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Ab initio constraints on the melting of silica at high pressures up to 500 GPa
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The melting curve of pure silica (SiO2) was determined using ab initio density functional theory together
with the solid-liquid coexisting approach, thermodynamic integration, and the Z method. The melting curves
are consistent with a smooth, slow increase in a large region from 50 GPa (dT/dP ≈ 15 K/GPa) to about
500 GPa (dT/dP ≈ 5 K/GPa) without any abrupt changes at around 120 and 300 GPa as seen in some recent
experimental and computational studies. The topography of the melting curve above 50 GPa is consistent with
a gradual change in the distribution of the Si coordination numbers in the liquid state and the absence of large
changes in the density following solid-solid phase transitions. The pair distribution functions show that the
structural correlation in the liquid is mainly short range and that the Si-O bond is stiff. The densification of the
melt structure with pressure above 50 GPa is therefore due to an increase in seven- and eightfold coordinated
silicon.
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I. INTRODUCTION

Silica is a reference inorganic material with a wide range
of applications in the chemical industry and one of the main
components in terrestrial planets’ crust and interior. In spite of
its chemical simplicity, the SiO2 phase diagram is surprisingly
rich, and a number of experimental and computational studies
have attempted to draw subsolidus phase relations and melting
curves to very high pressures consistent with those in the
Earth’s deep interior [1–7] and beyond [8–10]. Not only are
these phase relations important for understanding the solid
Earth’s evolution from a very early stage following magma
ocean crystallization, but constraining the SiO2 melting curve
to very high or even ultrahigh pressure may provide insight
into the formation of other rocky planets such as many super-
Earths. Indeed, since MgSiO3 melt decomposes into SiO2 and
MgO at pressures above 300 GPa [11], liquid SiO2 may be
the most abundant phase in some of these large, rocky plan-
ets’ deep interiors. High-pressure silica melting also plays an
important role in the Earth’s core dynamics since it has been
suggested that silica may have crystallized from a Si-saturated
protocore during a chemical exchange with a basal magma
ocean [12,13].

Although silica phase relations have undergone several re-
visions experimentally and computationally, its melting curve
remains poorly constrained, particularly at very high pres-
sures consistent with those in the Earth’s core and beyond,
for which experimental reports are scarce. A recent shock
experiment study by Millot et al. [8] reported a melting curve
of Tm(P) = 1968.5 + 307.8P0.485 up to ∼500 GPa, suggesting
that silica melts at around 5000 and 7000 K at pressures of
the core-mantle boundary (CMB) and the Earth’s inner core,
respectively.
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More recently, a diamond anvil cell (DAC) study by An-
drault et al. [14,15] reported melting points up to about
150 GPa. Their melting temperatures were markedly higher
(≈6000 K at CMB pressure) than those of Millot et al. [8],
and a very steep and abrupt change in the Clapeyron slope
at ∼120 GPa was inconsistent with that seen in Ref. [8].
Two solid-liquid coexisting (two-phase) molecular dynamics
simulations using classical interatomic potentials [16] and
density functional theory (DFT) [1] both reported even higher
melting temperatures (up to around 160 GPa) than those from
the DAC experiment study, but none of these studies found
any rapid change in the Clapeyron slope around 120 GPa.
Moreover, a recent computational study [9,10] using the Z
method together with density functional theory reported a
melting curve to ultrahigh pressure (∼6000 GPa) consistent
with those in the core of gas giants and massive super-Earths
(where SiO2 may be the main component). Although their
melting curve is in line with previous computational work
up to around 150 GPa, the curve flattens markedly at around
200 GPa and is nearly flat until 300 GPa, where it abruptly
climbs steeply to almost 9000 K at 400 GPa. By contrast, the
experimental study by Millot et al. [8] did not capture any
such anomalies. Clearly, there are many outstanding incon-
sistencies in the reported silica melting temperatures at high
pressure.

