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Corner-localized states represent intriguing aspects of higher-order topological systems. Despite their im-
portance, the topological invariant that distinguishes between zero-energy and non-zero-energy corner states has
received limited attention in the literature. Therefore, we introduce “modified multipole chiral numbers,” utilizing
the 2-norm of the pseudo wave vector to characterize zero-energy corner states and to categorize the topological
phase in chiral-symmetric two-dimensional and one-dimensional systems. The quantified topological invariant,
protected by chiral symmetry, is associated with the quantity and spatial distribution of the zero-energy corner
states. Theoretical analyses were conducted using multiple models, and both simulations and experimental data
gathered from honeycomb lattices in acoustic systems corroborate these insights. These results offer valuable
guidelines for designing systems that feature topologically protected corner states across various platforms and
open avenues for the exploration of boundary-obstructed topological phases.
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I. INTRODUCTION

The discovery of higher-order topological (HOT) in-
sulators has significantly improved our understanding of
topological phases [1–18]. In a d-dimensional (dD) topo-
logical system, boundary states appear with n dimensions
when the condition d > n is met. Systems featuring bound-
ary states of different dimensions are classified into distinct
topological phases [19–25]. Remarkably, even when sys-
tems possess the same type of boundary states, such as
zero-dimensional (0D) corner states, they can exist in dis-
parate topological phases [26–29]. Many researchers have
reported the existence of different dimensional topological
states [30–54]. Although considerable focus has been directed
toward understanding the origins of corner states in various
studies [4–8,11,14,17], there remains a conspicuous gap in
the literature concerning the direct characterization of zero-
energy corner states, especially when extrinsic symmetries are
not in play. Furthermore, the HOT phase of 2D honeycomb
lattices has predominantly been understood within the frame-
work of Z2 classification [34,35,45,49]. An interplay between
classical notions, such as the electric quadrupole moment,
and topological invariants provides a novel avenue for further
research [2,3,55–57].

In the context of crystalline solids, macroscopic polar-
ization is not limited to structural aspects but also extends
its relevance to the classification of band topology [58–60].
Approaches that incorporate the expectation value of position
offer valuable insights into the subtleties of polarization [61].
The concept of the electric multipole moment has been re-
fined to include many-body operators, sharing mathematical
expressions with classical definitions [55–57,62]. Nonethe-
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less, these challenges continue to impede progress in the
field [55]. For example, recent advancements have been made
in calculating multipole chiral numbers in real space [29], but
the characterization of zero-energy corner states is constrained
by the need for a specific lattice system (limited to the square
lattice). This limitation poses a significant challenge for ongo-
ing research.

In this paper, we introduce a real-space expression of
the quadrupole moment operator utilizing the 2-norm of the
pseudo wave vector, as shown in Eq. (1). We also present mod-
ified multipole chiral numbers (MMCNs) to characterize zero-
energy corner states. Based on phase diagram calculations
for the honeycomb lattice featuring long-range hoppings, we
establish the utility and physical interpretation of this topolog-
ical invariant. Importantly, this approach allows us to directly
characterize the number and distribution patterns of zero-
energy corner states, without being contingent upon specific
crystalline symmetries. This demonstrates the Z classification
of the HOT phases in honeycomb lattices. To further corrob-
orate the utility of this topological invariant, we computed
two Su-Schrieffer-Heeger (SSH)-like models. Our findings
indicate that the invariant is both applicable and insensitive to
the choice of the origin point. To provide further validation,
we constructed an acoustic model based on a honeycomb
lattice. Simulation and experimental results confirmed the
presence of zero-energy corner states, as evidenced by
response curves generated from acoustic measurements on
three distinct samples, which is consistent with our theoretical
predictions.

II. THEORY

We begin with a definition of the quadrupole moment
operator. Macroscopically, the expression for the quadrupole
moment can be expressed as

∫
v

d3 �r′ρr′
i r

′
j , where v and ρ
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FIG. 1. (a) Diagram illustrating the honeycomb lattice incorpo-
rating long-range hopping. Light blue hexagons designate the unit
cells that include long-range hopping. (b) Phase diagram displaying
Nxy values for the honeycomb lattice where w = 1, and t3 = t1.
(c) Energy spectra of the system with fully open boundaries, plot-
ted as a function of t for t3 = t1 = 1.5, and L = 30. Dashed gray
lines correspond to the right endpoint of the red line on the x axis.
(d) Density of states in the system for t = 1, t1 = t3 = 0, and L = 20.
Gray dashed rectangles highlight states with zero energy. In the cor-
responding subplot of energy spectra, two red dots are circumscribed
by a blue circle. Parameters for both (c) and (d) are w = 1, v = 4,
and t2 = 0.

denote the volume of the voxel and the volume charge den-
sities, respectively. The term r′

i r
′
j is the product of the position

vector components of the charge within the voxel. General-
ized many-body operators maintain a similar mathematical
structure [55–57]. Although the intrinsic nonlinearity of these
generalized operators disrupts the periodicity of the wave
function, this generalization is beneficial for characterizing
zero-energy corner states and their associated topological
phases.

