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Effects of rotation on a phononic crystal operated in whispering gallery modes
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In this paper, the effects of rotation on a phononic crystal (PnC) operated in whispering-gallery modes
(WGMs) are investigated for the first time. According to the results of a finite element method, the vibration
pattern of the WGMs under the action of rotation will undergo a linear precession with the integral of rotation,
which agrees with the theoretical models. In addition, the precession of WGMs will linearly induce a phase
difference between the transmissive waves with a fixed phase gain. The difference displacement is utilized to
characterize the effects of rotation on the transmissive wave, showing periodicity, linearity, and directionality
as theoretical predictions. These findings offer a rate-integrating scheme to sense rotation and have promising
applications, especially in high-performance SAW gyroscopes.
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I. INTRODUCTION

Due to their distinguished capability of artificially ma-
nipulating acoustic/elastic waves, phononic crystals (PnCs)
possess numerous promising applications such as sensing
[1–4], waveguides [5–7], filters [8,9], energy harvesting
[10,11], vibration reduction [12,13], and acousto-optic cou-
pling [14,15]. Especially, the solid media-based PnCs that
control elastic waves like bulk waves [16], surface acoustic
waves (SAW, Rayleigh waves [17,18], Lamb waves [19–22],
and Love waves [23]) are receiving increasing interest for
the potential in high-performance MEMS devices. Among
these solid media-based PnCs, one prominent structure is pe-
riodic hollow pillars on substrate with plentiful related works
reported. Jin et al. [24–26] demonstrated the existence of
whispering gallery modes (WGMs) in the hollow-pillar PnCs,
and numerically studied their multiplexing properties. Exper-
imentally, Yuan et al. [27] reported the guiding achievements
and emphasized the role played by WGMs of the hollow
pillars. Subsequently, Muhammad et al. [28] studied the inter-
action of WGMs with Rayleigh waves, and they investigated
the wave multiplexing phenomena for all types of waveguides.
Unlike the solid pillars that are common to adopt, hollow
pillars feature high-Q localized WGMs and interaction with
SAWs both of Lamb and Rayleigh waves, hence allowing for
high-performance guiding, filtering and sensing.

In fact, the WGMs in PnCs are very similar to the work-
ing modes of hemispherical resonance gyroscopes (HRGs)
[29–31], which are of the highest accuracy and the best
overall performance among the Coriolis vibration gyroscopes.
Therefore it is conceivable that the WGMs in PnCs may be
affected by rotation, and in turn, the PnCs operated in WGMs
may sense the rotation. And this rotation sensing based on
SAWs features extremely impact resistant(even 2e5g) [32,33],
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which is particularly meaningful in extreme working environ-
ments (e.g., rocket launch, ammunition penetration, oil field
drilling). However, current efforts on PnCs operated in WGMs
are all focused on functional devices such as waveguides and
filters, and have not addressed the role of rotation.

In this paper, we investigate the effects of rotation on
the PnC operated in WGMs, especially on the point-defect
PnC. Both the frequency-domain and time-domain results are
calculated with the finite element method (FEM, COMSOL

MULTIPHYSICS).The contents are arranged into five sections. In
Sec. II, the properties of the WGMs in a unit cell are studied.
In Sec. III, the effects of rotation on the WGMs and the
transmissive waves of a point-defect PnC are demonstrated.
In Sec. IV, we further discuss the application of findings on
SAW gyroscopes. Finally, we conclude this paper in Sec. V.

II. UNIT CELLS UNDER ROTATION

A hollow pillar with square plate is considered as the
unit cell of the PnCs. The hollow pillar makes the localized
modes of WGMs access, and the extra layer between hollow
pillar and plate can significantly enhance the quality factor
of WGMs [24]. Isotropic single-crystal silicon is chosen for
both the substrate plate and the pillars, whose mass density is
2329 kg/m3,Youngs modulus is 170 GPa and poison ratio is
0.28. And the structure parameters are decided as plate thick-
ness e = 0.2a, inner height hi = 0.45a, outer height ho =
0.65a, outer radius ro = 0.3a, and thickness of hollow wall
b = 0.05a after optimization to a high-Q factor, where a is
the lattice constant. The hollow-pillar unit cell constructed in
Structural mechanics module of COMSOL, shown in Fig. 1,
are employed to calculate the dispersion curves or the band
structures. Periodic boundary conditions and rotation bound-
ary conditions are applied, and the frequency is normalized by
a function, �Norm = ωa/(2πvt ), where vt = 5844 m/s.

