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Ferroelectricity and chirality in the Pb5Ge3O11 crystal
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We study from first-principles calculations the ferroelectric structural phase transition of Pb5Ge3O11 crystal.
The calculations of phonons and Born effective charges of the paraelectric phase allow us to identify a polar
instability that is unstable in both transverse-optic and longitudinal-optic versions, giving rise to an entire branch
of instability along a propagation vector parallel to the mode polarization (the hexagonal axe). This is the
hint of hyperferroelectricity and the stable head-to-head and tail-to-tail domain, as recently reported from both
experiments and theory. Then, our analysis of the ferroelectric phase shows that the polarization of Pb5Ge3O11

is uniaxial along the hexagonal axes and with small in-plane components due to a piezoelectric effect. The
symmetry-adapted mode analysis shows that the total ferroelectric ground-state distortion comes mainly from
polar distortions of the unstable polar phonon mode but also from an invariant, cooperative mode that amplifies
the polar deformation. We also build a phenomenological model that highlights how the coupling between these
modes is at play and helps us understand how to reproduce the second-order phase transition. Lastly, we also
quantify the structural chirality through the continuous symmetry measure method and trace its origin to the
polar unstable mode itself. By extending our approach to the phonon states, we further show that the chirality
is poorly affected by the relaxation but could also be enhanced by activating high-frequency modes with polar
symmetry. Finally, we study the phonon angular momentum (AM) distribution in both phases and identify trends
in the AM behavior across the Brillouin zone.
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I. INTRODUCTION

Synthesis of the compound lead germanate Pb5Ge3O11

(PGO) dates back to 1971 [1,2]. Subsequent experimen-
tal works [3] have established the main features of PGO,
among which is the existence of a high-temperature amor-
phous structure (T > 618 K), an intermediate temperature
hexagonal paraelectric (PE) phase (450 K < T < 618 K)
with P6̄ symmetry and a low-temperature ferroelectric (FE)
phase (T < 450 K) with the trigonal P3 space group. The
presence of a hysteresis loop for the natural optical activity,
i.e., gyroelectricity [4,5], in the P3 FE phase, mirroring the
one of the detected polar order, was also found in those
early studies [3,6], implying opposite handedness for the
+P and −P states. Additionally, a sequence of experimen-
tal works on PGO have focused on the dielectric response,
structural and ferroic properties [3,7–13], on the piezoelec-
tricity [14], pyroelectricity [15–19], and the electro-optical
properties [20–23]. Measurements of the spontaneous po-
larization as a function of temperature reveal a uniaxial
polarization along the hexagonal axis and the second-order
character of the FE phase transition. The presence of a hys-
teresis loop in the natural optical activity measurements can
be associated with the gyrotropic order associated with the
P3 space group [24,25], which can indeed be associated
with optically active polar domains. Furthermore, the linear
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electrogyration [4] coefficient of PGO is among the largest
ever recorded, with a value γ33 = (3.1 ± 0.3) × 10−11 m/V
near 450 K in chromium doped conditions (0.8%) [25–28].
Another intriguing aspect of PGO involves its FE domain
walls (DWs). Notably, the material has been observed to ex-
hibit the phenomenon of topological bifurcation, as discussed
in previous research [29,30]. Additionally, recent experimen-
tal findings have identified the presence of antiferroelectric
DWs [31]. These unconventional behaviors in PGO’s DWs
present a compelling case for further investigation, mainly
through theoretical explanations grounded in first-principles
calculations.

While the past five decades have seen considerable exper-
imental work on PGO, theoretical investigations have been
mainly confined to mean-field modeling to fit experimental
data and only three recent exceptions employed density func-
tional theory (DFT) [31–33]. In this paper, we investigate
the microscopic mechanisms driving PGO’s phase transi-
tions with the help of ab initio calculations. The paper is
organized as follows. After reporting our technical details
for the calculations and method of analysis and the struc-
tural information of PGO, we first analyze the PE P6̄ phase
through density functional perturbation theory (DFPT). The
resulting calculations of phonon dispersion curves and Born
effective charges help us to identify a single unstable polar
phonon branch where both the transverse and longitudinal
optical (respectively, TO and LO) cases are unstable, em-
phasizing the hyperferroelectric [34] character of the polar
phase and the soft mode origin of the phase transition. In
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the next section, we scrutinize and characterize the FE P3
phase with DFT and DFPT. The use of symmetry adapted
mode (SAM) decomposition of the distortions present in the
P3 phase helps us to identify the relevant modes at play in the
phase transition. Then we build a phenomenological model
to describe the energy landscape involving these modes that
helps us to understand the role of the spin orbit coupling
(SOC) to reproduce the second-order phase transition. Finally,
we extend our analysis to quantify the chirality of the P3
phase and the associated phonon modes by employing the
continuous symmetry measures technique [35]. This rigorous
approach enables us to pinpoint the origin of chirality within
PGO and elucidates the underlying reasons for its gyroelectric
properties. We argue that the chirality of this material is not
associated with a phonon angular momentum (AM), contrary
to that observed in recent works [36,37]. The further explo-
ration of the AM shows values close to 1 Ha for some bands
in the FE phase and a trend of the PE and FE AM distribu-
tions with respect to the phonon wave vector. Our findings
not only shed light on the intrinsic chiral nature of the P3
phase but also provide a deeper understanding of the gyroelec-
tric behavior exhibited by PGO, thereby contributing to the
broader comprehension of symmetry-breaking phenomena in
FE materials.