In this context, we extend the quadrupole moment operator
to better suit systems exhibiting chiral symmetry. First, one
can figure out the off-diagonal block Bloch Hamiltonian for
the chiral-symmetric system and describe it as

H =
[

0 h

h† 0

]
.

In the honeycomb lattice model depicted in Fig. 1(a), the
shaded hexagonal region represents the unit cell, containing
six atoms labeled from 1 to 6. h can be expressed as

h =

⎡
⎢⎣

t + t1e−i2k·a1 ve−ik·a3 w

w t + t2ei2k·a2 veik·a1

ve−ik·a2 w t + t3ei2k·a3

⎤
⎥⎦,

where h (h†) represents the sublattice A (B), with atoms
1–3 (4–6) belonging to sublattice A (B). The vectors ai (i =
1, 2, 3) are defined as (1,0), (1/2,

√
3/2), and (1/2,−√

3/2).
For nearest neighbors, intracell hopping types w and t , along
with intercell hopping v, are included. Long-range hopping is
represented by t1, t2, and t3, as illustrated by the dashed lines
in Fig. 1(a). The introduced long-range hoppings are effective
in demonstrating the abundant topological phase. Further de-
tails about the long-range hopping and its implications on the
topological phase are available in Supplemental Material [63]
Sec. I. The chiral operator is defined as �̂ (σz ⊗ I3×3), where
σz is the Pauli matrix.

Next, the pseudo wave vector in 2D real space is de-
fined as k̃ = x/Liex + y/Ljey, where Li, j and (x, y) refer to
the number of units along each side of the finite structure and
the unit cell position within the basis (ex, ey), respectively.
The 2-norm of k̃ is formulated as follows,

‖ k̃ ‖2=
√(

x

Li

)2

+
(

y

L j

)2

. (1)

Compared to the product form of its components (e.g.,
xy/LiL j), the 2-norm of the pseudo wave vector in 2D polar
coordinates eliminates the polar angle information which may
render the quadrupole moment operator more compatible (see
Supplemental Material [63] Sec. II). In 2D real space, the
quadrupole moment operator of the sublattice S (either A or
B) is defined by

QS
xy =

∑
R,α∈S

|R, α〉 exp(−i2π ‖ k̃ ‖2)〈R, α|, (2)

where R, α denote the unit cell position in real space and the
atom orbital, respectively. Upon projecting the operator QS

xy
into the subspace US , the MMCNs can be calculated as Nxy =

1
2π i Tr log(Q̄A

xyQ̄B†
xy ), where Q̄S

xy = U †
S QS

xyUS (with S = A, B),
and US is obtained from the singular value decomposition of
h (h = UA�U †

B ). The value of Nxy should be quantized under
specific conditions relating to the sublattices and degrees of
freedom within each unit cell [29]. Following the introduction
of MMCNs, they are utilized to characterize zero-energy cor-
ner states in finite systems. Subsequently, all computational
outcomes for the honeycomb lattice are based on constant
parameters v (=4) and t2 (=0). The setting for t2 can also
be changed, which has no influence to the characterization
with Nxy. By evaluating Nxy as a function of t and t1, a
phase diagram is constructed, as presented in Fig. 1(b). The
color-coded regions delineate different phases distinguished
by their respective Nxy values. Examining parameter values
along the striped white and black lines in Fig. 1(b) and com-
puting the energy spectra of the finite system, it is revealed
that zero-energy corner states are likely to occur when t is
approximately within the interval (0, 1.25) and (1.45, 2), as
marked by the red lines in Fig. 1(c). This finding corrobo-
rates the Nxy phase diagram. Figure 1(d) depicts the density
of states, further substantiating the presence of zero-energy
corner states. A subplot demonstrates the energy spectra of
a finite system featuring two zero-energy corner states when
t = 1 and in the absence of long-range hopping. The nonzero-
energy corner states, which lack topological protection, are
highlighted by black arrows and demonstrate a sensitivity to
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FIG. 2. (a) Diagram depicting 1D TIs based on the SSH model.
Numerical labels along the x axis represent lattice indices and their
spatial positions, using the lattice constant as the unit length. Gray
(black) atoms in each unit cell belong to sublattice A (B). (b) Phase
diagram showing Nx values for the model without long-range cou-
plings in (a). Yellow (blue) regions correspond to Nx values of 1 (0).
(c) Nx values for the model incorporating long-range couplings as
a function of disorder strength W . The subplot reveals portions of
the energy spectra for a system with four zero-energy corner states
at W = 2. For this case, t3 = −2, W3 = 0, and t1 = 0. Parameters
for both (b) and (c) include W1 = 2W2 = W , t2 = 1, x0 = 20, and
L = 501.

