εk )
k−2∏
i=2

[θ (Vi+1 − ε)θ (Vi+1 + Vi − U − E )θ (Vi − ε)] θ (V2 − ε1)

〉
. (17)

Here, we have introduced several parameters, ε1, εk , E , and ε,
determined by the potentials V1 and Vk:

ε1 = max {V1,Vk + U }, εk = max {Vk,V1 + U },
E = V1 + Vk, ε = max {V1,Vk}. (18)

Expression (17) is represented in a form suitable for the
celebrated transfer matrix approach [14]. For this aim we
introduce the operator Â

Â
(
V,V ′) =

√
p(V )θ (V − ε)θ

(
V + V ′ − U − E

)
× θ (V ′ − ε)

√
p(V ′) (19)

and note that the matrix product

Â2(V,V ′) =
∫

Â(V,V ′′)Â(V ′′,V ′)dV ′′ (20)

just corresponds to the product of two subsequent blocks in
Eq. (17) with averaging over the intermediate variable, i.e.,
with integration with weight p(V ′′). Thus, Â(Vi+1,Vi ) is the
desired transfer matrix between sites i and i + 1 for a chain
with an arbitrary disorder distribution function p(V ). Post-
poning the study of this general case to the future, in the
present paper we concentrate on the particular case of the box
distribution (2), so

Â(V,V ′) = θ (V − ε)θ (V + V ′ − U − E )θ (V ′ − ε). (21)

Note that Â depends on the parameters E and ε, deter-
mined entirely by the potentials on the two selected sites [see
Eq. (18)].

Using Eqs. (20) and (21), the probability (17) can be rewrit-
ten in the form

Ps(1, k) = 〈θ (VN − ε1)ÂN−k−1(VN ,Vk+1)θ (Vk+1 − εk )

× θ (Vk−1 − εk )Âk−3(Vk−1,V2)θ (V2 − ε1)〉. (22)

Here, the first and second lines result from the integration over
VN−1, . . . ,Vk+2 and Vk−2, . . . ,V3, respectively. The remaining
averaging over the disorder is reduced to integration over
the potentials on the first and kth sites and on their nearest
neighbors.

Being real and symmetric in V and V ′, the transfer matrix
Â can be represented as

Â(V,V ′) =
∑

ν

ϕν (V )λνϕν (V ′), (23)

where the eigenfunctions ϕν (V ) obey the equation Âϕν =
λνϕν and constitute an orthonormal basis. Like the matrix Â,
the eigenfunctions and the eigenvalues depend on the “exter-
nal” parameters E and ε. Powers of Â are given by

ÂM (V,V ′) =
∑

ν

ϕν (V )λM
ν ϕν (V ′). (24)

For large M the leading term in the sum (24) is that with the
largest modulus eigenvalue, say, λ0. The central point of the
transfer matrix method is to replace ÂM by its leading part:

ÂM (V,V ′) → ϕ0(V )λM
0 ϕ0(V ′). (25)

In our case of a long chain, the leading contribution to the
sum (16) is provided by sites with k ∼ N � 1, so the transfer-
matrix method is appropriate. Applying Eq. (25) to Eq. (22),
we see that in this limit the contribution of a particular pair
of sites [like (1, k)] does not depend on k. Therefore, in the
leading order in N we obtain

Ps = N2

2

∫ 1

0

∫ 1

0
dV1dVkλ

N−4
0 I2(ε1)I2(εk ), (26)

where the function I (e) is defined by

I (e) = θ (1 − e)
∫ 1

e
ϕ0(V )dV. (27)

The integrand in Eq. (26) is an implicit function of the vari-
ables V1 and Vk [see Eq. (18)], subject to the constraints
imposed by Eq. (27):

ε1, εk < 1 ⇒ V1, Vk < 1 − U . (28)

To proceed we need to find the largest eigenvalue λ0 and the
corresponding eigenfunction ϕ0(V ).

