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Coherent control of the translational and point group symmetries of crystals with light
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We use theory and first-principles calculations to explore mechanisms for control of the translational and
point group symmetries of crystals in ultrafast optical experiments. We focus, in particular, on mechanisms
that exploit anharmonic (biquadratic) lattice couplings between a driven infrared-active phonon mode and other
modes at arbitrary wave vector, which are always allowed by symmetry in any space group. We use Floquet
theory to develop a general phase diagram depicting the various dynamical regimes accessible to materials, with
simulated dynamics to illustrate how the biquadratic coupling changes materials structures depending on both
extrinsic factors (light pulse characteristics) and intrinsic materials parameters (phonon frequencies and phonon
coupling strengths). We use our phase diagram, in conjunction with density functional theory calculations, both
to suggest experiments to reveal hidden structural order in perovskite KTaO3 and to provide additional insights
into recently reported experiments on SrTiO3 and LiNbO3.
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I. INTRODUCTION

Phase transitions in crystals are often characterized in
terms of symmetry changes. For example, structural phase
transitions, which involve some change to the symmetry of
the lattice, are ubiquitous in some classes of materials, com-
plex oxides in particular, and have been studied extensively
for many decades [1–4]. Phase transitions involving broken
time-reversal symmetry give rise to magnetic materials and
have been similarly well-studied [2,5]. In recent years, at-
tention has turned to more exotic phase transitions. Broken
rotational symmetries of the electronic states (but not seen
in the lattice) give rise to strong correlations in electronic
nematic systems [6,7]. The relative twist between layers of
stacked two-dimensional materials, such as graphene, controls
the overall point group and translational symmetry of the
system and gives rise to significant changes in the density of
states and corresponding electronic properties, depending on
the twist angle [8]. In each of these cases, detailed study of
the relevant phase transitions has revealed physical insights
and advanced our fundamental understanding of condensed
matter.

In addition to their fundamental importance, materials that
undergo phase transitions are of great practical interest be-
cause they provide opportunities for the control of functional
properties with external fields. Control of the polarization with
electric fields in ferroelectric materials is exploited in certain
types of random access memory [9]. The key component of
many sensors and actuators is a piezoelectric material [10],
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which exhibits large changes in its electrical polarization in
response to external stress [11] (and vice versa [12]). The
challenge for condensed matter and materials scientists is that
the property of interest may not always couple directly with
an external field. For example, the magnetic and electronic
properties of many ABO3 perovskites oxides (where A and
B are cations and O is oxygen) are associated with lattice
(phonon) modes that do not couple directly to external fields.
It is possible to identify mechanisms that couple these modes
by symmetry to others that are, say, electric field-controllable,
thereby giving indirect control of properties with an external
field [13–17]. However, not all materials exhibit the required
crystallographic symmetries for such mechanisms.

The development of bright mid-infrared and THz laser
sources, capable of resonantly exciting phonons in crystals,
has expanded opportunities for the control of functional prop-
erties with external fields, namely, light. One such mechanism
involves resonantly exciting an infrared (IR)-active phonon
mode of the crystal to large amplitude (QIR), which induces
quasistatic displacements of some Raman-active modes (QR)
via anharmonic coupling of the form Q2

IRQR. In these so-
called nonlinear phononics experiments, the light pulse can
induce a transition to a metastable phase with properties that
are either difficult or impossible to access in the equilibrium
structure at a given temperature, for example, metal-insulator
phase transitions [18], superconductivity [19,20], and changes
in orbital ordering [21]. In most of the experiments that have
been reported so far, the optically excited IR mode couples
to Raman modes that are also at the Brillouin zone center,
such that the induced metastable phase has the same transla-
tional symmetry as the ground-state structure. Is it possible to
identify other anharmonic lattice couplings, involving phonon
modes at nonzero wave vector, which would allow us to
dynamically stabilize phases with a translational symmetry
different to that of the parent ground-state structure?
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In this paper, we use theory and first-principles calculations
to explore and elucidate anharmonic lattice coupling path-
ways involving a zone-center IR-active mode and modes at
arbitrary wave vector, Q�q. We show that biquadratic coupling
between these modes, Q2

IRQ2
�q, which is always allowed by

symmetry in any space group, can be exploited in ultrafast
optical experiments such that resonant excitation of an IR-
active mode at the zone center can dynamically induce phases
with translational symmetry different to that of the ground
state through coupling to and condensation of modes at an
arbitrary (nonzero) wave vector. This biquadratic coupling
potentially offers an additional pathway through which the
functional properties of materials can be dynamically con-
trolled. We use classical Floquet theory to map out a general
phase diagram showing the various dynamical regimes that
may be accessed with this biquadratic coupling in modern
ultrafast optical experiments; this phase diagram is our key
result and is shown in Fig. 1. Our approach highlights how the
nonlinear phononics mechanism can be viewed as a specific
example of a more general parametric amplification process
and reveals dynamical regimes that may be missed in the
time-averaged theories commonly used to study these pro-
cesses. We show how different parts of the phase diagram can
be accessed by tuning the light polarization, frequency, and
peak electric field (extrinsic experimental parameters), and
the relative frequencies and strength of the coupling between
the pumped IR and coupled modes (determined by intrinsic
materials parameters, such as the crystal structure and chemi-
cal composition). The phase diagram thus functions as a tool
that can be used to interpret existing experiments (such as
recent work demonstrating transient—that is, not long-lasting
or deterministic—polarization switching in LiNbO3 [22]) and
to design future experiments. We use our phase diagram, in
combination with first-principles DFT calculations, to both in-
terpret the results of a recently reported experiment on SrTiO3

showing light control of translational symmetry [23] and to
suggest future experiments that can access hidden structural
order in perovskite KTaO3. We note that the various regimes
identified in the phase diagram may occur in concert with
different phonons concurrently exhibiting distinct dynamics.
We also note that previous work has focused on the coupling
between Raman and IR-active phonons by linear-quadratic
coupling [18–22,24–27], biquadratic coupling to zone-center
phonons [28,29], and direct excitation and coupling between
zone-edge phonons at the same wave vector [30]. Our paper
uses a single coherent framework to unify a broad range of dy-
namical responses of crystals, unveils additional directions for
structural control of translational and point group symmetry,
and describes the rich dynamics in contemporary experiments
involving ultrafast optical excitation of phonons.

II. THEORETICAL MODEL

A. Simple model of biquadratic coupling

We start by writing a general equation for describing the
response of a centrosymmetric crystal to resonant excitation
of an IR-active phonon mode by a short, intense mid-IR pulse.
We consider the case where the dominant dynamics induced
are those of the excited IR mode, QIR, and another mode

coupled to it at arbitrary wave vector �q, Q�q. The lattice po-
tential energy is assumed to be

U = 1
2 KIRQ2

IR + 1
2 K�qQ2

�q + DIR,�qQ2
IRQ2

�q + 1
4 D�qQ4

�q − � �P · �E ,

(1)

where KIR and K�q are the force constants of the relevant
phonon modes at harmonic order, D�q is the fourth-order force
constant for Q�q, and DIR,�q is the biquadratic coupling coef-
ficient coupling QIR and Q�q. The polarization change in the
crystal due to the electric field �E of the light pulse is given to
linear order by � �P = Z̃∗QIR, where Z̃∗ is the mode-effective
charge of the excited IR mode (as defined in Ref. [31]).
In previous work, we showed that higher-order terms in the
polarization are important for understanding changes in the
optical properties of materials due to optical excitation [32];
we ignore those terms in this paper to simplify the analysis,
and because here we are focused on understanding struc-
tural changes due to optical excitation. Also note that we
ignore explicit electron-phonon interactions—the electrons
adiabatically follow the excited phonon coordinates and the
equations of motion are classical. Recent work [33] on the
quantum theory of lattice dynamics in the presence of external
driving fields has validated this classical approach; the frame-
work developed here could also be adapted to incorporate the
quantum theory of Ref. [33].

