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Backscattering of topologically protected helical edge states by line defects
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The quantization of conductance in the presence of nonmagnetic point defects is a consequence of topological
protection and the spin-momentum locking of helical edge states in two-dimensional topological insulators.
This protection ensures the absence of backscattering of helical edge modes in the quantum Hall phase of the
system. However, in this paper, we focus on exploring an approach to spoil such conductance quantization.
We propose that a linear arrangement of (nonmagnetic) on-site impurities can effectively cause deviations from
the conductance quantization of the edge states in the Kane-Mele model. To investigate this phenomenon, we
consider an armchair ribbon containing a line defect spanning its width. Utilizing the tight-binding model and
nonequilibrium Green’s function method, we calculate the transmission coefficient of the system. Our results
reveal a suppression of conductance at energies near the lower edge of the bulk gap for positive on-site potentials.
To further comprehend this behavior, we perform analytical calculations and discuss the formation of an impurity
channel. This channel arises due to the overlap of in-gap bound states, linking the bottom edge of the ribbon to
its top edge, consequently facilitating backscattering. Our explanation is supported by the analysis of the local
density of states at sites near the position of impurities.
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I. INTRODUCTION

The emergence of two-dimensional (2D) topological insu-
lators (TIs) has revolutionized the field of condensed matter
physics by introducing a fascinating phenomenon known as
bulk-boundary correspondence [1]. This principle dictates the
existence of metallic gap states that are confined to the one-
dimensional (1D) edges of the material. These edge states
exhibit a distinct property of spin polarization, where the
spin of an electron becomes rigidly coupled to its momen-
tum. The intriguing consequence of this phenomenon is that
electrons traveling along the edge exhibit remarkable immu-
nity to backscattering caused by nonmagnetic defects, leading
to conductance quantization. This phenomenon is known as
topological edge state protection and lies at the heart of the
celebrated quantum spin Hall effect [1–3].

The study of topological protection in 2D TIs raises a
crucial question concerning the mechanisms that can lift this
protection. This issue holds a dual significance. Firstly, it
pertains to the puzzling deviations from conductance quanti-
zation observed in experiments on 2D TIs [4–6], necessitating
a deeper understanding of the underlying mechanisms that
induce the lifting of protection [7–9]. Secondly, in many
practical scenarios, the ability to control and manipulate edge
states becomes paramount [10–16]. Depending on the spe-
cific device and application, there arises a need to modulate
or suppress these edge states, underscoring the importance
of comprehending the mechanisms behind the lifting of
protection.

*msn.amini@sci.ui.ac.ir
†mo.soltani@sci.ui.ac.ir

So far, numerous proposals have been put forth to explain
the mechanisms behind the lifting of topological protection
and the subsequent occurrence of backscattering in 2D TIs.
Possible sources of backscattering include mechanisms that
violate time-reversal symmetry, such as the influence of an
external magnetic field [17], the presence of charge puddles
[18], the interaction with embedded nuclear spins [19,20],
coupling to phonons [21], and the impact of electromagnetic
noise [22]. However, a more direct and controllable approach
for lifting topological protection is achieved through tunneling
between opposite edges of a 2D TI [14–16,23–26], which
enables the coupling of electrons moving in one direction with
their counterparts of the same spin orientation on the opposing
edge. As a result, a small gap is opened at the Fermi level [27],
and more significantly, a channel for electron backscattering
is created without the need to break time-reversal symmetry.
A potential scenario for achieving this condition involves the
creation of spatially extended defects within a 2D TI, which
can be engineered through methods such as nanopatterning or
the introduction of specific line defects in the atomic lattice
[28].