II. TECHNICAL DETAILS

Structural relaxations, energy, and response function cal-
culations have been performed with the DFT code ABINIT
v9.6.2 [38,39] and through norm-conserving pseudopotentials
from the PseudoDojo project [40] (v0.4). The generalized
gradient approximation with the Perdew-Burke-Ernzerhof
functional for solids (PBEsol) [41] was used. A 3 × 3 × 3
k-point grid and a cutoff of 50 Ha (1360.57 eV) were em-
ployed and found sufficient to converge total energies and
structural relaxation (cell parameter and atomic positions), as
well as phonon frequencies. Density functional perturbation
theory (DFPT) [42] response functions in both the PE and
FE phases were used to obtain the phonon frequencies, the
Born effective charges, and the permittivity tensor [42]. The
Born effective charges and the dielectric tensor allows us to
evaluate the nonanalytical dipole-dipole long-range (LR) part
of the dynamical matrix [42], giving rise to the LO modes. The
phonon dispersion curves were calculated by interpolating the
interatomic force constants (IFCs) from the unit cell only
by splitting the LR part from the rest [considered the short
range (SR)]. This interpolation from the unit cell allows us
to reduce the computational workload, and it is an acceptable
approximation as the unit cell is already large enough (around
10 × 10 × 10 Å3) to give reasonable values for the SR part
over several neighbors. The Berry phase theory [43] was em-
ployed to obtain the polarization of the FE phase. The latter
is also estimated from the Born effective charges to check
whether it is free from spurious quanta [44]. SOC has been in-
cluded in all calculations as it appeared to have a surprisingly
strong effect in PGO (see Refs. [33,45]). Finally, the group
theory analysis of the structural distortions was performed by
means of the AMPLIMODES software [46]. Because of the
size of the system (57 atoms), we will refer the reader to the
Supplemental Material (SM) [45] for extra details and data

(like the Born effective charges, the full phonon dispersion
and frequencies, etc.) that would weigh the main text down.

III. STRUCTURAL INFORMATION

Lead germanate is a large band-gap insulator that under-
goes a structural phase transition at 450 K. It features a
high-temperature hexagonal PE P6̄ phase. In contrast, its low-
symmetry FE P3 phase disrupts the sixfold rotoinversion and
the mirror symmetry along the c axis. We detail the relaxed
structural attributes of the PE and FE phases in the SM. The
unit cell for both phases comprises 57 atoms, with the PE and
FE phases characterized by 15 and 23 asymmetric Wyckoff
positions (WPs), respectively. A schematic representation of
the high-symmetry PE phase is provided in Fig. 1. In this
structure, lead atoms occupy two distinct positions: those at 6l
and 3k WPs form hexagonal configurations around a vacuum
volume when viewed along the [001] direction. In contrast,
the other lead atoms are aligned along the c axis within the
bulk part of the material. Germanium atoms, in coordination
with surrounding oxygens, form either GeO4 tetrahedra or
Ge2O7 bitetrahedra. The lead atoms serve as bridges between
these germanium-oxygen units. A comparative analysis of the
lattice parameters with respect to the employed DFT func-
tional has been presented in a previous work (see the SM
of Ref. [33]). It is worth noting that the PBEsol functional
plus SOC used in our study slightly overestimates the a and
c lattice parameters by up to 0.38% and 0.25% compared to
experimental values. Hence, throughout the rest of the paper
we use the PBEsol plus SOC calculations as a reference,
since they provide the most accurate results compared to other
functionals such as PBE [41] and LDA. In the FE phase, the
3d WP is occupied by all the oxygen and germanium atoms. In
contrast, lead atoms are found in the 3d, 1c, and 1b positions.
Interestingly, both P6̄ and P3 space groups exhibit axial order
and a nonzero piezoelectric tensor [47,48], less commonly
observed in the PE phase of FE materials.

IV. ANALYSIS OF THE PARAELECTRIC PHASE

In this section, we analyze the P6̄ PE phase of PGO
to identify and characterize the phonon instabilities. After
the complete structural relaxation, we calculated the phonon
frequencies, the Born effective charges, and the permittivity
at the � point through DFPT with and without including
SOC. The irreducible representation at � is 30A′ ⊕ 27A′′ ⊕
64E ′ ⊕ 50E ′′, where the A′′ (�2) and E ′ (�3/�5) characters
are infrared (IR) active with polarization along the z and xy
directions, respectively, and the A′ (�1) and E ′′ (�4/�6) are
Raman active only. From our calculated phonons we find
at � a single unstable TO phonon mode with a frequency
ω0 = 34i cm−1 and of �2 representation that is an IR active
mode polarized along the c axis. If we look at the differ-
ence between the TO and LO frequencies associated with
this unstable mode, we realize that they are very close: 34i
cm−1 for the TO mode vs 28i cm−1 for the LO mode. We
also find that, contrary to several other structural and elec-
tronic properties (see Ref. [33] and the next sections of the
present paper), the inclusion of SOC in the calculation does
not influence much this unstable phonon mode frequency:
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FIG. 1. (a) [001] top view and (b) [100] side view of the PE unit cell of Pb5Ge3O11. Pb and O atoms are shown in dark grey and red,
respectively. GeO4 polyhedral environments are represented in purple. Empty channels are evidenced in yellow.