The cases in this paper can be treated as the linear problems
of small elastic deformations. In fact, this treatment is widely
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FIG. 1. Unit cell of the PnCs composed with a thin plate and a
hollow pillar. Both the plate and pillar are isotropic single-crystal
silicon. e = 0.2a, hi = 0.45a, ho = 0.65a, ro = 0.3a, and b = 0.05a.

employed in studying the PnCs based on elastic materials
[24,34,35] and also shows agreement with experimental re-
sults [27,36,37]. The usual (in an inertial frame) small elastic
deformation problems are solved in COMSOL by combining the
constitutive equation, the kinematic equilibrium equation, and
strain-compatibility equation [38]. The three equations are
expressed successively as

σ = Ceε,

ρ
∂2u
∂t2

= ∇σ + FV , (1)

ε = [(∇uT + ∇u)]/2,

where σ , ε, and u are three variables to be determined, repre-
senting stress, strain, and displacement, respectively. Ce is the
elastic matrix of material, and FV is the volume force per unit
volume. When the rotation boundary condition is applied, the
cases are in a rotating frame (a noninertial frame), where New-
ton’s laws may fail and the “fictitious” forces such as Coriolis
and centrifugal forces need to be considered. Therefore the
kinematic equilibrium equation under rotation is modified
as

ρ

(
∂2ur

∂t2
+ acor + acen

)
= ∇σ + FV , (2)

where ur is the displacement in the rotating frame. acor =
2� × ∂ur

∂t and acen = � × (� × rp) are the Coriolis and cen-
trifugal acceleration induced by rotation, respectively. � is the
angular velocity and rp is the coordinate vector in the rotating
frame. In this paper, the z axis through the center of the hollow
pillar is set as the axis of rotation.

Figure 2 shows the band structures and the localized
WGMs under rotation boundary conditions or not. The band
structures along the direction 	X of the irreducible Brillouin
zone are plotted in Fig. 2(a), where the blue dotted lines and
red dotted lines represent the dispersion curves under rota-
tion conditions and not respectively. A pair of flat dispersion
curves of the localized WGMs lie in the local resonance band
gap covered by grey area from 0.185 to 0.201. It can be seen
that rotation have few influences on the dispersion curves and
band structures expect the WGMs. When no rotation, there
is only a slight frequency difference between WGMs due to
the asymmetry between the directions of 	X and 	M. While
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FIG. 2. Simulation results of hollow-pillar unit cells. (a) Band
structures of unit cells: red dots and blue dots denote the no-rotation
case and the rotation-applied case, respectively. (b) The displacement
fields and deformations of WGMs under rotation or not at point X .
The white arrows are the velocity vectors indicating the deformation
trend.

under rotation, the dispersion curves of WGM1 and WGM2
shift equally but oppositely [39], shown in the inset. And
the curves keep flat, which means these two modes remain
nondispersive and localized.

Figure 2(b) shows the displacement fields and the defor-
mations of WGMs under rotation or not at point X .The white
arrows around hollow pillars are the velocity vectors of differ-
ent parts, indicating the deformation trend. When no rotation
conditions applied, the WGM1 and WGM2 vibrate back and
forth along the directions of 	X and 	M, respectively. When
under rotation, each part of hollow pillars is subjected to a
Coriolis force [40] in the inertial coordinate system, causing
the direction change of velocity vectors. It is worth noting that
the changed velocity vectors make WGM1 and WGM2 tend to
couple and transform each other. Therefore the displacement
fields of WGMs are no longer along the specific directions but
have tendency to deflect.
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The displacement fields of WGMs under rotation can be
regarded as the result of superposition of WGM1 and WGM2
due to (1) the coupling between these two modes caused by
Coriolis force; (2) the location in bandgap, which means no
disturbances by other modes. Since the features of nondis-
persion and localization, the WGMs can be modeled in a
single unit cell. Considering the WGMs as a second-order
“spring-mass-damping” system, the kinetic equation of the
WGMs coupled by the Coriolis force when rotating only about
the z axis can be expressed as Eq. (3) [41]:

Meff q̈ + Dq̇ + 2mcoriq̇

(
0 −�z

�z 0

)

− mcentq

(
�2

z 0
0 �2

z

)
+ kq = F, (3)

where Meff , q, D, K, and F are the effective mass matrix,
the displacement matrix in the direction of vibration spindles,
the damping matrix, the stiffness matrix, and the external
force matrix of the two modes,respectively. �z is the angular
velocity around the z axis, and mcori, mcent are the Coriolis and
centrifugal masses, respectively.