Recently, a promising achievement in the observation of
edge coupling due to the presence of an extended linear defect
in a 2D TI is reported experimentally [29]. In this experimen-
tal study, bismuthene, which serves as a prototypical 2D TI,
is utilized. Interestingly, it is observed that narrow constric-
tions spontaneously manifest themselves within the material
in the form of line defects. By employing scanning tunnel-
ing microscopy/spectroscopy (STM/STS) measurements and
analyzing the local density of states (LDOS), it has been
discovered that the presence of the line defect leads to a spatial
overlap of the edge states localized along both edges of the
line defect. This spatial overlap induces a phenomenon known
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as hybridization, which involves the mixing of the edge states
from each edge [29]. As a consequence of this hybridization,
interedge scattering occurs, giving rise to a gap in the energy
spectrum. The presence of this gap creates a channel through
which back scattering can take place.

In this paper, we introduce a mechanism for the disruption
of conductance quantization in 2D TIs. Our proposed mecha-
nism involves the application of line defects, which results in
the breakdown of conductance quantization without the need
for direct coupling of edge states. Importantly, this breakdown
occurs without the opening of a gap in the energy spectrum.
In this paper, we focus on a 2D TI ribbon that contains a
line of on-site impurities (line defect) along its longitudinal
direction. Our objective is to investigate the robustness of
the transport properties of the system using the nonequilib-
rium Green’s function formalism [30]. By employing this
framework, we aim to gain insights into how the presence of
line defects affects the transport characteristics of the 2D TI
ribbon. Utilizing a combination of numerical simulations and
analytical calculations, we have discovered that the presence
of the on-site potential plays a crucial role in the emergence
of quasi-1D bound states along the line defect in the 2D TI
ribbon. Due to the topological features of the system, the
energy of the bound states remains within the gap region
[31,32]. The overlap of the resulting bound states gives rise to
the formation of an additional band leading to the intriguing
phenomenon of transforming the line defect into a quantum
wire that facilitates the transportation of current across the
width of the ribbon. Moreover, the presence of the line defect
introduces a mechanism for backscattering, which affects the
transport properties of the system. Our findings shed light on
the intricate interplay between on-site potential, line defects,
and the transport behavior in 2D TI ribbons, offering insights
into the manipulation and control of quantum states in these
systems.

The rest of the paper is organized as follows. In Sec. II,
we provide a comprehensive description of the model system
under consideration and outline the methodology employed
to study the transmission through this system. Moving to
Sec. III, we present the results obtained from our quantum
transport study of the system in the presence of the line de-
fect. We thoroughly discuss the mechanism responsible for
the breakdown of topological protection through analytical
calculations, elucidating the formation of the impurity channel
resulting from bound states in the bulk gap region. Finally, in
Sec. IV, we conclude our findings.

II. MODEL AND METHOD

A. Model

In this section, we present a setup designed to investigate
the transport properties of a 2D TI ribbon with an embed-
ded line defect. Our device consists of two conducting leads
that enclose a scattering region, as depicted in Fig. 1. The
scattering region includes a line of sites with defects, which
are visually represented by distinct colors in Fig. 1. As it is
shown, we consider a 2D honeycomb lattice with armchair
edges along the x direction. To emulate the transport through
an infinitely long ribbon in the x direction, the ribbon under

FIG. 1. Schematic representation of a two-terminal device with
an infinitely long Kane-Mele ribbon with armchair boundaries con-
nected to macroscopic leads on the left and right sides. The scattering
region contains a line defect of on-site impurities arranged in a zigzag
chain across the width of the ribbon (yellow circles surrounded by
dashed orange rectangle). The sign of νi j for the spin-orbit coupling
term is shown in the scattering region. The width of the ribbon is
W = 6 armchair chains.

consideration in this model has a finite width W in the y di-
rection. To achieve this, two semi-infinite leads are connected
to the central region, as illustrated in Fig. 1. The Hamiltonian
governing the scattering region as well as the conducting leads
in the tight-binding approximation is expressed as [33,34]

HKM = t
∑

〈i, j〉,α
c†

iαc jα + iλSO

∑
〈〈i, j〉〉,αβ

vi jc
†
iαsz

αβc jβ + H.c.