Changes in the topography of the SiO2 melting curve are
tightly linked to any abrupt changes in the solid density and
liquid structure with pressure. For example, the rapid increase
in the melting curve of SiO2 at a pressure of ∼14 GPa is
attributable to a first-order phase transition from coesite to
stishovite and involves a change in the Si coordination envi-
ronment from SiO4 tetrahedra to SiO6 octahedra accompanied
by a huge increase in density of nearly 30% [17]. Phases
transitions to higher-pressure polymorphs such as β-stishovite
(CaCl2 type), seifertite (α-PbO2 type), and pyrite are all
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accompanied by much smaller density changes of only a few
percent [2,18–20]. These phase transitions are therefore not
expected to impact the topography of the melting curve to an
extent similar to the coesite to stishovite transition. Likewise,
the distribution of coordination numbers in the liquid is inti-
mately connected to changes in the liquid density and entropy
with pressure. As the distribution of different coordination
polyhedra changes along with pressure, the liquid density
and entropy will change too. Understanding melting processes
thus requires atomistic insight into the local structure of both
solid and liquid phases at equilibrium.

Here we report results from a study of the melting curve of
silica up to 500 GPa using ab initio density functional theory
together with three methods complementary to melting: the
solid-liquid coexistence method, thermodynamic integration
(TI), and the Z method (together with a waiting time analysis).
The influence of local structure on melting is investigated to
better understand the topography of the SiO2 melting curve.

II. METHODS

A. Two-phase coexistence method

The solid-liquid (two-phase) coexisting approach aims to
target the melting temperature by equilibrating a system in
which both a liquid and a solid are in mechanical contact in
the simulation box. We launch ab initio Born-Oppenheimer
molecular dynamics (BOMD) runs from an initial configura-
tion of atoms consisting of a solid part and a liquid part with
the temperature and volume kept fixed. As the system equili-
brates, the fraction of the phases change along with the total
pressure. If the initial pressure is higher than the equilibrium
melting pressure, with ρsolid > ρliquid, where ρsolid and ρliquid

are the average solid and liquid densities, respectively, the
solid-liquid interface adjusts to increase the fraction of liquid
during equilibration, thereby increasing the pressure in the
direction of the equilibrium melting pressure. If the MD run is
launched with a pressure that is lower than the melting pres-
sure, the solid fraction of the box increases, and the pressure
decreases toward the melting curve during equilibration. As
the system propagates, the pressure fluctuates around a fixed
value, the melting pressure, and the boundaries separating the
solid and liquid phases do not drift. Under certain conditions,
the system may melt or freeze quickly in a single simulation
even with fairly large simulation boxes. However, we can
still bracket the melting curve from a series of calculations
at a given (T, P) and estimate the melting temperature from
a statistical distribution of the number of calculations that
end up as a liquid or solid [21]. When, for example, half of
the calculations at a given (T, P) end up in a liquid state,
the simulation temperature is the melting temperature [21,22].
Here we use a slightly different approach in which a sequence
of MD runs is carried out at a given temperature with different
volumes chosen to lie close to the expected liquid band. The
melting pressure is then estimated from the midpoint between
the MD run with the lowest pressure that froze and the MD
run with the highest pressure that melted.

B. Thermodynamic integration

From the definition of melting equilibrium, the free ener-
gies of a liquid and a solid are equal at the melting point. We

use thermodynamic integration to calculate the free energy of
the liquid and solid states from an energy relationship between
a reference state and an objective system,

Fobj − Fref =
∫ 1

0
〈Uobj(R) − Uref(R)〉λdλ. (1)

A carefully chosen sample of 〈U (λ)〉λ calculated using ab ini-
tio BOMD simulations enables us to accurately calculate the
free energy of the objective system with sufficient accuracy.