As mentioned above, much of the previous work on non-
linear phononics has focused on systems where the excited
IR mode is coupled to Raman-active modes at the zone center
through a term of the form Q2

IRQR. Whether or not such a term
is an allowed invariant in the lattice potential is determined by
crystallographic symmetry, and hence only some materials are
candidates for nonlinear phononics experiments that exploit
this type of cubic anharmonic coupling. In addition, since the
term Q2

IRQR involves modes at the zone center only, there is
no change in the translational symmetry of the crystal upon
optical excitation. In contrast, the biquadratic term Q2

IRQ2
�q

shown in Eq. (1) is always allowed by symmetry between all
modes and in all space groups.

From a symmetry perspective, each term in the expan-
sion of Eq. (1) must be unchanged, or invariant, to all of
the symmetries of the crystal. It is a well-known result of
group theory [34,35] that the direct product of any irreducible
representation with itself contains the identity representation,
that is, it is invariant. Physical intuition also tells us that
in the expansion of the energy about equilibrium, all modes
contribute a harmonic energy component that is second order
in the mode coordinate. This observation can be extended to
arbitrary even order in all modes. Because the product of the
identity with itself is the identity, terms Q2m

1 Q2n
2 (for natural m

and n) always contain the identity representation for arbitrary
Q1 and Q2, and are therefore always allowed and invariant
under all symmetries of the crystal.

How can this biquadratic coupling be exploited for light
control of properties? By rearranging terms in Eq. (1), we see
that the effective force constant of Q�q (K̃�q) is renormalized by
the motion of the IR mode:

K̃�q = K�q + 2DIR,�qQ2
IR. (2)
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FIG. 1. Dynamical regimes accessible through biquadratic coupling between an optically pumped IR-active phonon, QIR, and a mode at
arbitrary wave vector, Q�q. The Floquet phase diagram (center) is shown as a function of the frequency ratio of the biquadratically coupled mode
(ω�q) to the excited IR mode (ωIR) versus the driving strength ε ∝ DIR,�qQ2

IR [see full definition below Eq. (6)]. The simulated dynamics, structural
changes, and schematic mechanisms are shown in the color-coordinated panels. When Q�q has a positive force constant (real frequency)
at equilibrium (top half, ω�q/ωIR > 0), trivially damped motion is expected in much of the phase diagram (I: white). For negative biquadratic
coupling (DIR,�q < 0), Q�q can be frozen in by optical excitation of an IR phonon, leading to transient structural phases (II: gray). Near ω�q/ωIR =
1, parametric oscillation of Q�q is possible (III: blue). In the purple region of the phase diagram (region IV), we imagine a high-symmetry
reference structure for the material of interest, which may be virtual, located at the saddle point (see inset). Q�q has a negative force constant
in this phase and drives a nontransient structural transition to a lower-symmetry phase. In the low-symmetry phase, Q�q can be displaced
quasistatically by optical excitation of QIR; this is the conventional nonlinear phononics effect. For positive coupling between Q�q and the IR
mode (DIR,�q > 0), the symmetry broken by Q�q can be (re)introduced into the structure (V: green), beyond which Q�q again parametrically
oscillates
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Displacing the IR mode with DIR,�q > 0 increases the force
constant K̃�q, thereby stiffening this mode. In contrast, when
DIR,�q < 0 the effective force constant K̃�q decreases. If the IR
mode displacement and the magnitude of the biquadratic cou-
pling are sufficiently large compared to the equilibrium force
constant K�q (that is, when K�q � 2|DIR,�q|Q2

IR), then Q�q will
freeze in, resulting in a new structural phase with symmetry
broken by QIR and Q�q. Exciting IR modes to large amplitude is
now possible with current bright mid-IR and THz sources, but
the IR motion is oscillatory. Can oscillatory motion of the IR
mode induce new transient structural phases via biquadratic
coupling to Q�q? In what follows, we use Floquet theory,
first-principles calculations, and dynamical simulations to un-
cover dynamical regimes accessible through the biquadratic
coupling in Eq. (1).

B. Floquet theory

Consider the equations of motion that are derived from
Eq. (1) by taking derivatives with respect to the mode coor-
dinates, QIR and Q�q. We find

Q̈IR + 2γIRQ̇IR + 1

MIR

(
KIR + 2DIR,�qQ2

�q
)
QIR = Z̃∗

MIR
E ,

Q̈�q + 2γ�qQ̇�q + 1

M�q

(
K�q + 2DIR,�qQ2

IR

)
Q�q + D�q

M�q
Q3

�q = 0. (3)

Here we define Mi (i = IR, �q) as the mode-effective mass
of the phonon. To simplify the analysis, we ignore all terms
that are higher than harmonic order except for the biquadratic
coupling and reintroduce the D�qQ4

�q term only when necessary
to guarantee a finite minimum in U with respect to Q�q. Addi-
tionally, we assume that the pumped IR mode is undamped
(γIR = 0), thereby allowing for the exploration of the long
timescale dynamics. We justify this assumption a posteriori
by numerical exploration of the dynamics, finding that our
simulated short-timescale dynamics of Q�q are comparable
to the Floquet results (which assume continuous periodic
driving).

After resonant excitation of the IR mode with a Gaussian
pulse, we find sinusoidal periodic motion for QIR of the form

QIR(t ) = 2
Z̃∗Ẽ

KIR
cos(ωIRt + φ). (4)

Here Ẽ = E0ητ fIR, where E0 is the peak electric field, τ

is the full-width at half-maximum of the electric field, fIR is
the (linear) IR frequency, and η characterizes the shape of

the pulse (for a Gaussian pulse η =
√

(π/2)3

2 ln(2) ≈ 1.67). Then
ητ fIR measures the number of cycles the IR mode is driven
by the electric field of the light pulse and the peak IR dis-
placement is QIR,0 = 2 Z̃∗Ẽ

KIR
. We neglect φ in what follows. QIR

is therefore a periodic driver for the general lattice motion.
This can be contrasted with other recent Floquet approaches,
where off-resonant periodic excitation of the electronic states
is motivating the Floquet approach and enabling access to
unique nonequilibrium phases [36–38].

Equation (4) assumes that the biquadratic coupling be-
tween QIR and Q�q is zero (DIR,�q = 0). This assumption can
be justified from a perturbation theory perspective, since Q�q is

initially characterized by small fluctuations about zero ampli-
tude. However, it obviously will not hold when Q�q is displaced
to large amplitudes. In this scenario, the force constant of the
IR mode can also be renormalized by Q�q, �KIR ≈ 2DIR,�qQ2

�q,
such that the IR mode also freezes in.

Using Eq. (4) for QIR in the second line of Eqs. (3),
rescaling time to θ = ωIRt , and collecting terms, we find the
following form:

d

dθ
x(θ ) = A(θ )x(θ ), (5)

where we have defined the vector x(θ ) = (Q�q,
d

dθ
Q�q) and

the matrix

A(θ ) =
(

0 1
−(δ + ε + εcos(2θ )) −ν

)
. (6)

The dimensionless parameters δ = 1
ω2

IR

K�q
M�q

= ω2
�q

ω2
IR

,

ε = DIR,�qQ2
IR,0/M�qω2

IR (see Appendix A for unit conversions)

and ν = 2γ�q
ωIR

measure the square-frequency ratio, the driving
strength, and effective damping for the driven mode Q�q
due to the motion of QIR, respectively. The matrix A(θ )
is periodic, with period π [that is, A(θ + π ) = A(θ )] and
therefore represents a Hill’s equation. The solutions to this
equation (which may not be analytic), as well as how they
depend on the parameters δ, ε, and ν can be obtained using
the standard techniques of Floquet theory [39,40].