(1)

This Hamiltonian consists of several terms. The first term
corresponds to the nearest-neighbor (NN) hopping with am-
plitude t , where c†

iα (ciα ) denotes the creation (annihilation)
operator for an electron with spin α at site i. The summation
〈i, j〉 runs over all the NN sites. The second term represents
the intrinsic spin-orbit coupling (SOC) with coupling strength
λSO between next-NN (NNN) sites. The summation 〈〈i, j〉〉 in
the index indicates that it runs over all pairs of NNN sites,
and the Pauli matrices s = (sx, sy, sz ) are associated with the
physical spins. The factor vi j = di×d j

|di×d j | = ±1 in the second
term depends on the hopping path between NNN sites i and
j. It is determined by the cross-product of the vectors di and
d j connecting the NNN sites and takes values of ±1 as shown
in Fig. 1. The term H.c. represents the Hermitian conjugate of
the previous terms.

To introduce a line of noninteracting impurities, we in-
corporate a zigzag chain of sites spanning across the width
of the ribbon in the scattering region. These sites possess an
additional on-site potential V , creating a line defect indicated
by a red rectangle in Fig. 1. The corresponding Hamiltonian
for this line defect can be written as follows:

HLD = V
∑

i∈LD,α

c†
iαciα. (2)
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B. Method

We employ the nonequilibrium Green’s function formalism
to investigate the electronic transport properties of our system
[30]. This approach allows us to analyze the flow of electrons
and calculate quantities such as the transmission coefficient
and conductance. The transmission coefficient (τ ) at zero
temperature within this formalism can be computed using the
Landauer-Buttiker formula, given by

τ (E ) = Tr[�L(E )Gr (E )�R(E )Ga(E )]. (3)

In this context, the retarded Green’s function in the site repre-
sentation, denoted as Gr (E ), is given by Gr (E ) = [E − HC −
�R(E ) − �L(E )]−1, where HC = HKM + HLD represents the
Hamiltonian of the scattering region, which incorporates the
influence of the line defect. Similarly, the advanced Green’s
function, denoted as Ga(E ), is defined as the Hermitian conju-
gate of Gr (E ), i.e., Ga(E ) = [Gr (E )]†. The self-energy terms
�R(L) correspond to the embedding self-energy, which relies
on the retarded contact Green’s functions and the coupling
between the leads R(L) and the central (scattering) region. The
right and left linewidth functions, denoted as �R(L)(E ), can be
expressed as �R(L)(E ) = i{�R(L) − [�R(L)]†}.

III. RESULTS AND DISCUSSION

In this section, we analyze the electronic transport prop-
erties of the structure mentioned above. In our calculations,
we take the NN hopping amplitude t as the energy unit.
Additionally, we set the width of the ribbon to be W = 30,
a value chosen to be sufficiently large to avoid coupling of
edge states [27] and fix λSO = 0.2t . To numerically calculate
the transmission coefficients τ (E ), we will utilize the PYQULA

library [35].

A. Breakdown of the conductance quantization

To begin, let us examine the band structure of the pristine
system (V = 0), which is illustrated in Fig. 2(a). As expected,
the band structure displays a bulk band gap of approximately
	 = 6

√
3λSO [33,34], along with the presence of edge bands

near the gap region. The corresponding transmission coeffi-
cient τ (E ) for the edge states is depicted by the blue lines in
Fig. 2(b). Notably, in the vicinity of the gap region, the trans-
mission coefficient of the edge states is τ (E ) = 1, indicating
their protected nature.

However, when we introduce a line defect with V �= 0,
the situation becomes significantly different. Our calculations
reveal that, for V = 1.0t , the transmission coefficient of the
edge states is suppressed for energies near the bottom of
the bulk bands (E ∼ −0.9t). As a consequence, this induces
backscattering of the associated edge states, ultimately lead-
ing to the breakdown of conductance quantization for these
states. In the subsequent analysis, we will delve into the un-
derlying reasons for this intriguing phenomenon.