B. Solution of the integral equation Âϕν = λνϕν

In accordance with Eq. (21), the integral equation∫ 1

0
Â
(
V,V ′)ϕ(

V ′)dV ′ = λϕ(V ) (29)
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is actually restricted to the region ε < V,V ′ < 1. Equa-
tion (29) has different forms in the three areas of possible
relations between the external parameters E and ε (i.e., be-
tween V1 and Vk). We write down these three equations in the
allowed region ε < V,V ′ < 1:

(1) 	1. For E + U − ε < ε < 1 [here, the argument of the
middle θ function in Eq. (21) is positive]

λϕ(V ) =
∫ 1

ε

ϕ(V ′)dV ′ . (30)

(2) 	2. For ε < E + U − ε < 1,

λϕ(V ) = θ (E + U − ε − V )
∫ 1

E+U−V
ϕ(V ′)dV ′

+ θ (V − E − U + ε)
∫ 1

ε

ϕ(V ′)dV ′ . (31)

(3) 	3. For ε < E + U − 1 < 1,

λϕ(V ) = θ (V − E − U + 1)
∫ 1

E+U−V
ϕ(V ′)dV ′. (32)

We immediately note that the solution in the third area does
not contribute to Eq. (26) due to vanishing of the func-
tions I (ε1) and I (ε2) [Eq. (27)]. Indeed, as follows from the
left inequality in the definition of the third area, 1 − U <

E − ε = min{V1,Vk}. This contradicts the external constraint
(28). Thus, we need to consider only the two remaining
areas.

In the first area, 	1, Eq. (30) possesses a single solution
(the superscript indicates the area):

ϕ(1)(V ) = 1√
1 − ε

θ (V − ε)θ (1 − V ), (33)

λ(1) = 1 − ε, (34)

which means that the matrix A in this area reduces to
a projector. However, the area 	1 contributes to the in-
tegral (26) only when U < 1/2. This becomes obvious
if we rewrite the left inequality in the condition defin-
ing this area in the form E + U − ε = min{V1,Vk} + U <

ε = max{V1,Vk} and account for the external requirement
max{V1,Vk} < 1 − U (28). For the case U < 1/2, the sector
V1 < Vk of 	1 is depicted in Fig. 4(a). Integrating in (26)
over 	1, we find the contribution P(1)

s of this area to the
probability Ps:

P(1)
s = (1 − U )N

(
1 − 2U

1 − U

)2

. (35)

In the second area, 	2, the eigenfunctions of the integral
equation (31) have the following form:

ϕ(2)(V ) = [A cos (μV ) + B sin (μV )]θ (E + U − ε − V )

+Cθ (V − E − U + ε). (36)

Here, for convenience, the notation μ has been introduced for
the inverse eigenvalue

μ = 1/λ, (37)

so we need to find solutions with the smallest modulus of μ.
Equation (31) imposes a set of conditions on the coefficients

FIG. 4. The areas 	1 and 	2, determined by the conditions (30)
and (31), on the plane of the “external” variables V1 and Vk (in the sec-
tor V1 < Vk) for (a) interaction strength U < 1/2 and (b) U � 1/2.

A, B, and C:

Cμ(1 − E − U + ε) = B cos[(E + U − ε)μ]

− A sin[(E + U − ε)μ],

A{1 + sin[(E + U )μ]} = B cos[(E + U )μ],

B{1 − sin[(E + U )μ]} = A cos[(E + U )μ],

B cos (εμ) − A sin (εμ) = C, (38)

where the second and third linear equations are equivalent (the
determinant of this subsystem is identically zero). System (38)
leads to the characteristic equation for μ:

(1 − E − U + ε)μ = tan

(
π

4
− (E + U − 2ε)μ

2

)
, (39)
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FIG. 5. Graphic representation of the characteristic equa-
tion (39). It corresponds to the intersection of the curve
Y1 = tan[π/4 − μ(U + V1 − Vk )/2] and the straight line Y2 = μ

(1 − U − V1).

which has an infinite number of solutions for a given set of
parameters E , ε, and U . The solution of our interest μ0 with
the minimal modulus lies in the interval where the tangent
argument varies between 0 and π/4 (see Fig. 5).