Our primary interest is to find solutions to Eq. (5) that
predict exponential growth in Q�q. These represent dynamical
regimes in which optical pumping of an IR phonon induces
large-amplitude changes in Q�q, thereby driving a transient
structural phase transition that could be resolved experimen-
tally. We use the main results of our Floquet analysis to create
a phase diagram, shown in the central panel of Fig. 1, from
Eq. (5) depicting these dynamical regimes (see Appendix B
for more details).

C. First-principles calculations and dynamical simulation

To connect the Floquet theory to real materials and exper-
iments, we find parameters for Eqs. (3) and (6) using density
functional theory (DFT). Calculations were performed using
VASP 6.2.0 [41–43], using the projector augmented-wave
(PAW) method in the local-density approximation (LDA)
[44]. The following states were included in the valence of
the relevant PAW potentials: 3s23p64s1 for K, 5p65d46s1 for
Ta, 4s24p65s2 for Sr, 3s23p63d34s1 for Ti, and 2s22p4 for
O. A force convergence tolerance of 10−3 eV/Å was used
for all calculations with a 4 × 4 × 4 Monkhorst-Pack k-point
grid (for a 2 × 2 × 2 formula unit supercell of the primitive
cubic perovskite unit cell) and plane-wave energy cutoffs of
600 eV (KTaO3) and 700 eV (SrTiO3). These values were cho-
sen to converge phonon frequencies, calculated with density
functional perturbation theory [45], to within 5 cm−1 when
compared to incrementing the k-point grid to 8 × 8 × 8, and
the energy cutoff to 800 eV for both KTaO3 and SrTiO3.
Our converged cubic lattice constants for KTaO3 (3.959 Å)
and SrTiO3 (3.859 Å) are underestimated compared to the
experimental lattice constants [46–48] of 3.988 Å and 3.905
Å, respectively, as expected in LDA.
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FIG. 2. Phonon dispersion curves from our DFT calculations for KTaO3 in the cubic perovskite structure at equilibrium (left) and with the
16.7 THz IR phonon displaced along [111] with an amplitude of 25 pm in the five-atom cell (right). The IR phonon displacement splits and
softens a branch at the R point, leading to a driven instability of this mode. Modes with imaginary frequencies are depicted as having negative
frequencies.

We focus on pairs of IR modes and modes character-
ized by arbitrary wave vector that exhibit strong coupling
at biquadratic order. To find these strongly coupled mode
pairs, we calculated a series of phonon dispersion curves
for structures in which an IR-active mode has been frozen
in at varying amplitude. Modes that exhibit large changes
in their frequencies as a function of IR mode amplitude
were selected for further study. Quadratic, biquadratic, and
quartic coupling coefficients were calculated via a series
of symmetry-constrained frozen-phonon calculations. Mode-
effective charges were calculated as defined in Ref. [31],
which were found to be consistent with values obtained from
modern theory of polarization calculations [49–51] conducted
on +/−10 pm meshes of the IR-active phonons. Nonequi-
librium phonon dispersion curves were calculated with
QUANTUM ESPRESSO (plane-wave energy cutoff of 70 Ry,
8 × 8 × 8 Monkhorst-Pack k-point grid in the five-atom cubic
unit cell of KTaO3), using Garrity-Bennett-Rabe-Vanderbilt
pseudopotentials [52,53], which confirmed the qualitative fea-
tures of the induced dynamical instabilities, i.e., which modes
develop imaginary frequencies when the IR mode amplitude is
increased along a fixed polarization direction beyond a critical
amplitude. These dispersion curves (Fig. 2) were calculated
on a regular 10 × 10 × 10 q-point grid, with the inclusion of a
simple acoustic sum rule. Symmetry assignment of structural
phases and irreducible representations of phonon modes were
generated with the ISOTROPY software suite [54,55].

To explore the transient dynamics of the regions found in
the Floquet analysis with numerical simulation of Eqs. (3)
and (6), we use a Runge-Kutta 5(4) method for numerical
integration, as implemented in NumPy [56]. Simulations were
performed with Gaussian electric field pulses with duration
τ = 500 fs, varied peak electric fields (E0), IR phonon fre-
quency, and peak field time set at t = 0. First-principles
calculations of the damping parameters γIR/�q are computation-
ally expensive. As a result, we have explored the dynamics
as a function of damping parameter, ranging from 0 THz
to 1 THz, showing only selected dynamics to highlight the
response in different regions of the phase diagram. For initial
conditions, QIR is taken to be at rest long before the Gaus-
sian pulse is present, and Q�q is given an amplitude of 0.1

pm to simulate weak thermal fluctuation about the average
equilibrium value, as was previously assumed by other authors
[30,57]. Note that all parameters are included when simulating
Eqs. (3), in contrast to the numerical solution of Eq. (6), where
approximations have been made (see discussion in Sec. II B).

III. RESULTS AND DISCUSSION

A. Floquet phase diagram and dynamics

The phase diagram (center panel of Fig. 1) shows different
dynamical regimes for Q�q. The vertical axis is the ratio of
frequencies

√
δ = ω�q/ωIR, while the horizontal axis is ε, the

driving strength parameter (DIR,�qQ2
IR,0/M�qω2

IR). The sign of
the anharmonic coupling DIR,�q is an intrinsic material property
that dictates which side of the phase diagram is accessible—
positive coupling increases K̃�q (right) and negative coupling
decreases K̃�q (left).

While the Floquet analysis informs us of regions of ex-
ponential growth or decay of Q�q, it does not provide compact
analytic results of the phase boundaries or dynamics in a given
region that might inform future ultrafast experiments. We
anticipate this need and include approximate analytic results,
expressed in terms of microscopic materials parameters, in
what follows and in Appendix C.

In the subsections below, we discuss the basic physical
mechanism in each region, followed by a materials example,
and finally show the simulated dynamics of Q�q. This follows
the layout of the color-coded panels extending from the phase
diagram in Fig. 1. Where appropriate we discuss previous
theoretical and experimental work. We start with the top half
of the phase diagram where the high-symmetry equilibrium
structure is stable (

√
δ > 0).

1. Region I: Trivially damped motion

For most of the upper half of the phase diagram, trivial ex-
ponential decay is expected, suggesting that optically excited
IR modes will not induce large amplitude dynamical behavior
in Q�q. Due to the exponentially decaying response of QIR and
Q�q, a long-lived change in crystal symmetry is not expected.
Recall that the biquadratic coupling pathway is allowed for all
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modes at all wave vectors. For weak driving of an IR phonon,
our expectation is that most, or all of the coupled modes, will
be in this region. As can be seen from Fig. 1, a combination
of external and intrinsic materials parameters (ε) are needed
to move one, or several, modes into another region of the
phase diagram. We now focus on negative biquadratic cou-
pling (ε < 0) and small

√
δ where, as mentioned in Sec. II A,

a strong enough drive can decrease K̃�q such that Q�q freezes
into the structure with a nonzero amplitude (region II).

2. Region II: Access to new phases. Exponential growth
and symmetry control

Region II describes a region in which we expect Q�q to
grow exponentially, thereby inducing a transient structural
phase transition. Recent experimental work [23] has shown
that optical pumping of an IR phonon in the cubic phase of
the perovskite SrTiO3 at 135 K can induce a phonon mode that
involves rotations of the TiO6 octahedra, doubling the size of
the unit cell and changing the translational symmetry. SrTiO3

undergoes this structural phase transition with temperature at
about 110 K—optical excitation of an IR phonon effectively
increases the transition temperature. We show that, in addition
to changing the transition temperatures for structural phase
transitions, it is also possible to induce structural phases that
are not present at all in the equilibrium phase diagram with
temperature.