B. Analysis of the impurity channel formation

In this subsection, we will demonstrate that the deviations
from quantization of the edge states transmission in the pres-
ence of the line defect can be attributed to the formation of an

FIG. 2. (a) Electronic band structure of the pristine Kane-Mele
model on a ribbon with armchair terminations and a width of
W = 30. The spin-orbit coupling strength is λSO = 0.2t . (b) The
corresponding zero-temperature transmission coefficient τ (E ) as a
function of energy for both absence (V = 0) and presence (V = 1.0)
of the line defect in the scattering region. The transmission coeffi-
cient curve demonstrates the quantization plateaus in the absence of
the line defect, indicating topological protection, and the suppressed
transmission regions caused by the line defect, leading to dips in the
transmission coefficient curve. Two specific energy points with large
and small suppression are highlighted at E = −0.88t and −0.68t ,
respectively.

additional channel that connects the top edge of the ribbon to
the bottom edge. Figure 3 provides a schematic representation
of the transmission of helical electrons through the newly in-
duced channel created across the line defect in the y direction.
This channel facilitates the backscattering of electrons in the
x direction. To address this phenomenon analytically, we will
examine the in-gap impurity states, which play a crucial role
in the creation of this conducting channel. To achieve this, we
will begin by analyzing the in-gap impurity states of a Su-
Schrieffer-Heeger (SSH) [36] model. Subsequently, we will
extend and generalize these findings to our Kane-Mele ribbon.
By studying the SSH model first, we can gain insights into
the formation of in-gap impurity states, which will provide a
foundation for our analysis of the behavior of the Kane-Mele
ribbon in the presence of a line defect.

1. In-gap impurity state in the SSH model

In this section, we investigate an SSH chain with an on-site
impurity, as depicted in Fig. 4. The SSH chain consists of two
nonequivalent sites, labeled A and B, within each periodic cell.
The Hamiltonian of the system is given by the sum of two

FIG. 3. Illustration of the mechanism enabling the backscattering
of helical edge states that are initially moving in the x direction. It
does so by utilizing the induced impurity channel created due to the
presence of the line defect in the y direction.
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FIG. 4. The geometry of a Su-Schrieffer-Heeger (SSH) chain
with two types of sublattices, labeled as A and B. The unit cell of the
chain is enclosed by a dashed rectangle, and the intracell and intercell
hopping amplitudes are represented by t1 and t2, respectively.

terms, the SSH term and the impurity term, expressed as

H = HSSH + Himpurity, (4)

where

HSSH =
∑

i

t1a†
i bi + t2b†

i ai+1 + H.c., (5)

and

Himpurity = V b†
0b0. (6)

Here, a†
i (ai+1) and b†

i (bi ) are the creation (annihilation) oper-
ators at the corresponding sites in the unit cell, with different
coupling amplitudes denoted as t1 and t2 for the intracell and
intercell couplings, respectively. The parameter V represents
the strength of the on-site impurity potential, which is consid-
ered to be located at site i = 0.

Let us begin by considering the case of the clean system,
where V = 0. We are primarily interested in the bulk prop-
erties of the system, which implies considering a sufficiently
long chain [37]. To analyze the bulk properties of the system
in momentum space, we apply the Fourier transformation to
the SSH term HSSH of Eq. (5), leading to the corresponding
momentum-space Hamiltonian:

HSSH(k) =
∑

k

[a†
k b†

k][h(k)]

[
ak

bk

]
, (7)

where

h(k) =
[

0 t1 + t2eik

t1 + t2e−ik 0

]
= [t1 + t2 cos(k)]σx + [t2 sin(k)]σy. (8)

In the above equation, σx and σy represent the Pauli matrices.
Now the energy spectrum of h(k) can be obtained by calculat-
ing its eigenvalues, which are given by

E±(k) = ±
√

t2
1 + t2

2 + 2t1t2 cos k. (9)

As a result, the energy gap between the two energy bands is
given by

Eg = 2|t2 − t1|. (10)