the disorder [34,35]. In addition, the difference of the two
kinds of corner states can be detected based on the relevant
works [34,35]. The number of zero-energy corner states is a
function of Nxy. Specifically, if Nxy = n, then 2|n| zero-energy
corner states exist. Furthermore, positive (negative) Nxy values
imply the distribution of these states solely within sublattices
A (B), as elaborated in Supplemental Material [63] Sec. III.
Adhering to the same methodology, the norm of the pseudo
wave vector in a 1D system is defined as |k̃| = |x − x0|/L,
where L, x, and x0 represent the total number of unit cells,
the position of a particular unit cell, and the translations of
the origin point, respectively. We specifically calculated the
MMCNs for 1D systems, denoted as Nx, in the context of
two classical SSH-like models previously explored [2,26,28].
The second-quantized Hamiltonian for the model depicted in
Fig. 2(a) can be described as follows,

H = −
N∑

n=1

(t1,nâ†
nb̂n + t2,nâ†

n+1b̂n + t3,nâ†
n+2b̂n) + H.c., (3)

where ân (b̂n) generates a particle in the A (B) sublattice of
the nth cell. The variable ti,n = tn + Wiεi,n, with i = 1, 2, 3,
denotes the hopping strength, where εi,n is a uniformly dis-
tributed random strength (−1/2, 1/2), and Wi signifies the
disorder strength. Introducing disorder allows for the exam-
ination of the interplay between disorder and topological
features, as well as the robustness of MMCNs. When the next-
next-nearest-neighbor (NNNN) term t3,n = 0, as expressed in
Eq. (3), the model corresponds to the one depicted in the left
panel of Fig. 2(a). Figure 2(b) presents the phase diagram
of Nx as a function of disorder strength W (W1 = 2W2 = W )
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FIG. 3. (a) Phase diagram of Nxy for a honeycomb lattice without
long-range hoppings. The three red stars denote the parameter coor-
dinates (w, t) of (1,1), (1,2), and (1,3). The color bar signifies the
magnitude of Nxy, with a fixed lattice size L of 20. (b) Eigenfrequen-
cies for a finite rhombic acoustic structure. Red dots (alongside sky
blue, blue, and black) signify zero-energy corner (nonzero-energy
corner, edge, and bulk) states. The acoustic structure depicted in the
subplot corresponds to the first red star in (a).

and intracell hopping t1, which aligns precisely with previ-
ous results based on the winding number [2,64]. Upon the
inclusion of the NNNN term, phase transitions manifest with
increasing W , maintaining the quantitative relationship be-
tween MMCNs and the number of zero-energy corner states,
as illustrated in Fig. 2(c). The solid blue line with circles and
error bars conveys the average outcomes from 100 random
realizations, while the single gray dot signifies an individual
random realization. Notably, the predictive accuracy of the
model improves as the finite system’s size increases. Fur-
thermore, in the case of systems that break time-reversal
symmetry (classified as class AIII in the tenfold scheme),
MMCNs continue to be a dependable metric for precisely
characterizing the topological phase (see Supplemental Ma-
terial [63] Sec. IV). It should be noted that, despite the
pseudo-wave-vector norm incorporating the absolute value of
the position, neither Nx nor Nxy is sensitive to the translation
of the original point, as further explained in Supplemental
Material [63] Sec. V.

III. SIMULATION AND EXPERIMENT

To corroborate the theoretical findings, both simulations
and experimental setups were employed using acoustic res-
onance systems based on a finite honeycomb lattice structure.
For the sake of simplicity, all long-range hopping parameters
were set to zero. The resulting phase diagram of Nxy as a
function of w and t is shown in Fig. 3(a). It is observed that
the value of Nxy oscillates between 0 and 1 as the parameter
t is varied along with the black and white striped lines in
the figure. In accordance with previous studies [65,66], we
can map the hopping parameters of the theoretical model to
the geometrical parameters of the acoustic structures. The
eigenvalues of the Hamiltonian matrix in the theoretical model
correspond to the eigenfrequencies of the acoustic structures,
as detailed in Supplemental Material [63] Sec. VI.