Taking Q�q(θ ) ∝ eμθ , with μ as a dimensionless expo-
nential growth parameter (μωIR is the dimensional growth
parameter), inserting this functional form in Eq. (5), and
neglecting the cos(2θ ) term (which is equivalent to time aver-
aging), we find the following relation:

μ2 + νμ + (δ + ε) = 0, (7)

which has the exponential growth solution
μII,+ = 1

2 (−ν +
√

ν2 − 4(δ − |ε|)) in region II. This shows
that exponential growth of Q�q in region II is affected by
damping, as well as the pulse characteristics through ε. The
phase boundary between region I and region II is defined
by μ = 0, which is solved when |ε| = δ. This result is
surprisingly independent of the damping ν, suggesting that
although damping influences the growth rate of Q�q once
in region II, it does not influence the location of the phase
boundary. Comparing this analytic result with that from the
Floquet analysis, we find that |ε| = δ is a good approximation
for the phase boundary. The analytic result works well for
small δ, i.e., when ω�q << ωIR, but may slightly underestimate
the value of ε needed to reach this regime (Supplemental
Material Fig. S1 [58]). This is attributed to neglecting the
oscillatory component of the IR motion in the development
of Eq. (7).

To find the growth rate of Q�q in terms of microscopic
parameters, we need to rescale μII,+ by ωIR to account for the
definition of dimensionless time θ = ωIRt . The growth rate
then becomes

μII,+ωIR = −γ�q +
√

γ 2
�q −

(
ω2

�q − |DIR,�q|
M�q

Q2
IR,0

)
. (8)

Note that on the phase boundary the terms in the parenthe-
ses of Eq. (8) cancel, as a result μII,+ = 0. We can express the

phase boundary in terms of microscopic parameters and pulse
characteristics to derive a threshold field, which takes the form

E0τ � 1

2

KIR

η fIRZ̃∗

√∣∣∣∣ K�q
DIR,�q

∣∣∣∣. (9)

In this analysis, if E0τ satisfies this inequality, Q�q grows
exponentially, inducing a transient structural phase that
changes the point group and translational symmetry of the
crystal.

Beyond the threshold electric field, we can approximate the
induced amplitude of Q�q and its renormalized frequency by
time-averaging Eq. (1). From this point of view, the curvature
of the average potential energy landscape is decreasing and
becoming negative with respect to Q�q. That is, a minimum in
the potential energy landscape develops beyond the threshold
electric field in which Q�q �= 0. This new minimum survives
the oscillatory 2ωIR component of the IR motion (Fig. 1,
region II). The motion of the IR phonon renormalizes both
the amplitude of Q�q,

Q∗
�q,±(QIR) = ±

√∣∣K�q + 2DIR,�q
〈
Q2

IR

〉∣∣/D�q, (10)

and its frequency,

ω∗(QIR) =
√

2
∣∣(K�q + 2DIR,�q

〈
Q2

IR

〉)∣∣/M�q, (11)

where we have explicitly shown the dependence of the new
minimum and frequency on the IR phonon amplitude.

The condensation of Q�q to nonzero amplitude modulates
the existing crystal structure with a length scale derived
from the wave vector �q. If �q = ζ−1

1
�b1 + ζ−1

2
�b2 + ζ−1

3
�b3,

where �bi define the reciprocal lattice vectors of a lattice
defined by �ai so �ai · �b j = 2πδi j , the condensation of Q�q
transiently induces a new periodicity to the crystal with
modulation vector �λ = ζ1�a1 + ζ2�a2 + ζ3�a3, where each ζi

may lead to (in)commensurability with its equilibrium lattice
vector �ai.

We now turn to the example of KTaO3, one of the few
perovskites that remains cubic (Pm3̄m space group) at all
temperatures; the 0 K phonon dispersion curve in Fig. 2
shows all modes with real frequencies. KTaO3 features three
sets of triply degenerate IR-active optical phonons and no
Raman-active phonons. As a result, new structural phases
cannot be dynamically induced by relying on the conventional
Q2

IRQR coupling. In contrast, every phonon at every wave
vector is accessible through the biquadratic coupling shown
in Eq. (1). The challenge now is to find which modes couple
most strongly to an IR active phonon with a frequency that is
accessible in a modern ultrafast optical experiment.

To answer this question, we explore modes that couple
most strongly to an IR active phonon by calculating nonequi-
librium phonon dispersion curves as a function of all IR
phonons polarized along the [100], [110], and [111] crystal-
lographic directions. The nonequilibrium phonon dispersion
curves for the highest frequency (16.7 THz) IR-active phonon
displaced along the [111] direction, which we will use as a
representative example, are shown in Fig. 2. As the amplitude
of the IR phonon increases, we see a branch split at the R
point, with one mode softening and becoming unstable, that
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TABLE I. Characteristics of the high-frequency IR mode (QIR)
and biquadratically coupled R-point modes (Q�q) in the cubic phase
of KTaO3 from our DFT calculations needed to realize dynamical
regimes in regions II and III. The IR mode is polarized along [111]
in region II and along [100] in region III. In region III, the excited
IR mode and Q�q are very strongly coupled and DIR,�q varies from
10–20 eV/Å4, depending on the precise amplitudes of QIR and Q�q
used to calculate it. We used DIR,�q = 10 eV/Å4 for our dynamical
simulations. The units of reduced mass are in atomic mass units, u.

Q�q

Quantity QIR Region II Region III

Frequency f (THz) 16.73 3.98 15.19
Force constant K (eV/Å2) 18.36 1.04 15.16
Reduced mass M (u) 16.03 16.00 16.06
Mode-effective Z̃∗ (e−) 13.03
charge
Biquadratic DIR,�q (eV/Å4) −1.12 10.00
coupling

is, its frequency becomes imaginary (or its force constant
becomes negative). Inspection of the displacement pattern
and symmetry of this mode shows that it is an out-of-phase
octahedral tilt (transforming as the irreducible representation
R+

4 ) about the [111] axis (region II of Fig. 1). Octahedral tilts
are common structural distortions in perovskites [1,59] but are
not present in KTaO3 at any temperature. Here we show that a
transient structural phase of KTaO3 involving octahedral tilts
can be induced by biquadratic coupling to an optically excited
IR-active phonon.

Since the mode that freezes in is at the Brillouin zone edge
and has wave vector qR = 2π

a ( 1
2 , 1

2 , 1
2 ) (where a is the cubic

lattice parameter), the unit cell of the cubic phase is doubled to
accommodate the octahedral tilt pattern. The transient unit cell
lattice parameters (�a′

i) are given by �a′
1 = �a2 + �a3, �a′

2 = �a1 +
�a3, and �a′

3 = �a1 + �a2, where the unprimed quantities denote
the equilibrium lattice parameters and �a1 = �a2 = �a3 since
KTaO3 is cubic at equilibrium. This shows that light-induced
structural phases can change the translational symmetry of
crystals on ultrafast timescales. In Sec. III B, we show that
the changes to point group and translational symmetry are
polarization dependent, allowing for unprecedented control of
crystalline symmetry.

Using the DFT-derived parameters in Table I, we can esti-
mate the critical electric field [Eq. (9)] needed to enter region
II of the phase diagram and induce a new structural phase in
cubic KTaO3. For a 500 fs Gaussian electric field pulse with
16.7 THz carrier frequency, we find a threshold field of 4.8
MV/cm. We note that this value ignores Fresnel reflection,
higher-order anharmonicities, and damping.