In this model, when the intercell hopping parameter (t1)
is smaller than the intracell hopping parameter (t2), the chain
exhibits a dimerized pattern, leading to a topologically non-
trivial phase characterized by a winding number (W ) of 1
[37]. Conversely, when t1 > t2, the chain becomes uniform,
resulting in a trivial phase with W = 0. We will now focus on
the topologically nontrivial phase where t2 > t1 and attempt to
find the end modes, also known as edge states, which satisfy

the Schrödinger equation HSSH|ψedge〉 = 0. Due to the chiral
symmetry of the system, the corresponding edge state can
be expressed in such a way that it has support on only one
sublattice [37], for example, sublattice A. Therefore, we have
〈0|bi|ψedge〉 = 0, and the solution of the zero-energy eigen-
state can be expressed as

|ψedge〉 =
∑

i

ψA
i a†

i |0〉 =
∑

i

(
− t1

t2

)i

ψA
1 a†

i |0〉, (11)

where the coefficient ψA
1 can be determined using the normal-

ization condition as (ψA
1 )2 = 1 − ( t1

t2
)2.

Now let us consider the case where V �= 0. We aim to
demonstrate that the presence of an on-site impurity poten-
tial induces a bound state with energy Es in the gap region
−Eg/2 < Es < Eg/2. To achieve this, we assume that the im-
purity is located on a B site, as depicted in Fig. 4. We begin
by making an initial assumption about the form of the wave
function associated with such an in-gap bound state as

|ψs〉 = ∣∣ψ r
A

〉 + ∣∣ψ l
A

〉 + |ψB〉. (12)

Here, |ψ r
A〉 and |ψ l

A〉 represent the contributions involving
solely the A sublattice sites on the right and left sides, respec-
tively, while |ψB〉 denotes the contribution involving solely the
B sublattice sites and are defined as∣∣ψ r

A

〉 =
∑
i>0

ψ
Ar
i a†

i |0〉 =
∑
i>0

ψ
Ar
1 (−α)ia†

i |0〉,
∣∣ψ l

A

〉 =
∑
i�0

ψ
Al
i a†

i |0〉 =
∑
i�0

ψ
Al
0 (−α)ia†

i |0〉,

|ψB〉 =
∑

i

ψB
i b†

i |0〉 =
∑

i

ψB
0 | − α|ib†

i |0〉, (13)

where ψ
Ar (Al )
j and ψB

j represent the amplitudes of the wave
function on the jth site of sublattice A on the right (left) side
of the impurity and on sublattice B, respectively. Indeed, the
reason for considering two distinct parts, |ψ r

A〉 and |ψ l
A〉, in

the case of the A sublattice components is due to the lack of
symmetry in the wave function on the left and right sides of
the impurity. The impurity introduces an asymmetry in the
system, leading to different contributions from the A sublattice
sites on each side. This asymmetry does not impact the B
sublattice sites, as they remain invariant under the inversion
symmetry relative to the location of the impurity. Therefore,
to accurately describe the behavior of the wave function, we
need to consider separate components for only the A sublat-
tice sites on the right and left sides of the impurity, along
with symmetric components for the B sublattice sites. Sub-
sequently, we insert this assumed solution into the equation:

H|ψs〉 = (HSSH + Himpurity)|ψs〉 = Es|ψs〉, (14)

enabling us to solve for the coefficients that render the equa-
tion valid. These considerations lead to the following set of
equations for the amplitudes of the wave function:

t1ψ
Al
0 + t2ψ

Ar
1 = (Es − V )ψB

0 ,

(t2 − αt1)ψB
0 = Esψ

Ar
1 ,

(t1 − αt2)ψAr
1 = −αEsψ

B
0 ,
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FIG. 5. Graphical representation of the solutions to the equa-
tion set in Eq. (16). In (a), we observe the variation of the bound state
energy Es (measured in units of t) as a function of the impurity po-
tential V/t for a single impurity located on the Su-Schrieffer-Heeger
(SSH) chain with t2/t1 = 0.5. Notably, for extremely large values
of the on-site potential, the bound state energy tends to zero, which
aligns with the energy of the edge states in the system. (b) illustrates
the corresponding coefficient α, as defined in the equation set in
Eq. (13).