Given the ideal conditions of zero frequency difference,
zero damping and small angular velocity, the analytical so-
lution of Eq. (3) can be obtained by using the slow-variable
averaging method [42]. The angle between the time-varying
vibration spindle of WGMs and the initial spindle can be
expressed Eq. (4).

θ = 1

2
arctan(q2/q1) ≈ mcori

∫
�zdt/(2meff ). (4)

It is illustrated that under the effect of the Coriolis force,
there is precession of the WGMs in the inertial coordinate
system and the precession angle is proportional to the angular
velocity integral around the z axis. The theoretical precession
factor (PF) is mcori/2meff , where meff and mcori can be calcu-
lated by the normalized vibration parameters of WGMs [43],
so that PF can be expressed as Eq. (5):

FP =
∫

(φx1φy2 − φy1φx2)dV

2
(
φ2

x + φ2
y + φ2

z

)
dV

, (5)

where φx,y,z are the normalized displacement of WGMs
along the three directions of Cartesian coordinates. And these
normalized parameters can be obtained by FEM when the
structure of PnC is determined. It is worth mentioning that
the location of rotation axis barely affects the results because
of the Coriolis force independent of the location of rotation
axis and the negligible centrifugal force.

III. POINT-DEFECT PNC UNDER ROTATION

A. Structure of the point-defect PnC

Although different kinds of PnCs can be composed of
hollow-pillar units and solid-pillar units in certain ways, cou-
pled resonance will occur among more than one neighboring
hollow-pillar units [44,45], complicating the interaction of the
WGMs with the rotation. A point-defect PnC, shown in Fig. 3,
can not only avoid coupled resonance but also strongly confine
energy inside a single pillar.
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FIG. 3. Structure of the point-defect PnC. The hollow-pillar unit
is the same to the unit cell in Sec. II, hp = 0.6a, r = 0.45a, and
the number of columns is three. The perfect match layers (PML) are
around the PnC.

In the case where the point defect (the hollow pillar) has
been determined, the parameters design of this PnC should
be considered for two more aspects. Firstly, the WGMs need
to be in the bandgap of the complete PnC, thus eliminating
the coupling and interference of other unexpected modes.
Secondly, the transmission of the PnC needs to be as high
as possible to obtain a stronger transmissive signal. After
comprehensive consideration, the solid-pillar height is hp =
0.6a and radius is r = 0.45a. And the band structure of the
solid-pillar matrix is shown as Fig. 4(a), where the low fre-
quency bandgap ranges from 0.175 to 0.243 and can cover the
WGMs. The WGMs as the defect modes of the point-defect
PnC are shown in Fig. 4(b), and it can be seen that the point
defect well confines the energy and owns the displacement
far larger than surroundings. The transmission spectra of the
PnC with various numbers of columns are shown as Fig. 4(c).
The transmission is calculated by comparing the average dis-
placements over several wavelengths behind the PnC to the
results of reference simulations with a blank substrate [36].
The three-column PnC maximizes the transmission in defect
modes, but weakens the ability of the bandgap to confine the
elastic waves. Notably, this trade-off is worthwhile, since the
leakage waves could be eliminating by difference in Sec. III C.
Another noteworthy thing is that only one resonance peak
appears in the transmission spectrum. This is due to the deaf-
band effect [46], and only WGM1 is excited by the Lamb
waves propagating along X axis. When the lattice period a
is taken as 10 mm, the parameters and properties of the point-
defect PnC with hollow pillar are summarized in Table I.