We explore the dynamics for the excitation of the 16.7 THz
IR active phonon polarized along the [111] direction as a func-
tion of peak electric field in the region II panel inset of Fig. 1.
The frequency ratio (

√
δ = 0.24) of the two phonons involved

places us on the gray arrow originating on the vertical axis
in the phase diagram and pointing into the gray region. A
peak electric field of 3.7 MV/cm (ε = −0.033) is not strong
enough to overcome the intrinsic restoring force such that any

transient motion imparted on Q�q is damped away, hence the
amplitude of Q�q is zero. That is, the threshold from region I to
region II is not crossed. By increasing the peak electric field
to 5.3 MV/cm (ε = −0.066), just beyond the critical field,
a new energy minimum develops for Q�q at Q∗

�q,+ [Eq. (10)].
Because the critical condition has just been reached, the effec-
tive potential is shallow and the new resonant frequency ω∗
[Eq. (11)] is small. Increasing the peak electric field further
to 6.4 MV/cm (ε = −0.099) further establishes the region
II behavior. The renormalized frequency ω∗ has increased as
expected, the location of the new energy minimum (Q∗

�q,+) is
at a larger amplitude, and the enhanced growth rate (μII,+)
towards the new phase is visually apparent. This is a conse-
quence of the field-dependent growth rate in Eq. (8), giving
access to the new structural phase ≈0.5 ps earlier compared
to the 5.3 MV/cm peak electric field. We expect the threshold
values of E0τ [Eq. (9)] to be accessible with current mid-IR
laser sources at 16.7 THz [60,61].

3. Region III: Parametric oscillation

In the previous section, driving an IR-active phonon con-
densed a single phonon, Q�q, transiently altering the crystal
symmetry. In complex crystals, there are many modes of
arbitrary wave vectors, all of which are accessible to the
biquadratic coupling. As a result, we expect the dynamical
response of the crystal to resonant IR-phonon drive to be
rich with complex dynamical motion on many length scales
involving many phonons. In this section, we show that para-
metrically driven oscillatory motion of other Q�q’s is also
expected, adding a complexity of unexplored timescales and
microscopic motion to the dynamical response of the crystal.

We highlight the parametric oscillation of Q�q through the
optical excitation of an IR-active phonon in the upper right
of the phase diagram (positive ε, blue region). Near ε = 0,
this region grows from δ = 1, the oscillatory component of
the driver is twice the fundamental frequency of Q�q [cosine
term in Eq. (6)], and additional solutions exist for δ = n2

(see Supplemental Material Sec. S2). This suggests that re-
gion III describes parametric oscillation of Q�q. We therefore
expect rapidly growing oscillatory motion of Q�q in this region.
Derivation of an approximate phase boundary, exponential
growth rate, and the effect of intrinsic damping are included
in Appendix C, following standard approaches to solutions in
dynamical systems [62]. To give a quantitative example of
the parametric oscillation process, we return to KTaO3 and
look for positive biquadratic coupling. We identify strong pos-
itive biquadratic coupling between the 16.7 THz IR phonon,
now polarized along the [100] direction, and a phonon at the
M point of the Brillouin zone that transforms like the irre-
ducible representation M−

3 with frequency 15.2 THz (Fig. 1,
region III, structural changes); the parameters we used for
our dynamical simulations, calculated from first principles,
are shown in Table I. The frequency ratio (

√
δ = 0.91) of the

two phonons places us on the blue arrow originating from the
vertical axis of the phase diagram, near the phase boundary. At
this frequency ratio, parametric oscillation of the M−

3 phonon
is expected when 0.11 < ε < 0.34 [Eq. (C2)], correspond-
ing to peak electric fields between 2.3 MV/cm < E0 < 4.0
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MV/cm. This is consistent with the simulated dynamics in
Fig. 1, region III, which we will now discuss.

For E0 = 2.2 MV/cm (ε = 0.10), the amplitude of Q�q ap-
pears identical to the horizontal axis in the structural dynamics
panel of Fig. 1, region III. That is, the dynamics are those of
region I.

For E0 = 3.3 MV/cm (ε = 0.23), we see large amplifica-
tion of the M−

3 phonon which grows over ≈1 ps. The large
amplification of Q�q is due to the oscillation of its effective
potential through QIR. This parametric oscillation mechanism
is shown schematically in Fig. 1, region III. The effective
potential oscillates at a frequency of 2ωIR as a result of the
IR phonon drive, stiffening the potential through the positive
DIR,�q (negative DIR,�q would soften the potential). A half-cycle
of Q�q motion is shown in four steps, with Q�q starting at the
apex of a cycle. During the first step (1), Q�q falls toward
the static equilibrium point as the potential softens to its
time-averaged value [Eq. (2)]. In the second step (2), Q�q’s
kinetic energy allows it to move beyond the equilibrium point
as the potential continues to soften to its undriven value. In
the third step (3), Q�q begins losing kinetic energy while the
potential stiffens back to the time-averaged value. In the final
step (4), Q�q reaches the height of its half-cycle motion as the
potential stiffens back to its apex. QIR’s effect on the potential
increases the amplitude of Q�q with each half cycle of motion,
as expected in a parametric oscillation process. The growth
in Q�q then decays back to zero amplitude due to the back
action on QIR. That is, QIR is transiently driven with a finite
amount of energy; as Q�q grows in amplitude it must gain
energy from QIR, thereby decreasing the overall amplitude of
the IR mode. Additionally, as the amplitude of Q�q grows, the
frequency of QIR will be modified via the biquadratic cou-
pling, tuning the frequency ratio

√
δ away from region III [see

the 2DIR,�qQ2
�q term in Eq. (3)]. This suggests that other changes

in the IR phonon frequency or amplitude, e.g., through other
anharmonic couplings, have a similar detrimental effect on the
parametric oscillation process.

For E0 = 4.4 MV/cm (ε = 0.41), we are again in a trivial
region of the phase diagram where excitation of QIR has a
negligible effect on the amplitude of Q�q. This is because the
effective frequency of Q�q (due to QIR) is driven out of sync
with the oscillation in its potential energy landscape. This
conversely explains why amplification was not seen for the
E0 = 2.2 MV/cm case—the effective frequency of Q�q was
not driven high enough to sync up with QIR.

Since the parametric oscillation process is general, we ex-
pect many modes to parametrically oscillate for a large enough
drive, the effects of which we expect will be seen in structure
factor analysis of diffuse scattering following IR excitation.
That being said, parametric oscillation processes and the
phase boundary between region I and region III are sensitive
to damping (Appendix C). As a result, the experimental ob-
servation of parametric oscillation between the modes used in
this illustrative example, even with the large coupling between
them, may be hindered by damping.

Theoretical proposals for parametric oscillation have been
explored between zone-center phonons [57,63], as well as
recent experimental work showing phonon-driven parametric
oscillation of Josephson plasma polaritons in YBa2Cu3O6+x

[64]. Another experimental work proposed parametric

oscillation of an IR-active phonon through nonlinear (in
QIR) contributions to the polarizability as an explanation for
IR-resonant enhancement of the reflectivity in the Rest-
strahlen band in SiC [65]; we have ignored the nonlinear
polarizability contribution to the dynamics in this paper, al-
though this would certainly be an interesting path to pursue
for future work.

What happens in crystals where a structural mode is al-
ready present in the equilibrium phase? We now consider the
lower half of the phase diagram (imaginary

√
δ), and look at

region IV to show that the conventional nonlinear phononics
response may be activated by the condensation of a mode
responsible for the structural phase transition.

4. Region IV: Conventional nonlinear phononics

We now briefly consider region IV in the lower half of
the phase diagram in Fig. 1. This region corresponds to the
conventional nonlinear phononics effect, which has been the
focus of many previous studies [18,20,24–26,66].

For this region, and in the lower part of the phase diagram
generally, it is helpful to consider some (possibly virtual)
high-symmetry reference phase of the material of interest.
In this phase, Q�q has a negative force constant (K�q < 0) and√

δ is imaginary. The Floquet analysis predicts exponential
growth of Q�q even in the absence of an excited IR phonon
(ε = 0) because Q�q is independently unstable and induces
a nontransient structural phase transition. The symmetry of
the reference phase is lowered by Q�q such that Q�q becomes
fully symmetric (transforms like the identical representation)
in the new structural phase. It is therefore Raman-active
about its new minimum and described by a new mode QR

(that is, Q�q → Q∗
�q,±(0) + QR). The biquadratic coupling term

between an IR-active mode and Q�q in the high-symmetry
phase transforms into two lower-order terms describing a
renormalization of the IR force constant of the form KIR →
KIR + (2DIR,�qQ∗

�q,±(0)2), and a new linear-quadratic coupling
is created of the form AQ2

IRQR [where A = 2DIR,�qQ∗
�q,±(0)].