Coefficients A and B can be expressed via μ0 and C, with
C determined by the normalization condition∫ 1

0

∣∣ϕ(2)
0 (V )

∣∣2
dV = 1. (40)

Coefficient C also determines the functions I (ε1) and I (εk ) in
Eq. (26). Indeed, both ε1 and εk are greater than E + U − ε;
hence, the eigenfunction ϕ(2)(V ) in the integrand of Eq. (27)
is just C [see Eq. (36)], so

I (ε1) = (1 − ε1)C , I (εk ) = (1 − εk )C. (41)

Both C and μ0 = 1/λ
(2)
0 are functions of U and variables V1

and Vk within area 	2. This area exists for any U (from the
interval 0 < U < 1) and is depicted (for the sector V1 < Vk)
in Figs. 4(a) and 4(b) for U < 1/2 and 1/2 < U , respectively.

The transcendental equation (39) for μ can be solved only
numerically. In general, this makes a straightforward analyti-
cal calculation of the integral (26) over area 	2 impossible.
However, an analytical calculation is possible in the limit
of our interest N � 1. The leading in N contribution to the
integral over 	2 is given in the vicinity of the point (V1∗,Vk∗),
where λ

(2)
0 (V1,Vk ) has a maximum, i.e., μ0(V1,Vk ) is minimal

(in modulus).
This minimum μ∗ is reached at the point (V1 = 0,Vk = 0).

To prove this statement, we consider, for certainty, the sector
V1 < Vk and note that the value of μ is determined graph-
ically on the plane (μ, Y ) by the intersection of the curve
Y1 = tan[π/4 − μ(U + V1 − Vk )/2] and the straight line Y2 =
μ(1 − U − V1) (Fig. 5). With a fixed slope of the straight
line Y2 (i.e., fixed V1), the intersection of the curve and the

FIG. 6. Dependence of μ∗ and λ∗ = 1/μ∗ on U given by the
numerical solution of Eq. (42).

straight line occurs at a smaller coordinate μ the closer the
right end of the interval is to the origin. So the minimum
occurs at the minimal Vk that corresponds to the case Vk = V1.
Further, we note that the smaller the intersection coordinate
μ is, the steeper the line Y2 is. Its steepness increases with
the decrease in Vk and becomes maximal at Vk = 0. This
proves the announced statement that the minimal value μ∗ is
determined by the numerical solution of the equation

(1 − U )μ = tan

(
π

4
− Uμ

2

)
. (42)

Its solution μ∗(U ), together with λ∗(U ) = 1/μ∗(U ), is plot-
ted as a function of U in Fig. 6. In the close vicinity of
the point (V1 = 0,Vk = 0) the function μ0(V1,V2) can be rep-
resented as μ0(V1,Vk ) = μ∗ + δμ, where the leading order
correction, determined by Eq. (39), is given by

δμ(V1,Vk ) = γ1V1 + γkVk, (43)

γ1(k) = 1 ∓ (1 − U )2μ2
∗

2(1 − U ) + U [1 + (1 − U )2μ2∗]
; (44)

here, the upper (lower) sign relates to γ1 (γk). Correspond-
ingly, the N th power of the maximal eigenvalue λ

(2)
0 =

1/(μ∗ + δμ) in the vicinity of the point (V1 = 0,Vk = 0) can
be represented as

[λ(2)
0 (V1,Vk )]N = λN

∗ exp

(
−Nδμ(V1,Vk )

μ∗

)
, (45)

where λ∗ = λ
(2)
0 (0, 0) = 1/μ∗. As seen from Eq. (45) typical

values of V1,Vk ∼ 1/N � 1, which justifies the linearization
of the characteristic equation. This smallness allows us to take
the functions I (ε1) and I (εk ) in the integrand of Eq. (26) at
V1,V2 = 0. Using Eq. (41), we get I (ε1) = I (εk ) = C, where
the normalization constant C, determined by Eq. (40) at
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V1,V2 = 0, equals

C2 = 2

2 − U + U (1 − U )2μ2∗
. (46)

Performing the integration in Eq. (26) we arrive at the final
expression for the contribution P(2)

s from area 	2 to the prob-
ability Ps:

P(2)
s (U ) = 2(1 − U )4λN−2

∗ (U )

λ2∗(U ) + (1 − U )2 [1 − e−γkNU ]. (47)

At 1/N � U , the term exp(−γkNU ) is negligible and can be
omitted. We deliberately keep this term for further discussion
of the range of ultrasmall U � 1/N .