ωTO = 37i cm−1 and ωTO = 31i cm−1. Moreover, splitting the
square frequencies at � in SR and LR contributions [42,49,50]
reveals the short-range nature of the polar instability with
ω2

0;SR = −2235.2 cm−1 and ω2
0;LR = 1022.5 cm−1.

Given that the unstable mode is polarized along the c axis,
we aim to investigate the complete optical branch extending
from the unstable � point to the A point, which has coordi-
nates (0, 0, 1

2 ). To facilitate this, we leverage the large size
of the unit cell—approximately 10 Å3 box—to interpolate the
phonon dispersion solely based on dipole-dipole interactions
at finite q values. The outcome of this interpolation between
the � and A points is depicted in Fig. 2, where we have
zoomed to the low-frequency part of the spectrum for clarity.
The presence of a soft acoustic mode in our observations can
be ascribed to the constraints of the simplified interpolation
model utilized in our analysis. Our computational results un-
cover a comprehensive unstable phonon branch spanning the
� to A points of the Brillouin zone, characterized by minimal

FIG. 2. Calculated phonon dispersion curves of the PE reference
structure of PGO between the zone center � point and the zone
boundary A (0, 0, 1

2 ) points and for a zoomed frequency range
between 45i to 45 cm−1. The NAC correction has been taken into
account along the (0,0,1). Hence, the unstable branch running from �

to A corresponds to the LO polar mode at � associated to the unstable
TO mode with �2 symmetry. The unstable branch from one of the
acoustic modes is an interpolation artifact as the condensation of the
related elastic instability never gives a lower energy phase.

dispersion. This suggests that the model, while effective in
a general sense, may not fully capture the complexities of
the phonon interactions within the material, indicating the
need for a more nuanced approach to accurately represent the
dynamic behavior of the phonons across the entire band. To
verify that this is not a spurious effect of the interpolation,
we have calculated the phonons from DFPT at the A point
and found a tiny deviation with respect to the purely inter-
polated value (17.1i cm−1 from DFPT vs 16.8i cm−1 from
dipole-dipole interpolation). Thus, it is clearly the LO mode
that connects the related unstable dispersion branch along
the �-A line.

In agreement with the calculations in Ref. [31], our results
concerning the soft mode suggests that PGO behaves like
a hyperferroelectric, that is, a FE crystal that can support a
polarization in D = 0 condition of the displacement field [34].
To further probe this possibility, we have computed the Born
effective charges (BEC) and the electronic permitivity ε∞ (see
all the tensors in SM [45]). Even if the band gap is rather
large, giving a rather small ε∞ (ε∞

zz = 5.1) and even though
a few BEC are anomalous (e.g., the zz BEC component of Pb
at WPs 1i and 1e of around +4e and at 1c close to +5e), the

overall mean square value
√∑

jk (Zα
jk )2/57 � (2.7, 2.7, 2.8)e

is rather nominal. Hence, the Coulomb term driving the LO-
TO splitting that schematically evolves as the average BEC
over ε∞ is small enough to keep the LO mode unstable [34].
Having an average BEC value close to nominal can also
mean that PGO does not present an overall anomalously large
charge transfer due to covalent bonds [34], unlike common
FEs. We further show in the SM [45] that the SOC weakly
affects the Born effective charges and ε∞, i.e., a few percent
increase. Analysis on known hyperferroelectric compounds
such as LiNbO3 and ABC hexagonal systems [51,52] allows
us to dig deeper into the mechanism behind this SR instability.
In particular, Ref. [52] shows that the SR destabilization in
hyperferroelectrics ABO3 and ABC types is coming from
negative on-site IFCs. However, in the SM [45], we show that
the on-site IFCs are all positive in PGO, therefore ruling out
the Ref. [52] argument in the case of PGO. While we do not
investigate this finding in detail, we can possibly understand
it from a rigid-unit perspective as reported in, e.g., silicates
[53]. In fact, one can see that both the high- and low-symmetry
phases are comprised of oxygen-sharing Ge- and Pb-centered
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quasirigid polyhedra. Thus, the source of the polar instability
does not involve individual self-forces (due to the rigidity of
the polyhedra), but is rather connected with the stabilization of
oxygen-mediated nearest-neighbor interactions between these
units. The instability would stay geometric but from rigid-unit
motions instead of atomic origin [54].

Our calculations, hence, confirm that PGO is a FE material
with a uniaxial polarization and with a proper order parameter
as described by the soft mode theory [55] and as observed
experimentally [56–59]. Further confirmation of a hyperferro-
electric character would require finding a nonzero polarization
in open circuit boundary conditions. Results supporting such
conclusions are given in the next section.