We then measured the response curves to acoustic sources
placed at varying locations—the bulk, edges, and corners—of
the finite system. Three acoustic samples were engineered
to mirror the corresponding theoretical models, as indi-
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FIG. 4. Results of experiment and simulation. (a) 3D-printed structure of sample 1, highlighting test positions for corner, edge, and bulk
responses. The red (blue) star marks the position of microphone (loudspeaker). (b) Schematic of sample 2, and (c) schematic diagram of
sample 3. A red dashed ellipse accentuates the varying hopping strength t between the two samples. Units with dark blue and gray backgrounds
pinpoint the relative test positions. (d)–(f) Measured frequency response curves pertinent to sample 1, sample 2, and sample 3. The trio of blue
lines present two peaks at frequencies of (546, 594), (566, 675), and (586, 713) Hz, respectively. Orange (blue, gray) lines represent the
frequency response curves at the corner (edge, bulk) positions in each sample. (g)–(i) Simulated frequency response curves for sample 1,
sample 2, and sample 3. Shaded regions in (d)–(i) facilitate the identification of peak locations.

cated by the three red stars in Fig. 3(a) to substantiate the
effectiveness of Nxy (see Supplemental Material [63] Sec. VI).
Upon assembling these acoustic units into a finite rhombic
configuration and determining their eigenfrequencies, it was
discovered that zero-energy corner states emerge at the middle
of the gap in the eigenfrequency spectra, as indicated by
the red dots in Fig. 3(b). Most significantly, the presence
of these zero-energy corner states serves as an emblematic
feature of the system’s nontrivial topological attributes. In
contrast, corner states with nonzero energy, labeled as CS, do
not enjoy topological protection. An analysis of the energy
spectra for the trio of acoustic samples revealed that the phase
transition of edge states governs the occurrence of zero-energy
corner states. This is further elaborated in Supplemental Ma-
terial [63] Sec. VI. Consequently, it becomes evident that
MMCNs are instrumental in investigating edge-corner cor-
respondence via the characterization of zero-energy corner
states.

In the experiment, three acoustic samples were fabricated
to represent the manifestation, transitional state, and absence
of zero-energy corner states. Figure 4(a) depicts the 3D-

printed architecture of sample 1, with yellow circles denoting
the points where corner, edge, and bulk response curves were
measured relative to the acoustic source. By positioning the
microphone and sound source at the locations identified by
blue and red stars in the corner of sample 1, the frequency
response curve was ascertained, as illustrated by the orange
line in Fig. 4(d). The frequency corresponding to the second
peak on this curve is 576 Hz, aligning with the frequency of
the zero-energy eigenvalue, as marked by red dots in Fig. 3(b).
In contrast, the corners of samples 2 and 3 yielded no such
discernible peaks, as elaborated in Supplemental Material [63]
Sec. VII. It is worth mentioning that the nonzero-energy
corner states can exist independently from the zero-energy
corner states and the introduced topological invariant cannot
differentiate the two kinds of corner states. Response curves
for edge and bulk regions were also obtained by position-
ing the microphone and sound source in the designated test
units. Moreover, it was observed that the peaks in these edge
and bulk response curves were situated entirely within the
eigenfrequency range associated with edge and bulk states, as
outlined in Supplemental Material [63] Sec. VI and depicted
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in Figs. 4(e) and 4(f). All measurements were executed
utilizing a B&K PULSE (type-4191) instrument. Simultane-
ously, simulations were performed to replicate the experi-
mental procedures. The resulting simulated response curves,
as displayed in Figs. 4(g)–4(i), were consistent with the
measured data. To easily identify the peak positions in
Figs. 4(d)–4(i), shaded regions were incorporated into the vi-
sual representation. Lastly, Helmholtz resonators were affixed
to the peripheral tubes of the acoustic structure to maintain
a soft boundary condition, as detailed in Supplemental Mate-
rial [63] Sec. VI.

IV. CONCLUSION

In conclusion, we introduced an expression for the
quadrupole moment operator aimed at characterizing zero-
energy corner states, bypassing the constraints of traditional
mathematical generalizations. This approach enhances the
operator’s compatibility with the systems under study. By
computing the MMCNs for both 2D honeycomb lattice
models and 1D SSH-like models featuring long-range hop-

ping, we established that MMCNs offer a robust means of
characterizing both the zero-energy corner states and their
associated topological phases. Despite the seemingly counter-
intuitive approach of utilizing the norm of the pseudo wave
vector, we found that this quantity is notably insensitive to
translational adjustments of the initial point, thus rendering
the quantized outcomes reliable indicators. In addition, we
developed an effective acoustic model to empirically validate
our theoretical constructs. Meanwhile, the MMCNs can help
to demonstrate the edge-corner correspondence by character-
izing the zero-energy corner states. These advancements hold
significant promise for guiding the design of systems with
topologically protected zero-energy corner states across di-
verse platforms, including topoelectric circuits and photonics,
and various application fields, such as topological lasers [67].
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