(t1 − αt2)ψB
0 = Esψ

Al
0 ,

(t2 − αt1)ψAl
0 = −αEsψ

B
0 . (15)

In addition to the three unknown amplitudes of the wave
function ψ

Al
0 , ψ

Ar
1 , and ψB

0 , we have two additional unknown
quantities, namely, Es and α. Before starting to solve this
set of equations, it is noteworthy that altering the hopping
amplitudes t1 and t2 interchangeably, along with switching the
r and l labels of the components of the wave functions, does
not alter the form of the equations in Eq. (15). Such invariants
in the equations are expected due to the symmetry properties
of the system and only hold when we consider symmetric
components of the wave functions on sites belonging to sub-
lattice B, as discussed earlier. To determine E and α, we need
to solve the set of five equations. However, our main interest
lies in finding Es and α directly. Therefore, we can eliminate
the other three unknowns from the equations through some al-
gebraic manipulations, resulting in the following expressions:

t1T1 + t2T2 = Es(Es − V ),

T1T2 = −αE2
s . (16)

Here, we have defined T1 = t1 − αt2 and T2 = t2 − αt1. By
solving these two equations, we can obtain the desired values
of Es and α. This set of equations has two sets of solutions: one
with Es inside the gap region and the other with Es outside.
The first set exhibits the following structure:

Es = −

√√√√V 2

2
+ t2

1 + t2
2 −

√
V 4 + 4V 2t2

1 + 4V 2t2
2 + 16t2

1 t2
2

2
,

(17)

and

α = −V 2

2 + V Es +
√

V 4+4V 2t2
1 +4V 2t2

2 +16t2
1 t2

2

2

2t1t2
, (18)

which is shown graphically in Fig. 5. As shown, regardless of
the strength of the impurity potential V , a bound state emerges
within the energy gap. For extremely large values of V (V →

FIG. 6. Schematic representation of the two-leg ladder model,
obtained through a dimensional reduction procedure outlined in
Ref. [38], for the Kane-Mele ribbon. The unit cell of the model
consists of four sites (labeled a, b, c, and d) denoted by a dashed
rectangle, forming a plaquette. Following the analogy with the Su-
Schrieffer-Heeger (SSH) chain, each plaquette is divided into two
blocks, A and B, shown by dotted lines, with each block containing
two sites. The hopping parameters t ′′(ky ) and −t ′′(ky ) are indicated
by solid and dashed vectors, respectively, and are defined as t ′′(ky ) =
2λSO sin( ky

2 ).

∞), the energy of the bound state approaches zero (Es/t1 →
0), and the value of α converges to t2

t1
. As we decrease the

impurity strength V , the energy of the bound state gradu-
ally decreases until it eventually merges with the bulk states
at V = 0.

2. Generalization of the analysis for the Kane-Mele ribbon
embedded with a line defect

We can extend the previous calculations to the case of a
Kane-Mele ribbon with a line defect along the y direction,
as illustrated in Fig. 1. To simplify the analysis, we assume
that the ribbon is wide enough along the y direction so that
the momentum ky can be treated as a good quantum number.
This assumption allows us to employ the method and notation
introduced in Ref. [38], where the Kane-Mele Hamiltonian
of Eq. (1) is mapped onto a two-leg ladder system with a
generalized SSH Hamiltonian in the ky space, HKM(ky) =
H0(ky) + H1(ky). In this ladder model, the unit cell consists
of a plaquette composed of four sites, denoted as a, b, c, and d .
To establish an analogy with the SSH chain, we label the sites
a and b as block A and the sites c and d as block B, as depicted
in Fig. 6. In this notation, the transformed Hamiltonian for
the ladder system consists of two terms H0(ky) and H1(ky).
Here, H0(ky) represents a zero-energy flat band, while H1(ky)
is responsible for the dispersion of the edge band. To proceed,
we first aim to obtain the impurity bound state for the ladder
system in the absence of H1(ky). A schematic representation
of this ladder system is depicted in Fig. 6, and we can write
the Hamiltonian H0(ky) as follows [27]:

H0(ky) =
∑

n

[a†
nb†

n ]̂t1

[
cn

dn

]
+

∑
n

[c†
nd†

n ]̂t2

[
an+1

bn+1

]
+ H.c.,

(19)

where

t̂1 =
[

t −t ′(ky)

t ′(ky) 0

]
, (20)
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t̂2 =
[

0 t ′(ky)

−t ′(ky) t

]
, (21)

where t ′(ky) = 2λSO sin( ky

2 ) and the summation on n runs over
all the plaquettes in the ladder model.

In the presence of the line defect, the Hamiltonian given
by Eq. (2) alters the on-site potential of the corresponding
block of the ladder system (based on the location of the
defected zigzag chain) to the on-site energy V . For instance,
in Fig. 6, the line defect is shown on block B of the nth pla-
quette. Thus, there exists an analogy between the SSH ladder
and SSH chain, and we can derive the corresponding set of
equations given in Eq. (15) for the ladder system by simply
replacing the wave function amplitudes in the SSH chain

model as two-component vectors. That is, |ψAr 〉 = [
ψar

ψbr
],

|ψAl 〉 = [
ψal

ψbl
], and |ψB〉 = [

ψc

ψd ]. This immediately results in

the following set of equations:

t̂†
1

[
ψ

al
0

ψ
bl
0

]
+ t̂2

[
ψ

ar
1

ψ
br
1

]
= (Es − V )

[
ψc

0

ψd
0

]
,

(̂t†
2 − α̂t1)

[
ψc

0

ψd
0

]
= Es

[
ψ

ar
1

ψ
br
1

]
,

(̂t†
1 − α̂t2)

[
ψ

ar
1

ψ
br
1

]
= −αEs

[
ψc

0

ψd
0

]
,

(̂t1 − α̂t†
2 )

[
ψc

0

ψd
0

]
= Es

[
ψ

al
0

ψ
bl
0

]
,

(̂t2 − α̂t†
1 )

[
ψ

al
0

ψ
bl
0

]
= −αEs

[
ψc

0

ψd
0

]
. (22)

By the same token, this will allow us to obtain the un-
known quantities Es(ky) and α(ky) through the solution of the
following equations:

t̂†
1 T̂1 + t̂2T̂2 = Es(Es − V )̂I,

T̂1T̂ †
2 = −αE2

s Î, (23)

where T̂1 = t̂†
2 − α̂t1 and T̂2 = t̂†

1 − α̂t2. By applying the same
approach, we can determine the solution set for the aforemen-
tioned equations and identify the solution within the energy
gap as

Es = −
√

V 2

2
+ t2 + 2t ′2 −

√
V 4 + 4V 2t2 + 8V 2t ′2 + 16t ′4

2
,

(24)

and

α = −
V 2

2 − V Es −
√

V 4+4V 2t2+8V 2t ′2+16t ′4

2

2t ′2 . (25)

The derived expression for the energy of bound states in
Eq. (24) explicitly depends on the wave number ky and intro-
duces an extra energy band within the gap region, as visually

FIG. 7. Visual representation of the doubly degenerate disper-
sion relation of the impurity band described in Eq. (24). This band
is formed through the overlapping of bound states emerging within
the gap region of the armchair Kane-Mele model, where the on-site
potential is V = 1.0t and λSO = 0.2t . The unperturbed impurity band
is depicted in red, while the perturbed impurity band is shown in
black, and the edge bands have not been shown to avoid confusion.

represented in Fig. 7 which is highlighted in red. This observa-
tion indicates the formation of an impurity band [39], which
leads to the creation of an impurity channel responsible for
the coupling between the top and bottom edges of the ribbon.
Lastly, it is worth mentioning that the impurity band derived
from Eq. (24) exhibits a twofold energy degeneracy. To re-
solve this twofold energy degeneracy, one should consider
the effect of H1(ky). To address this twofold energy degen-
eracy, it is necessary to consider the influence of H1(ky). This
can be achieved by applying first-order perturbation theory,
following the approach outlined in Ref. [38]. However, the
resulting energy dispersion is too intricate to be presented
analytically; we will illustrate the final results numerically in
Fig. 7. The splitting of the twofold degeneracy for the case
of λSO = 0.2t and V = 1.0t is visually presented in Fig. 7.
We have highlighted these in-gap impurity bands using black
colors for clarity. The edge bands are not shown in the plot
to avoid confusion and better focus on the behavior of the
impurity bands.