B. Precession of WGMs

The point-defect PnC operated in defect modes are sim-
ulated under rotational boundary conditions, using the FEM
in the time domain. The WGMs are excited continuously by
Lamb waves from the excitation source, and no rotation is
applied for the first 200 periods (1.66 ms) to ensure the vibra-
tion reaches steady initial state. Then a step angular velocity
rotating around the z axis with a ten-period transition zone
and an amplitude of �z is applied to the PnC. The �z greatly
affects the complexity of simulation, since precise results of
time-domain simulation require a calculation interval of less
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FIG. 4. Basic properties of the point-defect PnC. (a) Band struc-
ture of the solid-pillar matrix, the band gap covers WGMs of the
point defect. (b) Displacement fields and deformations of WGMs in
the point-defect PnC. (c) Transmission spectra of the point-defect
PnC.

than one 60th of a period and the �z determines how many
periods need to calculate. Therefore the �z is set as 0.005ω,
which is able to balance the computational accuracy and com-
plexity of FEM in the time domain of the 3D model.

The step angular velocity is obtained by customizing a step
function under the top-level Global Definitions node. And the
step function is a time-varying function, sharply transiting
from 0 to the amplitude (0.005ω) at a certain time (400π/ω).
Subsequently, the rotation conditions are implemented un-
der the rotating frame node by calling customized function,
choosing rotation direction and locating rotation axis. The

TABLE I. Structural and characteristic parameters of the de-
signed PnC.

Parameters and Properties Value

material silicon
lattice constant (a) 10 mm
thickness of plate (e) 0.2a
in/outside height of hollow pillar (hi/ho) 0.4a/0.64a
in/outside radius of hollow pillar (ro/ro − b) 0.3a/0.25a
height of solid pillar (hp) 0.6a
radius of solid pillar (r) 0.45a
the number of columns 3
low-frequency band gap 102–142 kHz
resonant frequencies of WGMs 120.393/120.378 kHz
transmission 0.28
quality factors of WGMs 8226/7614

vibration patterns of the PnC at different moments under
counterclockwise (CCW) rotation are shown in Fig. 5. Two
color maps are used to display the displacement of the hollow
pillar and the other parts in the PnC, respectively, because the
displacement of the hollow pillar is much larger than the other
parts.

The initial vibration pattern of the PnC is shown at 1.65 ms
in Fig. 5. And it is worth highlighting the distinctions of the
initial patterns between a point-defect PnC and a single hollow
pillar on a substrate. The WGMs can still be excited even if
only a single hollow pillar on a substrate, since the WGMs
are the local resonance modes of a hollow pillar. However, the
WGMs of the single pillar are often disturbed by other modes
and have an uncertain initial vibration spindle. Benefit from
the high-Q defect state of the point-defect PnC, unexpected
modes can be eliminated by the band gap and energy can be
confined in the defect cavity better. More importantly, due
to the deaf-band effect of PnCs, the initial vibration spindle
must be consistent with WGM1, which is symmetric about
the wave vector of the lamb wave. After 200 periods, a CCW
step angular velocity rotating around the z axis is applied
to the PnC. The vibration pattern of the hollow pillar at

t=1.75ms t=2.0ms t=2.25ms

t=2.5ms t=2.75ms t=3.0ms

CCWCCW CCWCCW CCWCCW

CCWCCW CCWCCW CCWCCW
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X

Y

t=1.65mst=1.65ms

FIG. 5. The vibration pattern of PnC operated in WGMs at dif-
ferent moments under CCW rotation.
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FIG. 6. The vibration pattern of PnC operated in WGMs at dif-
ferent moments under CW rotation.

equal intervals between 1.75 and 3.0 ms indicates that the
vibration pattern undergoes clockwise (CW) precession under
the CCW angular velocity. In other words, the vibration pat-
tern lags behind the rotation of the PnC. The precession angle
reaches 45◦ at about 2.25 ms, indicating the energy of WGM1
is completely coupled into WGM2. And the WGM2, which
should be suppressed by the deaf-band effect, is completely
excited. However, this state is temporary, and the precession
will continue under continuous rotation. At almost 3.0 ms, the
vibration pattern has undergone 90◦ precession and reverts to
WGM1, thus the above process will be repeated periodically.