When an IR phonon is excited in the low-symmetry phase,
it will exert a unidirectional force on other modes coupled
to it through the AQ2

IRQR term and the QR modes will be
unidirectionally displaced from their equilibrium amplitudes.
The sign of the biquadratic coupling parameter DIR,�q dictates
the direction in which QR will be displaced: For DIR,�q < 0
(Fig. 1, left side of region IV), QR is pushed away from the
saddle point (the amplitude of QR increases compared to its
equilibrium value), whereas for DIR,�q > 0, QR is pushed to-
wards the saddle point (the amplitude of QR decreases relative
to its equilibrium value). Since QR is fully symmetric as men-
tioned above, unidirectional displacements in this region do
not change the crystal point group or translational symmetry
[67]. We will return to this point in region V, where symmetry
can be restored by driving QIR.

We focus our theoretical development of this region on
SrTiO3, which has been studied in several recent nonlin-
ear phononics experiments [68,69]. Our development here is
intended to demonstrate conceptual features of the Floquet
phase diagram, with a detailed description saved for a future
publication.
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TABLE II. Characteristics of the IR mode (QIR) and biquadrati-
cally coupled R-point mode (Q�q) in the cubic phase of SrTiO3 from
our DFT calculations needed to realize dynamical regimes in regions
VI and V. The IR mode is polarized along [110] in region VI and
along [001] in region V. The units of reduced mass are in atomic
mass units, u.

Q�q

Quantity QIR Region IV Region V

Frequency f (THz) 5.15 2.68i 2.68i
Force constant K (eV/Å2) 6.25 −0.47 −0.47
Reduced mass M (u) 57.60 16.00 16.00
Mode-effective Z̃∗ (e−) 11.90
charge
Biquadratic DIR,�q (eV/Å4) −0.29 0.85
coupling

To explore the dynamics and connect with the theoretical
development of Secs. II A and II B, we first calculate the
parameters for Eq. (1) by considering an IR-active phonon
at 5.15 THz in the cubic phase of SrTiO3, which we take as
our high-symmetry reference phase (see Table II). We again
consider coupling to a mode with R+

4 symmetry, which corre-
sponds to an out-of-phase tilt of the TiO6 octahedra [70]. As
mentioned in Sec. III A2, this mode drives a structural phase
transition in SrTiO3 at about 110 K to a phase with I4/mcm
symmetry. Hence, in the cubic phase at 0 K, this octahedral
tilt mode has an imaginary frequency, 2.68i THz. For this
particular mode pairing,

√
δ = 0.52i, which places us in a

region represented by the purple arrow originating from the
vertical axis in Fig. 1, region IV.

We perform our simulations in a structural phase in which
the octahedral tilt mode has frozen in to the cubic structure
to produce the low-symmetry (low temperature) tetragonal
I4/mcm phase. In this phase, the octahedral tilt mode has an
equilibrium amplitude of −72 pm from our DFT calculations
and we denote it as QR (the negative amplitude signifies the
left minimum of the double-well potential in Fig. 1, region
IV). The triply degenerate IR phonon at 5.15 THz in the cubic
phase is split in the tetragonal phase into a mode polarized
along the axis about which the octahedra rotate (5.54 THz
from our calculations), and a doubly degenerate mode po-
larized along the in-plane direction, perpendicular to the axis
about which the octahedra rotate (5.04 THz). In this section,
we focus on this latter set of modes.

Excitation of an IR phonon polarized along the in-plane
direction quasi-statically displaces QR away from the saddle
point shown in the region IV inset in Fig. 1; that is, the
amplitude of QR transiently increases. As the peak electric
field increases from 5 MV/cm to 7 MV/cm and 9 MV/cm,
the amplitude increases to −85 pm, −97 pm, and −112 pm
(corresponding to an ε of −0.11, −0.22, −0.37).

In this section, we have shown that the conventional
nonlinear phononics effect can be incorporated into a more
general parametric amplification framework that is enabled
by biquadratic coupling between modes in a proximal higher
symmetry parent phase that is either real or virtual. In the
next section, we go one step further and show that higher

symmetry phases may be stabilized through IR-active phonon
drive.

5. Region: (Re)Introducing symmetry

In this final section, we show that crystal phases of prox-
imal high-symmetry parent phases can be stabilized in the
transient response to IR-phonon drive, (re)introducing sym-
metry elements into the transient crystal structure.

For this region, it is again helpful to consider some high-
symmetry reference phase of the material of interest, as in
the discussion of region IV. In this reference phase, Q�q has
a negative force constant (K�q < 0) and

√
δ is imaginary—

the high-symmetry reference structure is a saddle point of
the energy. With DIR,�q > 0 and a sufficient drive ε, Floquet
theory predicts exponential decay of Q�q. That is, Floquet the-
ory predicts the high-symmetry reference phase is stable for
large enough IR-active phonon drive, essentially stabilizing
a saddle point of the energy landscape. The negative K̃�q is
overcome and made positive by the driven oscillating potential
through the large amplitude IR-active phonon motion and
biquadratic coupling. This is the phonon counterpart to the
classic rigid pendulum problem where driving its pivot point
periodically can stabilize the inverted solution [71,72].

Mathematically, the results are identical to those found in
Sec. III A 2, but both δ and ε have changed signs. Rather than
making K̃�q negative by driving the IR mode, K̃�q starts negative
and is driven to a positive value, collapsing the time-averaged
double well back to a stable single well. The phase boundary
is therefore defined by, in analogy to the discussion below
Eq. (7), ε = |δ|. In this way, the minima associated with
Q∗

�q,±(0) have moved to zero, restoring a higher-symmetry
crystal configuration by reintroducing the symmetry elements
of Q�q.

To illustrate this point, we focus on the out-of-plane polar-
ized IR mode in SrTiO3 at 5.54 THz mentioned in Sec. III A 4.
In contrast to the in-plane excitation, the sign of the bi-
quadratic coupling is positive and therefore ε > 0 (Table II).
Exciting this phonon pushes the octahedral tilts (QR) from
their starting amplitude of −72 pm towards zero amplitude.
For ε = 0.21 (E0 = 4.0 MV/cm), the response is still of the
conventional nonlinear phononics type. That is, the amplitude
of QR changes but the point group and translation symmetry
of the crystal is preserved. For ε = 0.65 (E0 = 7.0 MV/cm),
we cross over the phase boundary from region IV to region V,
and the point group and translational symmetry elements are
reintroduced so the average transient structure appears cubic
(Pm3̄m, space group No. 221).

In the transient response, as QIR dissipates energy, it even-
tually becomes unable to sustain QR about the cubic structure.
When this happens, QR will fall back into either of the
double-well minima (Fig. 1, region V). We expect that, in
experiments, this process will depend sensitively on details of
the pulse characteristics, damping, initial conditions, and the
boundary of the illuminated region of the crystal [22,73,74].
This suggests that with these approximations, deterministic
switching from one double-well minimum to another is not
possible by this pathway. This was pointed out in a recent
study where a multipulse sequence was needed to switch the
polarization of KNbO3 [75], and may partly explain the lack
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of switching and transient recovery of polarization seen in an
IR phonon pumped experiment in LiNbO3 [22] (as pointed
out in Refs. [73,74]).

For large enough drive, another phase boundary is crossed
to the parametric oscillation regime (region III). In the tran-
sient response, to cross to the parametric oscillation regime,
the trajectory must pass through region V. That is, the transient
response will first be stabilized in the high-symmetry structure
before the mode parametrically oscillates. This is shown in
the simulated dynamics of Fig. 1, region V for ε = 0.93
and E0 = 8.4 MV/cm. Increasing ε further will traverse an
alternating series of phase boundaries of reintroducing sym-
metry and parametric oscillation regimes, though we expect
this to be largely inaccessible in experiments due to the pres-
ence of other anharmonicity or destruction/melting of the
crystal.