Equation (47) holds for almost all values of U , except the
narrow region 1 − U � 1/N , in which the domain 	2 shrinks
to a tiny triangle [see Fig. 4(b)]. In the integral (26) over this
triangle we may neglect the dependence of the eigenstate λ0

on the coordinates, but we have to account for this dependence
in function (27): I (ε1) = C(1 − U − Vk ) and I (εk ) = C(1 −
U − V1) [see Eq. (41) in the sector V1 < Vk]. As a result, we
obtain

P(2)
s (U ) = 2N2

9
(1 − U )6λN−4

∗ (U ), 1 − U � 1

N
, (48)

where λ∗(U = 1) = 2/π .

C. Results and discussion

The expressions (35), (47), and (48) completely deter-
mine the probability Pb(U ) = 1 − P(1)

s (U ) − P(2)
s (U ) for two

fermions to form a bound pair (i.e., to be localized on neigh-
boring sites) in the ground state of a long, strongly disordered
chain. Except in the narrow region 1 − U � 1/N , Pb(U ) is
given by

Pb(U ) = 1 − θ (1/2 − U )(1 − U )N

(
1 − 2U

1 − U

)2

− 2(1 − U )4λN−2
∗ (U )

λ2∗(U ) + (1 − U )2 [1 − e−γkNU ]. (49)

The contributions from areas 	1 and 	2 are mostly deter-
mined by the high powers of 1 − U and λ∗, respectively.
According to the characteristic equation (42), the minimal
inverse eigenvalue μ∗ obeys the inequality (1 − U )μ∗ < 1
(because the tangent function is less than unity at the interval
of interest; see Fig. 5). This means 1 − U < λ∗, and at a not
too small U the contribution P(1)

s (U ) is much smaller than
P(2)

s (U ); the latter is also small and decreases exponentially
with the increase of N . However, both eigenvalues 1 − U
and λ∗(U ) ≈ 1 − U 2/2 tend to unity when U � 1. As we
shall see, the crossover from bound to decoupled fermions
occurs just at small U � 1, so this range deserves particular
attention.

As shown in Sec. III A, in the regime of ultralow U � 1/N ,
the interaction gives only a tiny correction (14) to the trivial
combinatoric expression (3). Both terms are written in the
limit of large N and are beyond the accuracy of our subsequent
analysis. To illustrate the consistency of the latter, note that
“large” linear terms (∼NU ) of the formal expansion of the

two terms in Eq. (49) mutually cancel. The fermions may be
considered to be almost decoupled in this regime.

At larger U , when 1/N � U � 1/N1/4, the term P(1)
s ∝

exp[N ln(1 − U )] becomes exponentially small, while the
term P(2)

s ≈ exp(−NU 2/2) varies between unity and (almost)
zero. The binding probability Pb(U ) in this range,

Pb(U ) = 1 − e−NU 2/2, (50)

describes the crossover at

U ∼ 1/
√

N (51)

from the regime of almost decoupled fermions (at 1/N �
U � 1/N1/2) to the almost bound ones (at 1/N1/2 � U ).
Note that the calculated functional dependence of Pb(U ) in
this regime coincides with that obtained with the qualitative
reasoning in Sec. III B [see the paragraph above Eq. (15)] and
fixes the value of the unknown constant: η2 = 1/2.

At still larger values of U both P(1)
s (U ) and P(2)

s (U ) decay
exponentially with the increase of N , so the binding proba-
bility Pb approaches unity, while the decoupling of fermions
in a long chain becomes a rare event. At U < 1/2, the de-
coupling probability Ps = P(1)

s + P(2)
s (U ) is determined by the

contributions from both areas 	1, (30), and 	2, (31); the latter
contribution dominates. At 1/2 < U , the decoupling proba-
bility is given entirely by Eq. (47) and is an exponentially
decaying function of N : P(2)

s (U ) ∝ exp{−N ln[1/λ∗(U )]},
with λ∗(U ) changing from ≈0.9 to 2/π when U changes from
1/2 to 1. At a fixed number of sites, Ps(U ) ∝ (1 − U )4 →
0 when U approaches unity but still lies outside the nar-
row region 1 − U � 1/N , where this dependence changes to
Ps(U ) ∝ N2(1 − U )6.