Figure 6 shows the vibration pattern of the hollow pillar
at equal intervals between 1.75 and 3.0 ms under the CW
rotation. It can be seen that the vibration pattern owns the
opposite-direction precession but the same absolute preces-
sion angle compared to the case under CCW rotation. This is
because the change in the direction of rotation reverses the di-
rection of the Coriolis force but does not affect its magnitude.
Therefore the vibration pattern of the hollow pillar in the PnC
is directional depending on the direction of rotation.

In order to describe the precession of WGMs in the inertial
space intuitively, the Lissajous figures (the horizontal axis is
the displacement along the vibration spindle of WGM1 and
the vertical axis is of WGM2) are plotted in Fig. 7. Half of the
precession period (WGM1 to WGM2) rather than the whole
precession period (WGM1 to WGM2 and back to WGM1)
is plotted in the Lissajous figure for a clearer presentation.
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FIG. 7. Lissajous figures of WGMs for half a precession period.
The red ellipses marked by times correspond to the vibration patterns
at the corresponding moments in Figs. 5 and 6.
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FIG. 8. Trend of the minor axis of the elliptical trajectories with
time in the Lissajous figure. The inset exemplifies the primary and
the quadrature modes when the vibration pattern is processed by 45◦.

The process that the major axis of elliptical trajectory rotates
from the transverse axis to the longitudinal axis indicates the
precession of the vibration pattern from WGM1 to WGM2.
The trajectories marked by various times in Fig. 7 correspond
to the vibration patterns in Figs. 5 and 6, respectively. There-
fore the WGMs in the hollow pillar have a directional and
continuous precession phenomenon under rotation.

It is worth noting that the minor axis of the elliptical trajec-
tory in Lissajous figure lengthens gradually. The minor axis
represents the amplitude of the quadrature mode relative to
the primary mode, and the quadrature mode differs from the
primary mode by 90◦ phase in time and by 45◦ angle between
the vibration spindles in space. Figure 8 specifies the trend that
the minor axis become longer and longer and finally tend to
stabilize. It indicates that the energy of the primary vibration
mode gradually is coupled to the quadrature mode during the
precession process and into a stable state finally, where the
ratio of the amplitude of the quadrature mode to the primary
mode is 0.43. The larger the ratio between the quadrature
mode and the primary mode, the lower the resolution of the
precession. And when the ratio is 1, the ability of precession
will be completely lost. However, this quadrature mode is
difficult to be eliminated in the open-loop simulation of this
paper, and needs to be suppressed by additional feedback.

To specify the numerical relationship between the preces-
sion and the angular velocity, we plot the variation of the
precession angle with time before and after the step angular
velocity is applied, as shown in Fig. 9, taking the case un-
der CW rotation as an example. The red-circle marks in the
figure represent the precession angle relative to the inertial
space at that moment, and the precession angle varies with
time when the angular velocity is applied. A linear fit with
a R2 of 0.998 is obtained, showing that the precession angle
has a good linear relationship with time or with the integral
of the step angular velocity in time. The theoretical results
for the determined PnC are calculated according to Eq. (5)
and summarized in Table II. Compared with theorical results
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FIG. 9. Trend of precession angle with time under step angular
velocity. The red circles represent the simulation results and are fitted
by the red solid line. The blue solid line represent the theoretical re-
sults, and the purple zone indicates the rotation condition is applied.

(blue solid line), the PF of a time-domain simulation results
0.34 is slightly different from the theoretical PF of 0.37. This
is because the derivation of the theoretical results is based on
the ideal condition of no frequency difference, no damping
and isotropy, while the simulation can only make the simula-
tion condition converge to but not reach the ideal condition.
However, it can still be found that time-domain simulation
results agree with the theoretical results well. It not only
illustrates the linear relationship between the precession and
the integral of angular velocity but also verifies the rationality
and correctness of the simulation from the side.

C. Transmissive waves under rotation

The transmissive waves of the point-defect PnC are also
affected by rotation. This is because that the hollow pillar op-
erated in WGMs functions as a coupled-resonant waveguide
by evanescent waves [21,47], and the changes of WGMs can
modulate the output. It is evident in Sec. II B that WGMs
will undergo precession in the time domain under rotation.
Therefore the transmissive waves are affected accordingly.