B. Mode- and polarization-selective response

In the development of the paper presented so far, it is
implicit that the response is frequency dependent. That is,
the choice of IR phonon to excite, along with its polariza-
tion, may strongly affect the resulting transient structural
phase transition. In this section, we illustrate the mode- and
polarization-selective features of the lattice response by fo-
cusing on region II of the phase diagram for KTaO3 and
SrTiO3. For KTaO3, we can estimate the critical fields needed
to induce new structural phases since the cubic phase is stable
in DFT. For SrTiO3, since the cubic phase is unstable in
DFT (there are phonon modes with imaginary frequencies),
we report only the new structural phases induced, which we
expect to be relevant to experiments just above the structural
phase transition temperature of 110 K. We note that a general
exploration of the polarization dependence for all regions is
possible with ab initio techniques, but quite computation-
ally expensive due to the enormous number of anharmonic
pathways allowed. This is particularly true for region III,
where phonons at all frequencies and all wave vectors may be
involved.

In both KTaO3 and SrTiO3, and in perovskite materials
in general, the most common structural instabilities are as-
sociated with the R+

4 and M+
3 zone-edge phonons, that is,

these modes often appear with imaginary frequencies in the
cubic phase (readily calculated using DFT) and often drive
structural phase transitions. The displacement patterns for
these phonons represent out-of-phase (R+

4 ), and in-phase
(M+

3 ) octahedral tilts of the TaO6 or TiO6 octahedra about the
cubic crystallographic axes.

It is convenient to introduce a notation favored in the com-
plex oxide community, after Glazer [76,77], which describes
the in-phase (+) and out-of-phase (−) octahedral tilts as a
list about the cubic-crystallographic axes. In the example de-
scribed in Fig. 1 for region II, the equilibrium state of KTaO3

is described by the label a0a0a0, indicating that the a, b, and c
lattice constants are all equal and that there are no octahedral
tilts about any crystallographic axis. The octahedral tilt pattern
induced in region II (associated with the R+

4 [111] phonon of
the cubic phase) following excitation of an IR phonon polar-
ized along the [111]-direction is labeled a−a−a−, signifying
that the octahedral tilts about each crystallographic axes are

all out-of-phase with respect to each other but are of the same
amplitude. The octahedral tilt patterns in KTaO3 associated
with transient structural phase transitions following excitation
of various IR-active phonons polarized along the [100], [110],
and [111] directions are shown in Table III (Table IV for
SrTiO3). The entries shown represent the first modes that
develop negative force constants (imaginary frequencies) with
respect to an increase in amplitude of a given IR mode (see
Fig. 2). We expect that polarization directions between the
principal crystallographic axes will give octahedral tilt pat-
terns between those listed in Table III, e.g., for a 16.7 THz
pulse polarized between [111] and [110], we expect an octa-
hedral tilt pattern of a−a−b−, which corresponds to the C2/c
(C2h) space group. Note that for the [100] direction, the two
directions of Q�q shown in Tables III and IV have the same
energy decrease in DFT, so either direction or both directions
may be seen in experiments.

Depending on the polarization direction, although the octa-
hedral tilts dominate the induced Q�q structural change, other
structural distortions may be present, including strain (Sup-
plemental Material Sec. S3). We find that other structural
distortions associated with A-site and B-site motion and de-
formation of the oxygen octahedra tend to be small compared
to the octahedral tilt components of the motion (Supplemenal
Material Sec. S4).

We speculate that the strong coupling between IR phonons
and octahedral tilt modes is a consequence of the geometric
network of bonds in both KTaO3 and SrTiO3, and is likely
general to perovskites. To illustrate this, consider the 16.7 THz
IR phonon polarized along [100] direction in KTaO3, where
at the critical field, the shortest time-averaged Ta–O bond is
along the polarization direction and its length has decreased
by ≈ ±10% (≈ ±20 pm). This shortest Ta–O bond is ener-
getically unfavorable. Rotating the octahedra by displacing
the A5 symmetry Q�q mode (Table III) accommodates this
unfavorable condition by increasing the length of this Ta−O
bond towards its equilibrium value (Supplemental Material
Fig. S5).

IV. SUMMARY AND CONCLUSIONS

We have used a combination of first-principles DFT cal-
culations and Floquet theory to develop a phase diagram
depicting the various dynamical regimes accessible to mate-
rials given ultrafast optical excitation of an IR-active phonon
biquadratically coupled to another mode at an arbitrary wave
vector. We have shown that crystal point group and transla-
tional symmetries may be introduced or removed via various
mechanisms, depending on which dynamical regime is ac-
cessed in a given experiment. Our phase diagram is intended
to frame theoretical and experimental work in the nonlinear
phononics field where the transient response of the crys-
tal may approach the Floquet regime, as justified by our
dynamical simulations with parameters derived from first-
principles calculations. Although we have ignored damping
of the IR phonon in this paper, we note that the inclusion of
damping will quantitatively alter some of our results. That
is, for a given IR-active phonon, larger peak electric fields
and/or pulse durations may be needed to observe the desired
effect.
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TABLE III. Induced instabilities (region II) in KTaO3 for resonant excitation of IR-active phonons polarized along different directions
from our DFT calculations. Within a half cycle of the IR-active phonon, the space group symmetry is lowered (third column). As the
IR-active phonon rings, Q�q condenses into the crystal, further lowering the space group symmetry (fifth column), altering the point group
and translational symmetry of the crystal. Q�q, labeled by the irreducible representation (Irrep) in the space group induced by the IR-active
phonon excitation (fourth column), is primarily associated with TaO6 octahedral tilt patterns (sixth column), but may also include other subtle
distortions (Supplemental Material Sec. S4). The space group induced by the octahedral tilts alone is given in the seventh column. The critical
electric field needed to condense Q�q for a 500 fs duration Gaussian electric field pulse is given in the last column. For the 5.5 THz IR phonon
polarized along the [110] direction, our calculations suggest that higher-order lattice anharmonicity may be needed to describe the condensation
of Q�q.

Frequency
(THz)

Polarization
direction

Space group
induced by QIR

Irrep of Q�q in
space group

induced by QIR

Space group
induced by
QIR + Q�q

Octahedral tilt
pattern

Space group
induced by

octahedral tilt
Critical field

(MV/cm)

16.7 A5(a,0) Ima2 (C2v) a0b−b− Imma (D2h) 4.5
5.5 [100] P4mm (C4v) or or or or 18.0
3.3 A5(a,a) Fmm2 (C2v) a0a0b− I4/mcm (D4h) 1.8
16.7 T4 Ima2 (C2v) a0a0b− I4/mcm (D4h) 4.6
5.5 [110] Amm2 (C2v) Y4 Pmc21 (C2v) a0a0b+ P4/mbm (D4h) 11.6
3.3 T4 Ima2 (C2v) a0a0b− I4/mcm (D4h) 2.3
16.7 4.8
5.5 [111] R3m (C3v) T2 R3c (C3v) a−a−a− R3̄c (D3d ) 15.1
3.3 2.8

As an example of point group and translational symmetry
control, we have shown that in the perovskite KTaO3, which is
cubic at all temperatures at equilibrium, zone-edge octahedral
tilts can be induced by coupling to an optically excited IR
phonon, revealing a hidden structural phase. The explored
polarization dependence of this phenomenon suggests that
octahedral tilt modes (and potentially other kinds of structural
distortion patterns) can be precisely controlled with light.
We expect that the susceptibility of a given material to this
kind of control is tied to the frequency of Q�q, with lower
frequency ω�q modes more likely to induce transient structural
phase transitions. Accompanying this lowering in symmetry,
we expect other phonons to be amplified to large oscillatory

motion through parametric oscillation. Resolving this motion
experimentally will require measuring the structural response
of the crystal on multiple timescales using, for example, ul-
trafast IR pump/diffuse x-ray scattering probes. Furthermore,
our results suggest that continued development of tunable
lasers spanning the 1 THz–20 THz spectral range will enable
further exploration of the structural and functional response
of crystals to light. Experimentally probing the vastness of re-
ciprocal space in pump-probe or stroboscopic time-dependent
x-ray scattering experiments is a substantial technological
challenge. We, therefore, expect first-principles techniques to
be pertinent for predicting which modes at arbitrary wave
vector will be sensitive to IR-active phonon excitation.