All these analytical results are confirmed by numerical
experiments (see Fig. 2).

V. CONCLUSION AND OPEN PROBLEMS

We have described a disorder-induced decoupling of a pair
of identical fermions with a short-range attractive interaction
on a finite lattice cluster with random on-site energies. In con-
trast to attracting nonidentical fermions (e.g., with different
spins), which can simultaneously occupy a site with minimal
energy and thus always form a bound state resistant to disor-
der, for the identical fermions the probability Pb of pairing
on neighboring sites depends on the relation between the
interaction Ũ and the disorder distribution width W (both Ũ
and W are assumed to be large compared to the kinetic energy,
i.e., the intersite hopping rate, so the system is deeply in the
regime of the single-particle Anderson localization [10]).

For a cluster of arbitrary dimension, we have presented a
qualitative argument for a crossover between the regimes of
almost coupled and almost decoupled configurations in the
ground state. This crossover takes place at Ũ/W ∼ 1/

√
N ,

where N is the number of lattice sites (N � 1). However, a
straightforward brute-force analytical calculation or computa-
tion of the pairing probability Pb as a function of Ũ and W
is an arduous task even for the simplest cluster in the form
of a closed chain and for the simplest boxlike distribution of
the disorder. The latter problem turns out to be equivalent to
the computation of the volume of a polyhedron (in general,
NP-hard).

024202-8



DISORDER-INDUCED DECOUPLING OF ATTRACTING … PHYSICAL REVIEW B 109, 024202 (2024)

Remarkably, we have found that in the chain geometry the
problem can be solved by the transfer matrix method. In the
case of the box distribution of the disorder, the eigenvectors
and the eigenvalues of the transfer matrix can be derived an-
alytically (another wonder!) from a rather nontrivial integral
equation. Using this approach, we have calculated the pairing
probability in the long chain for an arbitrary relation between
the interaction and the disorder strengths. In particular, we
have explicitly described the coupling-decoupling crossover.
The obtained results are in agreement with numerical (Monte
Carlo) experiments.

In the above analysis we studied the model with zero hop-
ping, thus neglecting the quantum kinetic effects. In general,
there may be a drastic difference between the Hubbard models
in the limits of zero and small, but nonzero, hopping. This
difference takes place for models with spinful electrons and
results from a huge spin degeneracy of the ground state at zero
hopping, while even a small hopping transfers the half-filled
state to an antiferromagnetic state (see, e.g., reviews [15] and
[16]). Fortunately, such a singularity is absent for the studied
strongly disordered model of spinless fermions in which the
weak hopping effects reduce to a little smearing of the particle
wave function localized at a given site [10]. It seems plausible
that the nonzero, but weak, hopping in such a situation will not
have a strong influence on the “classical” model. Certainly,
accounting for nonzero hopping will be necessary in studies
of dynamical (quantum) properties.

The studied model might have a physical implementation
in systems of cold atoms in optical lattices with randomly

modulated on-site potentials. Note that as long as we con-
sider only two particles, the model is equally applicable to
hard-core bosons. In this paper we have used fermionic termi-
nology, keeping in mind future applications to many-particle
systems. Formally, the model can also be mapped on the Ising
spin chain in a random magnetic field, but with an unnatural
restriction to only two inverted spins sector of the Hilbert
space.

The unveiled solvability of the one-dimensional disordered
model is a kind of serendipity. It is not clear yet whether there
is a deeper mathematical reason behind the curtain. At any
rate, it would hardly make things trivial: the transcendental
equations (39) and (42) for the eigenvalues do not look to be.

It would be interesting to consider the generalization
of the present theory to the case of an arbitrary (e.g.,
Gaussian) distribution of the site disorder p(V ) when
the transfer matrix is given by Eq. (19) and the pos-
sibility of its analytical diagonalization is not a priori
obvious.

Finally, a generalization of the considered two-particle
model (with an effective “filling factor” 2/N) to a strongly
disordered Hubbard-like model with a low, but finite, particle
density is an appealing issue for future study.
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