V. ANALYSIS OF THE FERROELECTRIC PHASE

Given that the soft mode aligns with the symmetry of the
(FE) phase, it is reasonable to classify the phase transition
of PGO as a proper FE transition. We begin our analysis
of the polar state with the SOC off. Starting with the PE
structure as a reference, we induce a symmetry breaking
by displacing ions along directions dictated by the unstable
phonon eigenvector and with various amplitudes. We observe
a double-well energy landscape, with energy minima corre-
sponding to a gain of 9.0 meV/f.u. At these minima, we
calculate the spontaneous polarization Ps and find a magni-
tude of 2.8 µC/cm2 along the c axis. This value is notably
smaller than the experimentally reported 5.0 µC/cm2 [3] when
extrapolated to 0 K. To reconcile this discrepancy, we first
conduct a structural relaxation with fixed cell parameters and
then recalculate the energy gain and polarization. The re-
vised values are 61 meV/f.u. and 5.3 µC/cm2, respectively.
Consistently with the phonon instability, we detect no in-
plane components of Ps. A second structural optimization—in
which the relaxation of the lattice parameters with respect
to the PE phase is allowed—finally gives an energy gain of
68 meV/f.u. and Ps of 5.9 µC/cm2 along the z direction
which extrapolates correctly the experimental value. Un-
like the previous cases, a small in-plane polarization Pxy

s =
(−0.07, 0.05) µC/cm2 is now observed in the fully relaxed
case, which is associated with the piezoelectric nature of the
high-symmetry reference structure. The Berry phase com-
puted values of the polarization are consistent with those
found from the atomic displacements and the Born effective
charges. As we remind that the spin orbit has been deactivated
during the calculations of the aforementioned quantities, from
a previous work [33] we also know that the SOC renormalizes
the FE barrier up to ∼30% of its value. In fact, the SOC
increases the unrelaxed soft mode energy up to 13 meV, the
ion-only relaxed energy up to 80 meV, and the fully relaxed
FE ground-state energy up to 89 meV. It therefore comes
naturally to understand how Ps is affected by the spin-orbit
interaction as well. The calculation of the polarization with
the SOC included gives Ps = (−0.04, 0.02, 5.5) µC/cm2.
Given that the energies are much affected by the SOC, having
a relatively SOC independent polarization means that much
of the SOC contribution affects the nonharmonic part of the
energy, a fact that is also supported by the energy of the unre-
laxed soft modes computed either with or without spin-orbital
contribution.

The fully relaxed FE cell parameters are a = b =
10.257 Å and c = 10.689 Å and align well with experimental
findings, as detailed in the SM [45]. To check whether a
further symmetry lowering might occur, we recalculated the
phonon frequencies at the � point and found no unstable
mode, confirming the stability and ground state of our relaxed
P3 phase.

Hence, we can summarize our DFT calculations as follows.
Internal ion relaxation is clearly of paramount importance
in reaching both the minimum energy configuration and
reproducing the experimental polarization, while strain opti-
mization has a secondary importance (the additional gain of
energy when including the strain is much smaller than the
gain of energy given by the internal atom relaxation alone).
The role of the internal forces can be somehow expected,
given the presence of both a large number of atoms (57) in the
unit cell with a low symmetry site, and of Pb2+ cations that
have 6 s -6 p lone pairs, which are known to lead to a strong
relaxation effect in FE perovskite compounds like PbTiO3

[60]. To further understand the PE-FE ground state distortions
|δ〉, we perform a SAM analysis. We find that the distortion
is characterized by two SAMs. The main one (1.47 Å) is
associated with a P3 isotropy subgroup and a �2 irreducible
representation (namely, the same as the unstable polar mode).
The second SAM (0.35 Å) is instead a mode with P6̄ space
group and �1 representation. This confirms that it is the �2

SAM that breaks the PE symmetry and favors a polar state,
while the presence of �1 deformations means that the degrees
of freedom already present in the P6̄ phase (i.e., the atoms
with WP that are not at high symmetry positions) change to
accommodate the polar deformation.

A graphic representation of the two relevant SAMs is
given in Fig. 3. In particular, the invariant mode is clearly
constituted by atomic in-plane distortions, while the polar
mode contains out-of-plane displacements as well. To have
more details about which phonon modes contribute to the
total ground-state distortion, we did a projection of the FE
distortion 〈δ| into the phonon eigenvectors |ξi〉 obtained in
the PE phase. This projection reveals that, despite the strong
relaxation, the overlap coefficient 〈δ|M|ξsoft〉 of the soft mode
is about 0.90. As the normalization is 〈ξi|M|ξ j〉 = δi j , it means
that all the other modes give a total overlap of about 0.44.
Hence, the final FE distortion is close to the unstable polar
mode eigendisplacement but other higher frequency mode
eigendisplacements contribute too. If we now decompose |δ〉
into atomic type, we find that O and Pb atoms are those that
contribute the most to the polarization. This result strengthens
a rigid unit picture of the phase transition, with |δ〉 described
by the motion of Ge-O tetrahedra [61].

With the goal of probing the energy landscape (taking
again the PE structure as reference), we extract configura-
tions corresponding to either the total |δ〉 deformation and its
�1 and �2 SAM projections, linearly interpolating between
the high- and low-symmetry structures. Then, we performed
DFT calculations as a function of the mode amplitudes. To
understand the numerical results we build a simple phe-
nomenological internal energy model with the �1 and �2

SAM mode distortions as order parameters of the system. Tak-
ing into account the symmetry of these two order parameters,
we find (see Ref. [45] for a thorough analysis of the fit) that the
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FIG. 3. (a)–(c) Top and side views for �1 symmetry adapted modes (SAMs), and (b)–(d) for �2 SAMs as calculated with AMPLIMODE
software from our relaxed P6̄ and P3 phases. The arrow lengths are proportionals to the magnitude of the distortions.

ab initio energy-configuration data set is well represented by
the following expression:

U (Q1, Q2) = α1

2
Q2

1 + α2

2
Q2

2 + β2

4
Q4

2 + aQ1Q2
2

+ Vhigh(Q1, Q2), (1)

where Q1 and Q2 are the amplitudes of the �1 and �2 dis-
tortions, respectively, and where Vhigh contains higher order
terms of the expansion (see the SM [45]). Since �1 is invariant
under all the symmetry operations of the PE reference, it can
appear in all orders (except in the first order, since the forces
in the PE reference are zero). After fitting the model onto
our DFT calculations, we can observe the energy wells and
landscape in Fig. 4. We can see that, as expected, the �1 SAM

alone gives a single well around the PE reference (yellow
curve) and the �2 mode alone gives a double well shape
(green curve). When both �1 and �2 are coupled together, we
can observe a strong increase of the double well energy and
distortion amplitude (red curve). This confirms that, in PGO,
the number of internal degrees of freedom strongly enhances
the development of the polar distortion into the structure, as
anticipated by our previous relaxation procedure. This en-
hancement is mainly due to the attractive aQ1Q2

2 coupling
term, which strongly renormalizes and reduces the value of
the anharmonic parameter β2. Nevertheless, our calculations
also show that the reduction is not strong enough to affect the
sign of the quartic Q4

2 coefficient, which means that the phase
transition remains of the second-order kind, as experimentally
observed. The inclusion of higher order terms (Q3

1, Q6
2, Q2

1Q2
2,

FIG. 4. Energy landscape of PGO as a function of the amplitude of the SAM �1 and �2. Symbols are DFT calculations while the plain
lines correspond to fitted model Eq. (1). SOC is included the PE and FE structures have been fully relaxed.
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FIG. 5. Energy change versus amplitude of the polar unstable
mode eigendisplacements and of the relaxed ferroelectric distortion
(both at fixed cell parameter of the PE phase) with and without SOC.
The zero energy reference corresponds to the PE P6̄ phase.

Q1Q4
2, etc.) can improve the fitting for bigger values of the

SAM amplitudes, but this has a quite marginal importance
near the energy minimum. The strong renormalization of the
FE barrier induced by the spin-orbit interaction has been
anticipated by us in a previous work [33]. To highlight this
effect, we show in Fig. 5 the difference in the energy wells
when condensing the soft mode and the different amplitude
of the fully relaxed distortion with and without SOC. We can
clearly see the relevance of the SOC on the polar distortion
energy landscape where it is mostly within the large atomic
displacements that the SOC is at play and, hence, into the
anharmonic part as observed from the phonon frequencies
calculations from DFPT, which were slightly affected but
the SOC.

Although we did not probe the Berry phase as a function
of the SAM amplitudes, we can safely assume a linear rela-
tion Q2 ∼ P which is generally justified for small distortion
amplitudes. Finally, we stress that although the Berry phase
was calculated in E = 0 conditions, the detection of an un-
stable LO branch prompts the question about what P(D = 0)
may be. This calculation from first principles is prohibitively
costly in the state-of-the-art DFT code implementation, how-
ever, if we assume that the electrostatics affects only the
quadratic part of the electric enthalpy, we can estimate P(D =
0) ≈ P(E = 0)ωLO

ωTO
∼ 4.0 µC/cm−2, which is a remarkably

small reduction in comparison with hyperferroelectric ma-
terials such as LiBO3 (with B = V, Nb, Ta and Os) [51].
Naturally, a further decrease may be expected if non-harmonic
effects are taken into account. Given that the previous linear
relation actually fails even in the simpler cases of ABC hy-
perferroelectrics [34], we can consider the given number as
an upper bound. Equivalently, the D = 0 correction to the free
energy brings an additional positive term proportional to P2,
and it can be observed that the FE instability is not suppressed
as a result of the large dielectric constant of PGO. Indeed,
the most prominent contribution from the electrostatic energy
associated with the D = 0 condition adds a P2/2ε term to the
free-energy expansion (see SM [45] and Refs. [62,63] therein
included), and this increases the α2 coefficient of Eq. (1)
from the value of −135.0 meV/Å to that of −119.5 meV/Å,
which is compatible with hyperferroelectricity as suggested in
the previous section and in agreement with the recent results
reported in Ref. [31]. Our calculations also show that the

effect of the SOC on the energy landscape mainly affects
the anharmonic terms via ion relaxation, despite not changing
the qualitative picture.

It has come to our attention that recent experimental and
theoretical results [obtained through piezoresponse force mi-
croscopy (PFM) and phase-field modeling] and highlighted in
Refs. [29,30] have shown the presence of charged head-to-
head/tail-to-tail DWs in PGO. It has been argued that charged
DWs should not form as they would be difficult to screen:
this point of view has been justified on the grounds that the
electronic band gap of ∼3 eV is too wide to support a total
screening of the depolarization field. Moreover, while the
presence of some n- or p-type doping can be expected from,
e.g., vacancies in the system, both the valence band maximum
(VBM) and conduction band minimum (CBM) states of PGO
have been found to be localized in a recent theoretical work
[33]. This electronic localization should make the screening
of Pz at the DW by free charges coming from dopants even
more difficult on top of the large band gap. It is thus clear that
the screening originates by a different mechanism.