An ideal gas is used as the reference state in order to
calculate the free energy of liquid silica:

Fref = Fideal gas = −kBT ln
V N

�3N N!
, (2)

where � is the thermal de Broglie wavelength:

� = h√
2πmkBT

. (3)

As discussed in previous studies (see, e.g., Refs. [23–25]),
accurately calculating 〈U (λ)〉λ requires a large number of λ

points, particularly in the region where λ → 0 (where the
ensemble is ideal-gas-like). Instead of integration over λ ∈
[0, 1], the integration is performed over x ∈ [−1, 1] using

λ(x) =
(

x + 1

2

) 1
1−k

, (4)

where we choose k = 0.8.
The x points are chosen using a Gauss-Lobatto quadrature

which is shown to give a good balance between accuracy and
computational cost.

For solids, our reference state is the free energy calculated
within the quasiharmonic approximation (QHA). That is,

Fref = E0K + Fhar, (5)

where E0K is the energy of the relaxed crystal plus con-
tributions from zero-point vibrations. The quasiharmonic
vibrational term can be expressed using the phonon density
of states as follows:

Fhar(T ) = 1

2

∑
q j

hωq j + kBT
∑

q j

ln[1 − exp(−hωq j )/kBT ],

(6)

where q is the wave vector, j is the band index, and ωq j is
the phonon frequency of the phonon mode labeled by a set
{q, j}. The phonon calculations are conducted using the finite-
displacement method as implemented in the PHONOPY code
[26]. Thermodynamic integration is then used to calculate the
anharmonic contribution to the solid from Eq. (1) using the
Gauss-Legendre quadrature to integrate over x ∈ [−1, 1] by
the changes in variables from λ ∈ [0, 1] using

λ(x) = x + 1

2
. (7)

Since the reference state is the “static state” plus QHA
corrections for the solid [Eq. (5)], the difference between the
reference and object functions reflects mainly the anharmonic
contribution to the free energy.
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C. Z method

The Z method calculates the melting temperature from
the relationship between a material’s homogeneous melting
temperature (superheating limit) and its equilibrium melting
temperature [16,27,28]. A sequence of molecular dynamics
simulations is launched in the NV E ensemble [29] at differ-
ent initial temperatures Tini to target the lowest total energy
Eh (and highest temperature Th) where the solid melts. The
maximum energy along the solid branch of the isochore is the
same as the lowest energy along the liquid branch,

E sol(V, Th) = E liq(V, Tm). (8)

When the system melts at Th, the temperature decreases to a
distinct value, Tm, the equilibrium melting temperature, while
the latent heat of melting is gradually converted to potential
energy. The relationship between Th and Tm is given by [27,30]

Th

Tm
− 1 = 	Sm

CV
. (9)

Here CV is the heat capacity of the solid, and 	Sm is the
melting entropy.

Since the waiting time for the solid to melt diverges when
T tends to Th, the calculated melting temperature will always,
in theory, represent an upper bound to the “true” melting
temperature. To avoid extremely long MD runs in the vicinity
of Th, the melting temperature is instead often calculated from
an extrapolation of the distributions of waiting times from a
sequence of runs with E = (Eh + 	E ) using

〈τ 〉−1/2 = A(Tliq − Tm), (10)

where A is a parameter, τ is the waiting time for a given total
energy, and Tliq is the temperature of the system after melting
[28]. When 	E → 0, Tliq → Tm, and the melting temperature
is found at the point of intersection where 〈τ 〉−1/2 = 0.

Implementation of the Z method together with DFT typi-
cally uses ab initio BOMD in the NV E ensemble, in which
the Fermi-Dirac electronic temperature is kept fixed along the
entire trajectory. Although this ensures conserved dynamics
using the Hellmann-Feynman forces to propagate the ions
[31,32], large changes in the temperature following melt-
ing and equilibration may introduce systematic errors in the
calculated melting temperature. The difference in melting
temperature when Tel ≈ Th and Tel ≈ Tm, representing reason-
able lower and upper bounds to Tm, respectively, is about
200 K for SiO2 at around 160 GPa and 6000 K [33]. Here
we choose an electronic entropy close to the predicted melt-
ing temperature. Although this ensures a correct ion-electron
interaction in the liquid state of the MD simulation, the elec-
tronic temperature is slightly too low before melting, and
the melting temperature will probably be overestimated by
∼100 K [33].