Before closing this subsection, it is important to note that
the variations seen in the conductance quantization of edge
transport in the inverted quantum-well junctions, as reported
in Refs. [40,41], differ from our observations. In our case,
there is no shift in the local band structure; instead, an ad-
ditional band is formed which is responsible for the resulting
backscattering of the edge modes.

C. Impurity channel analysis

Another approach to comprehend the formation of the im-
purity channel is by investigating the LDOS at energies where
topological protection is broken. By analyzing the LDOS,
which is related to the matrix elements of the retarded Green’s
function as ρi(E ) = − 1

π
Im[〈i|Gr (E )|i〉], we can gain insights

into how the presence of the impurity potential affects the
electronic states in real space and leads to the emergence
of the impurity channel. Figure 8 displays the spatial dis-
tribution of the LDOS for the scattering region depicted in
Fig. 1 near the line defects at energies specified in Fig. 2.
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(a) (b) (c)

FIG. 8. Spatial profiles of the local density of states on sites
adjacent to the line defect at energies specified in Fig. 2. The scat-
tering region is a Kane-Mele ribbon (depicted in Fig. 1) with a
width of W = 26 and spin-orbit coupling λSO = 0.2t that hosts a
line defect with on-site potential strength V = 1.0t . (a) Local density
of states (LDOS) at energy E/t = −0.88 with complete suppression
of the transmission coefficient. (b) LDOS at energy E/t = −0.68
with partial suppression of the transmission coefficient. (c) LDOS at
E/t = 0.0 with an unchanged transmission coefficient.

We are interested in the energies near the lower gap edge
where the presence of line defects has a visible impact. As
before, we consider the parameters λSO = 0.2t and V = 1.0t
for our calculations. These values remain consistent with our
previous analysis and investigations of the behavior of the
system in the presence of the line defect. Specifically, Fig. 8(a)
illustrates the LDOS map at a specific energy value of E/t =
−0.88, showcasing a complete suppression of transmission,
indicating the formation of the impurity channel. Addition-
ally, Fig. 8(b) depicts the LDOS at E/t = −0.68, where the
transmission is not entirely suppressed, however, due to the
presence of the impurity channel connecting the top and bot-
tom edges of the ribbon partial backscattering existence. For
comparison, Fig. 8(c) shows the LDOS at E/t = 0.0, which

exclusively displays only the presence of edge states (without
formation of any impurity channel), as anticipated. These
results provide valuable insights into the impact of the line
defect on the transmission of the edge states and the formation
of the impurity channel in the system.

IV. CONCLUDING REMARKS

In summary, we have conducted an investigation into the
effects of a line defect, characterized by on-site impurities
arranged in a zigzag chain that connects the top and bottom
edges of the Kane-Mele armchair ribbon. Our findings re-
veal that the presence of this line defect significantly disrupts
the conductance quantization of the edge states, resulting
in the backscattering of helical electrons. Consequently, the
conductance of the system becomes lower than that of the
pristine ribbon. To understand the mechanism underlying this
backscattering phenomenon, we analyzed the bound states
that emerge within the gap region of the system. Our analysis
showed that, due to the overlap of localized wave functions
around the impurities, an additional impurity band forms
within the gap region. The primary outcome of this paper is
the identification of the role of the line defect in inducing
an impurity channel that spans the width of the ribbon. This
impurity channel effectively facilitates the backscattering of
helical electrons, leading to a suppression of quantized trans-
mission within specific energy windows.
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