Following this idea, more recent PFM measurements have
been explained in terms of a complex topological pattern
consisting of bifurcated domains, so the interface bound
charge is practically zero—namely, ρ = ρz + ρxy ∼ 0 with
ρz = −∂Pz/∂z and ρxy = −∂Px/∂x − ∂Py/∂y—which would
make P divergenceless. In other words, if the variation of
the polarization along z generates a ρz charge density, this
would be readily compensated by the in-plane variations of
Px and Py. However, a nonzero hyperferroelectric polarization
in open circuit boundary conditions may be associated with
a gap closing—as also obtained for the LiBeSb and LiNbO3

compounds [64] and well-described by the simple relation
Egap(L) = Egap(0) − 2eLP(D = 0)/ε (ε being the dielectric
constant in the material, L the domain size, and Egap(0) the
bulk gap), thus providing for a complete screening of the de-
polarization field. Clearly, this is not the observed mechanism
in PGO, nevertheless populating the conduction bands may
still have a strong impact on the DW physics. For one thing,
the FE barrier is enhanced under n-doping conditions [33].
Second, the population of the localized CBM cavity states
[33] via photoexcitation or electron injection may produce an
additional increase of ∂Pz/∂z assuming the ∇ · P = 0 relation
to be topologically protected. This condition could potentially
correspond to the realization of the antiferroelectric DWs
observed under electron beams [31], despite the latter being
energetically unfavorable with respect to a sharp DW.

VI. CHIRALITY MEASURE AND PHONON
ANGULAR MOMENTUM

The phenomenon of gyrotropic switching in PGO has
been attributed to the presence of both Ge2O7 and GeO4

units within the same unit cell, a rare occurrence in crys-
tals. Neutron diffraction [65] and high-resolution transmission
electron microscopy [66] experiments support the idea that the
polarization arises as a consequence of the twist of Ge2O7

quasi-rigid units and polar motion of Pb2+ cations. As the
latter form a bridge between the bitetrahedra and the GeO4

units—via Pb–O bonds—the polar instability generates a ro-
tation of the germanate tetrahedra, which in turn plays a
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fundamental role in determining the structural chirality. The
�2 mode can be appreciated in Fig. 3, and one can indeed see
that it produces a chiral twist of the central GeO4 elements
and remove the mirror plane at z = 0.5.

A compelling theoretical inquiry centers on how individual
phonon modes within the infrared (IR) spectrum, associated
with the P3 isotropy group, contribute to the chirality and
gyrotropic switching behavior of PGO. To offer a clearer
understanding of this behavior, an appropriate metric for chi-
rality must first be established. We stress that, contrary to what
is stated in Ref. [31], the �1 mode cannot be chiral since
it is an invariant of a space group which contains a mirror
operation. Rather, and as already mentioned, we can attribute
an axial symmetry to that mode which survives the phase
transition. Given that the low-symmetry phase is polar and
chiral at the same time while the high-symmetry reference
phase is PE and achiral, the spontaneous polarization may be
a fitting metric or order parameter in this case. Therefore, one
may eventually use the mode effective charges [42,67] as a
means to probe the chirality of each phonon mode.

Nevertheless, to quantify chirality we adopt a more geo-
metric approach and thus employ the definition of continuous
chirality measure (CCM) proposed by Zabrodsky and Avnir
[35], of which we give a short description as follows. The
starting point is a chiral distribution Q of N atoms {qi}. We
define the following quantity:

χQ(G) = 100 × min
G∈Sn

[∑
i | �qi − �pi|2|∑
i | �qi − �q0|2|

]
, (2)

where �q0 is the geometric center of the reference Q struc-
ture and �pi are the unknown coordinates of a distribution P
of N points with symmetry operations given by the achiral
point group G (among the improper rotations Sn) of choice.
The P distribution can be obtained by applying the oper-
ations of G to the Q structure, as described in Ref. [35].
The structural chirality is thus calculated by searching for
the closest (distancewise) nonchiral distribution of points Pmin

which preserves the connectivity of Q and is compatible with
the symmetry operations of G. Clearly, χ (Q) = 0 if Q is
achiral. On the other hand, χ (Q) = 100 can be shown to be
the maximum possible distance with respect to the nonchiral
reference structure, which corresponds to the—unrealistic—
case of all points of P converging to �q0. It is thus realized that
the CCM is conceived to quantify the geometrical chirality of
a molecule without the foreknowledge of an eventual achiral
phase (reachable without breaking interatomic bonds). Natu-
rally, this is not the case of PGO: if we condense a �2 mode on
the PE equilibrium phase while keeping the amplitude of the
deformation small, the achiral reference must be the original
P6̄ structure, meaning that we can simply write

χ (�2) = 100 ×
∑

j

∣∣δ|ek〉
j

∣∣2∑
i(xi;FE − xC.o.M.;FE)2

≈ 100 ×
∑

j

∣∣δ|ek〉
j

∣∣2∑
i(xi;PE − xC.o.M.;PE)2

, (3)

where we assume δ
|ek〉
j to be the Cartesian deformation of

the M atom induced by the condensation of the kth polar

TABLE I. Chirality measure for the P6̄ (PE) and P3 structures.
FE (unstable) corresponds to the freezing of displacements asso-
ciated to the unstable phonon mode eigendisplacement (i.e., no
relaxation is done but the calculation is done at the lowest energy
point); I corresponds to the ion relaxation only (i.e., the cell param-
eters are not relaxed and fixed to those of the P6̄ PE reference); and
I+V corresponds to the fully relaxed case of both cell parameters and
ionic positions. χ ( Q) and �E have been computed with the spin-
orbit interaction on. The numbers between parentheses represent the
(normalized) Euclidean distance between the two phases when the
achiral �1 contribution is not subtracted.