TABLE IV. Transiently induced structural phases (region II) in SrTiO3 for resonant excitation of IR-active phonons polarized along
different directions. Since the cubic phase of SrTiO3 is dynamically unstable at 0 K in DFT, we only report the predicted structural phases,
assuming that the critical field can be controlled by proximity to the 110 K phase transition temperature. Within a half cycle of the IR-active
phonon, the space group symmetry is lowered (third column). As the excited IR-active phonon rings, Q�q freezes into the crystal, further
lowering the space group symmetry (fifth column), altering the point group and translational symmetry of the crystal. Q�q, labeled by the
irreducible representation (Irrep) in the space group induced by the IR-active phonon excitation (fourth column), is primarily associated with
TiO6 octahedral tilt patterns (sixth column), but may also include other subtle distortions (Supplement Sec. S4). The space group induced by
the octahedral tilts alone is given in the seventh column.

Frequency
(THz)

Polarization
direction

Space group
induced by QIR

Irrep of Q�q in
space group

induced by QIR

Space group
induced by
QIR + Q�q

Octahedral tilt
pattern

Space group
induced by

octahedral tilt

16.8 A5(a,0) Ima2 (C2v) a0b−b− Imma (D2h)
5.2 [100] P4mm (C4v) or or or or
1.9 A5(a,a) Fmm2 (C2v) a0a0b− I4/mcm (D4h)
16.8
5.2 [110] Amm2 (C2v) T4 Ima2 (C2v) a0a0b− I4/mcm (D4h)
1.9
16.8
5.2 [111] R3m (C3v) T2 R3c (C3v) a−a−a− R3̄c (D3d )
1.9
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Finally, we note that in the development of the Floquet
phase diagram in Fig. 1, we have focused on coupling between
the driven IR-active phonon and other phonons, however, the
form of Eq. (1) is general. That is, replacing Q�q with an
arbitrary order parameter describing, for example, magnetism
or orbital order, preserves the symmetries of the model. The
approach here is therefore general and can be applied to un-
derstand any IR-phonon-driven phase change.
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APPENDIX A: ε UNIT CONVERSION

The proper unit conversions are required for ε to be a di-
mensionless quantity. ε, when simplified and written in terms
of pulse characteristics and microscopic parameters,

ε =
( η

π

)2 DIR,�qZ̃∗2τ 2E2
0

M�qK2
IR

, (A1)

where ( η

π
)2 is a dimensionless coefficient and η is defined

by the pulse shape [see below Eq. (4)]. Given the following
choice of units for the other terms: DIR,�q (eV/Å4), Z̃∗ (e−),
τ (ps), E0 (MV/cm), M�q [u (atomic mass units)], and KIR

(eV/Å2), a scale factor of 0.9648533 is needed.

APPENDIX B: CONSTRUCTING THE FLOQUET
PHASE DIAGRAM

To construct the phase diagram for the dynamical response
described by Eq. (5), we recall the main results of Floquet
theory [39,40].

The fundamental solutions of Eq. (5) are of the form
xi(θ ) = λ

θ/π
i pi(θ ), where pi(θ ) = pi(θ + π ) shares the pe-

riodicity of A(θ ) and λi are the so-called characteristic
multipliers. This shows that solutions are generally peri-
odic in time and may grow or decay exponentially. The
λi are found numerically by integrating Eq. (5) over one
period, given a set of linearly independent initial condi-
tions X (θ0) = (x1(θ0), x2(θ0), ..., xN (θ0)). The transformation
matrix B = X (θ0)−1X (θ0 + π ) is diagonalized to find its
eigenvalues—the characteristic multipliers λi. Three scenarios
are possible: |λi| > 1 corresponding to exponential growth,
|λi| < 1 corresponding to exponential decay, and |λi| = 1 cor-
responding to stability of the ith solution. Therefore, |λi| =
1 define phase boundaries between regions of exponential
growth and decay.

We numerically integrate Eq. (6) from θ ∈ [0, π ] for a
mesh of δ, ε, and ν with initial conditions x1(0) = (1, 0)
and x2(0) = (0, 1). x1(0) corresponds to a physical scenario
where at θ = 0, Q�q is displaced but its velocity Q̇�q is zero.
Conversely, x2(0) corresponds to a scenario where at θ = 0,
Q�q = 0 and the velocity is nonzero. The eigenvalues of the

transformation matrix B define the characteristic multipliers,
which are analyzed to construct the phase boundaries (|λ| =
1) and regions of exponential growth (|λ| > 1) and decay
(|λ| < 1) in Q�q.

APPENDIX C: PARAMETRIC OSCILLATION DERIVATION

In this Appendix, we derive expressions for the approx-
imate phase boundary, exponential growth rate, and peak
growth rate including the effects of damping for parametric
oscillation in region III. We anticipate that these expressions
will be useful in future experimental work exploring this phe-
nomenon.

To accommodate the exponential growth predicted by the
Floquet analysis and the expected periodic motion, we assume
a solution of the form Q�q = A(τ )cos(τ ) + B(τ )sin(τ ). Insert-
ing this ansatz into Eq. (5), we find for the exponential growth
parameters A and B,

d

dτ

(
A
B

)

= 1

2

[
0 −1 + (δ + ε) − ε/2

1 − (δ + ε) − ε/2 0

](
A
B

)
,

(C1)

where Ä and B̈ have been neglected in the spirit of the slowly
varying envelope approximation [78]. We have also neglected
high-harmonic terms and damping to find this form. Equa-
tion (C1) has exponential solutions with their growth rate
found by solving for the eigenvalues of the matrix on the right-
hand side. We find μV,± = ± 1

2

√
(ε/2)2 − (1 − (δ + ε))2,

where μV,+ gives rise to exponential growth. The phase
boundary is again identified by setting μ = 0. We find the
following conditions for the phase boundary:(ε

2

)2
� (1 − (δ + ε))2,

2

3
(1 − δ) � ε � 2(1 − δ). (C2)

The maximum exponential growth is found at ε∗ = 4
3 (1 −

δ), with a growth rate of μ(ε∗) = |1−δ|
2
√

3
.

To account for the effect of damping, we assume the stan-
dard result from damped oscillators Q�q ∝ e

ν
2 τ , so exponential

growth is only expected when μV,+ is greater than ν
2 . This

alters Eq. (C2) so the phase boundary is defined by

ε � 4
3

(
(1 − δν ) − 1

2

√
(1 − δν )2 − 3ν2

)
,

ε � 4
3

(
(1 − δν ) + 1

2

√
(1 − δν )2 − 3ν2

)
. (C3)

Here δν = δ − ν2/4 accounts for the frequency shift im-
parted by the damping. This relation requires |1 − δν | �

√
3ν

and |ε| � 2ν for exponential growth. That is, there is a range
of ω�q near ωIR that will not exhibit parametric oscillation
and a larger drive ε is needed to overcome the damping for
ω�q outside this range. The decrease in size of region III is
taken up by regions I and V (Fig. S2). The phase boundaries
between region V and regions I and IV represents the only
phase boundaries in Fig. 1 sensitive to damping of Q�q.
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