Figure 10 shows the displacement fields of transmissive
elastic waves in the substrate plate at different precession
angles, and the simulation conditions are the same to the
descriptions in Sec. II B. The cases of 0◦, 15◦, 30◦, and 45◦
precession are captured, respectively, and they correspond to
the points marked in Fig. 9. Only the displacement fields
behind PnC are captured due to the large differences com-
pared to the displacement fields in front of PnC. In the initial
no-precession state, the transmissive elastic waves are sym-
metrical with respect to the midline and the elastic waves at

TABLE II. Effective mass, Coriolis mass and theoretical PF of
WGMs in the point-defect PnC.

meff (kg) mcori (kg) Theoretical PF

1.75 × 10−5 1.31 × 10−5 0.37

0 deg 15 deg

30 deg 45 deg

enildi
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Y
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Disp
Min Max0

FIG. 10. Distribution of the transmissive elastic waves in the
substrate plate under different precession angles. The red line is the
midline of the PnC, and the white dashed areas are the sampling area
of phase.

the upper and lower parts of the midline are in phase. This
is owning to the symmetry of WGM1 with respect to the
propagation direction of the Lamb waves and the midline of
the PnC. However, the symmetry will be broken when the
precession occurs, and the transmissive waves at the upper and
lower parts are also no longer in phase. Shown as the cases in
Fig. 10, the displacement at the white box in the lower half of
the midline gradually turns from negative to positive with the
precession angle increasing. Eventually, when at 45◦ preces-
sion, WGM2 becomes the dominant mode of the PnC, and the
transmissive waves at the upper and lower parts are antiphase
due to the antisymmetry of WGM2. In fact, considering the
two-antinode symmetry of WGMs, when the precession angle
exceeds 45◦, the displacement fields of the transmissive waves
will be the same as its complementary angle.

The relationship of the phase difference between the trans-
missive waves in the upper and lower parts with the precession
angles is plotted as Fig. 11. The phase difference is obtained
by the inverse cosine of the ratio of the displacement in lower

Precession Angle (deg)

Ph
as

e
D

i
ecnereff

(r
ad

)

FIG. 11. Relationship between the precession angle and the
phase difference of the displacements in the two white dashed areas
symmetrical about the midline of the PnC. A linear fit of 0.96 is
obtained and the phase gain K is fixed (0.07 rad/deg or 4 rad/rad).
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box to its amplitude when the displacement in upper box
reaches its maximum. A linear fit with a R2 of 0.96 is obtained,
showing a good linear relationship within a 45◦ precession
range. Since the initial state of no precession always results in
zero phase difference and the 45◦ precession always results
in antiphase,the phase gain K (0.07 rad/deg or 4 rad/rad)
between the precession angle and phase difference in this
linear relationship is relatively fixed and is not related to the
structure neither the angular velocity. In fact, the effects of
rotation on the transmissive waves can be H better character-
ized by the difference displacement between the upper and
lower parts due to (1) a continuous variable easier to detect
than phase and (2) a way to eliminate the leakage waves
not affected by the precession. Since the frequency of phase
change is much lower than that of transmissive waves, the
phase change can be treating as a slow variable which keeps
constant within a period of the transmissive waves. And the
difference displacement is deduced (see Appendix) as

�Dextre = −2CT D0 sin(�ϕ/2)

= −2CT D0 sin

(
K · PF ·

∫ t

0
�z(τ )dτ/2

)

≈ −C · T · K · PF︸ ︷︷ ︸
scalefactor

·D0

∫ t

0
�z(τ )dτ |�ϕ→2kπ , (6)

where Dextre is the extremums of the difference displacement,
C is the proportional constant, T is the transmission of the
PnC, D0 is the amplitude of the incident waves, and �ϕ is
the phase change, which will set to zero periodically when
it exceeds 2π . For a determined PnC and incident wave,
C, T, K, PF , and D0 are all fixed. Therefore Dextre is only
related to the integral of the angular velocity.

Equation (6) predicts three characteristics of transmissive
waves under rotation, namely periodicity, linearity and direc-
tionality. Specifically, periodicity is indicated by the half-sine
function of Dextre; Linearity is approximated when at small
precession angles, and the scale factor is expressed as SF =
−C · T · K · PF ; directionality is reflected by the odd function
of Dextre.