PE FE (unstable) FE (I) FE (I+V)

χ (�2) 0.0 0.03 0.04(0.14) 0.04(0.16)
χ (Q) 0.0 / 0.04(0.55) 0.04(0.59)
�E (meV) 0.0 −13 −80 −89

eigendisplacement. Clearly, the previous expression can be
employed for phonon modes and SAMs as well, provided
that they belong to the representation with P3 isotropy space
group. We have thus calculated χ for PGO in several relax-
ation conditions, with the results reported in Table I. The
invariant distortion that comes with optimizing the FE struc-
ture must be subtracted to compute the CCM.

We can see that the CCM of the soft eigenmode is sub-
stantially unaffected by the relaxation process, although the
Euclidean distance between the two phases is about five times
bigger. This is in agreement with the existence of a strong
coupling between the soft and invariant modes and, at the
same time, of a weak overlap between the distortion and stable
eigenstates with �2 representation. While the CCM of the
analyzed chiral/polar mode is small, there are in total 171
phonon modes, many of which are also chiral. It is thus natural
that we look at the value of χ for all the phonon modes at the
� point.

The result is highlighted in Fig. 6, where we show the
mode chirality versus phonon frequency as calculated with
CCM applied on the eigendisplacement vectors. We can see

FIG. 6. Phonon mode chirality (as calculated from CCM
method) as a function of the frequency (the dashed line is a guide
to the eye and is at the amplitude of the unstable mode value). The
soft mode value is taken as a normalization reference. Only the polar
modes with �2 character are considered (modes polarized along the
z direction).
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that several high-frequency modes have a mode chirality that
is larger than the one of the unstable mode driving the phase
transition (χ > χunstable �2 ) while low-frequency modes have
the tendency to have a smaller value. Hence, even if the
unstable polar mode gives by far the largest overlap pro-
jection (〈δ|M|ξ 〉soft ∼ 0.9) onto the full distortion, the small
extra polar modes coefficients that are at play to completely
characterize the polar deformation also possess an enhanced
CCM. These strongly chiral modes are mostly associated
with oxygen atom vibrations as their lower mass makes them
contribute the most to high-frequency vibrations. Addition-
ally, and with respect to Eq. (1), we can conclude that the
equilibrium structural chirality of the FE phase of PGO is
tight to the Q2 amplitude and do not depend considerably on
the interaction between polar and invariant SAMs, unlike the
spontaneous polarization.

The high-frequency strongly chiral modes only weakly
affect the behavior of the phase transition, however, it could
be advisable to design nonequilibrium strategies to couple
those states to the polar distortion, since it would guarantee
a significant level of control on the already remarkable gy-
rotropic properties of PGO, with the possibility of realizing
a ferrochiral memory device. Recent theoretical works have
devised a mechanism based on infrared pumping to obtain fast
polarization reversal in ferrodistorted perovskites [68]. A sub-
sequent experimental verification [69] on the rhombohedral
phase of LiNbO3 has found only a partial (without reach-
ing the reversed equilibrium value) and temporary switching,
with the effect of the reversal being canceled after a tran-
sient. The reasons behind the incompleteness (only ∼40%) of
the switching has been attributed to spatial inhomogeneities,
while its cancellation—with a return to the original state after
some time after the initial pump—has been explained in terms
of coupling with other modes, not considered in Ref. [68],
and in terms of missed relaxation along the unstable phonons
orthogonal to the c axis, given the cubic nature of the high-
temperature phase of the material under consideration. Chen
et al. [70] found that it is possible to achieve a full reversal in
a rhombohedral phase cooccurring with an in-plane rotation,
but that seems to require a fine-tuning of the amplitude of the
pulse. Thus, they have proposed the realization of a complete
and permanent switching through a squeezing mechanism,
with the high- and low-symmetry phases being tetragonal
and orthorhombic, respectively. Assuming an initial Pz �= 0,
a laser pulse along the z direction is used to cancel the out-
of-plane polarization and to create in-plane polar distortions
(Fig. 2 of Ref. [70]). After that, three pulses (equally separated
by a time lag) are applied along the a, b, and, finally, c crystal
axes. The final outcome is the full and permanent reversal
of Px and Py, while Pz remains zero (Fig. 3 of Ref. [70]).
It thus appears that the xy-rotational component is a funda-
mental prerequisite to achieving fast polarization switching in
a controllable fashion in FE perovskites. On the other hand,
PGO is an uniaxial crystal and the in-plane rotation of P
is energetically unfavored. It is, hence, possible, that a fast
switching mechanism as envisioned in Ref. [68] could be
more easily realized in this system.