To verify the predictions, Fig. 12 displays the simu-
lation results of the effects of rotation on the difference
displacement. Notably, the boundary conditions are applied
as described in Sec. III B. The inset in Fig. 12(a) covers the
whole process from the static state to the state undergoing
180◦ precession (a full circle in the Lissajous figure), while the
main figure intercepts the process in the red zone. Clearly, the
difference displacement keeps extremely small during the first
200 periods (1.66 ms), even if there exist leakage waves and
disturbance from the unstable initial vibration. Additionally,
the extremums of difference displacement vary gradually with
time in a tendency of half-sine function after 200 periods,
which indicates the periodicity. The peaks and valleys result
from the out-phase and in-phase transmissive waves, corre-
sponding to the moments when the precession of WGMs at
(2k + 1)π/4 and kπ/2(k = 0, 1, 2 . . .), respectively.

Specifically, during the process covered by red zone,
the extremums of difference displacement have a linear

CCW

CW

precession at 45deg
antiphase

no precession
in phase

(a)

(b)

(c)

Blank plate

No-defect PnC

FIG. 12. Trend of difference displacement with time. The inset in
(a) shows the difference displacement during the whole precession
process, indicating the periodicity. The main figure of (a) enlarge
the red zone of the inset, reflecting the linearity. (b) compares the
difference displacement under CW and CCW rotations, revealing the
directionality. (c) shows the results of two reference cases.
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relationship with time or the precession visibly at small pre-
cession angles, reflecting the linearity. Nevertheless, it is
worth mentioning that the extremums of difference displace-
ment should have return to zero after a period rather than
floating with a certain error. It is caused by the quadrature
mode mentioned in Sec. III B and need to be suppressed
by further feedback. Compared with two reference cases of
a blank plate and a no-defect PnC under the same bound-
ary conditions, the reference results shown in Fig. 12(c) are
remarkably tiny. Therefore The periodic changes in trans-
missive waves are exclusively caused by the precession of
WGMs. Figure 12(b) compares the results between the two
cases of CW and CCW rotation around the z axis. The inset
considers the process from the imminent start of precession
to precession through 45◦, while the main figure intercepts
and enlarges the red-zone part of the inset. Obviously, the
difference displacement under different-direction rotation has
similar variation trends. However, they keep steadily differ-
ent from each other by 180◦ phase, or keep opposite in
other words, revealing the directionality. Therefore the sim-
ulation results are in high agreement with the predictions of
Eq. (6), which illustrates the rationality and correctness of the
simulation.

IV. DISCUSSION

In this paper, we study the roles of rotation on the WGMs in
PnCs, especially in the point-defect PnC. And the simulation
results demonstrate that transmissive waves are modulated
by rotation or precession, which feature periodicity, linear-
ity and directionality. Further, these features can be utilized
to measure the integral of angular velocity as an all-solid-
state gyroscope scheme. In detail, by counting the periodic
envelopes, the number of times WGM1 and WGM2 are trans-
formed into each other can be known, and each transformation
means 45◦ precession. By the magnitude of Dextre, the pre-
cession angle during a period can be obtained according to
the linear relation. By the phase change of the waveform, the
direction of rotation can be judged based on the directionality.
Combining the three, the total precession angle can be de-
duced. Since the total precession angle is linearly proportional
to the integral of angular velocity applied to the PnC, the
actual rotation angle of the PnC can be obtained. In practical
experiments, the time-domain signals of transmissive waves
at the symmetrical parts can be detected by the symmetri-
cally distributed piezoelectric lead zirconate titanate (PZTs),
which are widely applied to detect Lamb waves [48,49]. Sub-
sequently, the two analog electrical signals of symmetrical
parts are input to a lock-in amplifier (LIA) to be demodu-
lated (phase-sensitive demodulation). The excitation signal of
Lamb waves is chosen as the reference signal. As a result, both
the amplitude and phase of the difference signal relative to the
reference signal are obtained.

Unlike the existing all-solid-state gyroscopes using the
SAW waves in substrate to sense rotation [50–52], the
above scheme detects rotation by the high-Q WGMs, thus
potential for higher sensitivity. Moreover, this scheme is rate-
integrating, therefore the bandwidth depends on the low-pass
filter of demodulator and is wider than the bandwidth of
rate scheme (∝ ω/Qsense ). Most importantly, the limitation

of weak output in typical SAW gyroscopes [33,53–55] is
expected to be overcome in this scheme. It benefits from
dependency of the amplitude of Dextre on the transmission
T of PnC. In this paper, an normalized amplitude of about
0.1 is obtained eventually, and it can be further improved by
optimized the transmission of the PnC.