Given the recent surge of interest concerning structural
chirality in crystals [71], we provide a comparison between
the kind of chirality as found in PGO and that, for instance,

FIG. 7. Distribution (log scale) of the phonon angular momen-
tum along the � → K and � → A directions.

related to zone boundary modes as observed in several 2D
and 3D systems [36,37,72] with the C3 symmetry. The present
literature on the topic thus far has been focused on circularly
polarized phonon modes, which can, in fact, be triggered
by photons with the same polarization [37] and produce an
orbital magnetic moment as a result of their circular mo-
tion [73]. Since the threefold symmetry is associated with a
pseudoangular momentum [72], selection rules ensue from
its conservation. While in two dimensions the valley chirality
coincides with a local circular rotation (defined per sublattice),
in 3D such rotation is combined with a propagation along an
axis perpendicular to the rotational plane. We further point
out that 3D chiral phonons have been defined and observed
in enantiomorphic crystals [36], where the direction of the
circulation defines the space group and therefore a handedness
[71]. Instead, at � the modes are static and the system has the
symmetry of the point group. This means that the circular po-
larization of the phonons averages to zero for each mode and
that a handedness cannot be defined as in the previously men-
tioned cases. Also, no AM [74] should be expected at zone
center as a consequence of the time-reversal symmetry alone,
which is confirmed for each phonon branch by our numerical
calculations [45]. Due to the high number of bands, we find
it more practical to analyze the distribution of the AM—the
AM density of states—along the in-plane � → K (1/3,1/3,0)
and out-of-plane � → A (0,0,1/2) Brillouin zone directions as
shown in Fig. 7 (we report the full band-by-band computations
in the SM [45]). In particular, it is clear how higher values of
the AM are reached in the FE phase and, in particular, along
the c direction. Moreover, values close to 1 Ha are also more
frequently reached in the out-of-plane case of the FE phase. A
closer inspection of the band decomposition of the AM [45]
also highlights the near zone boundary (center) character of
the in-plane (out-of-plane) FE distribution, with the PE bands
behaving in a complementary way.

Therefore, and to conclude this section, the chirality of
PGO herein reported has no AM and is thus a property of
the point group itself (where polar representation is axial and
thus chiral as well) and is not associated with a specific hand-
edness. As such, it can be triggered by a linearly polarized
electric field and its tuning matches that of the spontaneous
polarization.
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VII. SUMMARY AND CONCLUSIONS

We have conducted first-principles calculations to investi-
gate various properties and the phase transition from PE to
FE states in the compound Pb5Ge3O11 (PGO). Our findings
illuminate the microscopic mechanisms underlying the polar
deformation, pinpointing a polar mode as the primary source
of instability. By calculating the Born effective charges, we
establish no significant anomalous charge transfer, suggesting
that geometric effects or lone pairs are more decisive factors.
Our data corroborate the classification of PGO as a hyperfer-
roelectric compound [31]. This conclusion is evidenced by the
persistence of the instability even under the D = 0 condition
(i.e., after accounting for LO-TO splitting). This observation
implies that domains polarized along the c axis would remain
stable despite variations in boundary conditions, ranging from
periodic (E = 0) to open circuit boundary conditions (D = 0).
Furthermore, we demonstrate that the phonon branch asso-
ciated with the soft mode remains unstable up to the zone
boundary.

Exploring the energy landscape reveals the central role of
an invariant �1 and polar �2 modes: their nonlinear coupling
bolsters the magnitude of the polarization along the z axis
and deepens the energy barrier between opposite domains.
We hypothesize that this effect—remarkable despite the rel-
atively small magnitude of the invariant distortion—may be
associated with the presence of lone pairs of Pb atoms. The
computed spontaneous polarization—either with the Berry
phase approach or the Born effective charges—is consistent
with the value found in experiments. Also, we correctly re-
produce the second-order character of the phase transition.

We further discuss the behavior of DWs based on recent
results that appeared in the literature [29,30]. Having an uni-
axial P (parallel to the z axis) means that domains can meet in
a charged head-to-head/tail-to-tail configuration, thus with a
sizable depolarization field: normally, the fulfillment of such
requirement would remove or strongly reduce the polar insta-
bility [75,76] if the DW bound charge stemming from ∂P/∂z
cannot be properly screened. However, this does not seem to
be the case for PGO since experiments do detect the formation
of domains below the critical temperature [29–31]. Therefore,
we are left with the question of how charge neutrality can
be ensured and the depolarization field screened. A recent
theoretical development suggests the formation of an in-plane
polarization, which would neutralize the bound charge associ-
ated with the P3 polar phase at the interface without needing a
free carrier (n-p) distribution. The resulting ∇ · P = 0 condi-
tion has a topological character and is associated with domain
bifurcation, observed via PFM. We further conjecture that the
topological index associated with the charge neutrality and the
recently discovered conduction cavity states [33] in PGO may
be used to control the DWs through the screening effect.

The spontaneous polarization of PGO also comes with a
gyrotropic order, primarily associated with the tilting of the
GeO4 units concerning the high symmetry configuration. We
have evaluated the chirality from CCM for the �2 phonon
modes and the relaxed distortions. It is found that structural
optimization can increase chirality as a result of the interaction
between the soft polar mode and the invariant modes. Further-
more, the calculation of the CCM associated with �2 polar
phonons shows the presence of high-frequency modes with a
chirality χ value twice as high as the value associated with
the unstable eigenstate. We argue that developing interaction
with such modes (e.g., with ultrafast laser excitations [77])
could produce unique effects in the realm of polarization
switching, with a potential increased level of control on the
gyrotropic properties of this material and with the possibility
of creating storage devices based on geometric chirality. It
would also be interesting to compute from first principles [78]
the optical activity associated with the phonon modes and the
polar distortions to have a clearer idea of the link between
chirality (as calculated through CCM) and the optical activity
in PGO. We also highlight that the AM of the polar and
chiral �2 phonons is strictly zero, in contrast with previously
reported chiral phonons that are away from zone center with
nonzero AM.

Hence, PGO is a versatile material with numerous proper-
ties of high interest for multifunctional applications embedded
into a single bulk material, yet not fully explored or exploited.
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