V. CONCLUSION

The effects of rotation on a PnC operated in WGMs are
numerically investigated for the first time with FEM. All
structures have been carefully designed and constructed in
COMSOL. The band structures of the hollow-pillar units indi-
cate that rotation has few influences on the other dispersion
curves except WGMs, and the WGMs have tendency to
deflect. Specifically for a point-defect PnC, the theoretical
analyses and FEM results show that the vibration pattern of
the WGMs under the action of rotation will undergo a preces-
sion. And the precession angle is proportional to the integral
of angular velocity with a precession factor of 0.34, which is
very close to the theoretical value. In addition, the phase dif-
ference between the transmissive waves in the upper and lower
parts is nearly linearly related to the precession angle. And the
zero precession always results in zero phase difference while
the 45◦ precession always results in antiphase. Furthermore,
the difference displacement between the transmissive waves
is utilized to eliminate the leakage waves and characterize the
effects of rotation better. The difference displacement offers a
rate-integrating scheme to sense rotation due to its periodicity,
linearity and directionality. Compared with the existing SAW
gyroscopes, this rotation-sensing scheme features potential
for higher sensitivity, wider bandwidth and strong output.
We believe that these findings have promising applications
especially in high-performance SAW gyroscopes.
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APPENDIX: DERIVATION OF THE DIFFERENCE
DISPLACEMENT

Ideally, the phase difference of the transmissive waves
between the upper and lower areas due to the rotation can be
expressed as

�ϕ(t ) = K · PF ·
∫ t

0
�z(τ )dτ, (A1)

where K and PF are fixed under the determined structure.
Due to the symmetry of the vibration pattern, �ϕ will set to
zero periodically when it exceeds 2π . In fact, the transmissive
waves often include leakage waves, which are not affected
by the precession. To eliminate the interference from leakage
waves, the difference displacement between the upper and
lower areas is utilized to characterize the phase difference.
Assuming that the transmissive waves are cosine waves with
the same frequency as the WGMs, the difference displacement
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between the two areas can be expressed as

�D = Dupper − Dlower = T · D0[cos(ωt + �ϕ) − cos(ωt )]

= T · D0

[
cos(ωt ) (cos �ϕ − 1)︸ ︷︷ ︸

slow variable

− sin(ωt ) (sin �ϕ − 1)︸ ︷︷ ︸
slow variable

]
,

(A2)

where T and D0 are the transmission of the PnC and the
amplitude of the incident waves, respectively. Since �ϕ in
Eq. (A2) is also a time-dependent variable, it is difficult to di-
rectly represent the relationship between the phase difference
and the difference displacement. Since the frequency of the
applied angular velocity is much lower than the frequency of
the WGMs, the change rate of the phase difference will also
be much slower than the transmissive waves. Therefore the
terms containing �ϕ can be regarded as slow variables which
keep constant within one vibration period of the transmissive
waves, and � becomes a superposition of two quadrature
terms of the fast variables. It can be seen that in the long
term the trajectory of � with time will be a fast oscillation,

while the peak of the oscillation varies slowly with �ϕ.
� has two extremums in each vibration period, obtained at
�D́ = 0, and the phase of the fast variables needs to satisfy
tan ωt = cot(�ϕ/2). Thus a set of particular solutions of the
two quadrature terms can be expressed as

sin ωt = C cos(�ϕ/2),

cos ωt = C sin(�ϕ/2), (A3)

where C is the proportional constant. An expression for the
relationship between the extremums of the �D and �ϕ or
angular velocity �z an be obtained by substituting Eq. (A3)
back into Eq. (A2):

�Dextre = −2CT D0 sin(�ϕ/2)

= −2CT D0 sin

(
K · PF ·

∫ t

0
�z(τ )dτ/2

)

≈ −C · T · K · PF︸ ︷︷ ︸
scale factor

·D0

∫ t

0
�z(τ )dτ |�ϕ→2kπ . (A4)
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