III. COMPUTATIONAL DETAILS

All calculations carried out in this work were performed
using the Vienna Ab initio Simulation Package (VASP) [34,35]
together with the generalized gradient approximation (GGA)
functional (parametrized using the Perdew-Burke-Ernzerhof
scheme) [29] to calculate the exchange-correlation con-
tribution to the total energy implemented with projector

augmented waves [36,37]. The valence electron configura-
tions were 2s2 p4 for O and 3s23p2 for Si with core radii
of 1.95 and 1.55 Å, respectively, for the projector opera-
tor. Two-phase test calculations of thermodynamic (average
pressure) and structural properties [pair distribution func-
tions (PDFs)] carried out using the “hard” oxygen potential
(with a core radius of 1.228 Å) were in excellent agree-
ment with those calculated using the default potentials. For
example, the average pressure for pyrite at 8000 K with
hard O potentials was within the error bars of that re-
ported using default potentials, and the PDFs were nearly
indistinguishable.

A cutoff energy of 400 eV for the plane waves was used in
the two-phase simulations. Test calculations carried out using
a cutoff energy of 500 eV gave ensemble average properties
(i.e., average pressures and PDFs) within the error bars re-
ported using a 400 eV energy cutoff. Since a markedly smaller
cell size was used in the Z method calculations compared
to the two-phase calculations, the energy cutoff was slightly
higher (700 eV). In the TI calculations, we analyzed the con-
vergence of the static energy from a sequence of runs from
500 to 1000 eV. We found that the total energy was suffi-
ciently converged (<0.001 eV/atom) using an energy cutoff
of 800 eV. This value is used for all the calculations carried out
in the static limit as well as in the QHA runs; 4 × 4 × 4 su-
percells are used in the evaluation of the harmonic vibrational
contribution to the total free energy. In the MD simulations
in which the anharmonic contribution to the solid free energy
was calculated, we found that an energy cutoff of 500 eV was
sufficient. That is, we found that the DFT energies calculated
from MD runs with a higher energy cutoff of 800 eV differ
by only about 0.00103 eV/atom compared to that calculated
using an energy cutoff of 500 eV. Only the � points were used
in all the MD runs used in the two-phase, TI, and Z method
calculations, whereas a 4 × 4 × 4 Monkhorst-Pack mesh was
used in the TI calculations for the solid carried out in the static
limit.

In all NV T MD runs the electronic entropy was included
using a Fermi-Dirac smearing scheme with a width of kBT
[31]. As discussed above, special attention was given to the
choice of electronic temperature in the Z method calculations
because of the large temperature drop that accompanied melt-
ing in the simulations. We evaluated the melting temperatures
using three different electronic temperatures ranging from
5500 to 7500 K for seifertite and 6000 to 8000 K for pyrite.
The electronic temperature which is closest to Tm is chosen in
the waiting time analysis, and the values used are reported in
the Supplemental Material (SM) [38].

The molecular dynamics runs used in the two-phase cal-
culations and the TI free energy calculations were carried out
using a Nosé-Hoover thermostat with a time step of 1 fs (TI)
or 2 fs. A smaller time step of 0.5 fs was used in the Z method
calculations.

For the liquid TI simulations, 〈U (λ)〉λ was evaluated with
an integration of 8 λ points using a Gauss-Lobatto quadrature.
The energy difference between 8 λ points and 10 λ points eval-
uated in a 162-atom simulation box is only ∼0.0008 eV/atom,
suggesting that 8 λ points is sufficient (see the SM, Table S2
and Fig. S1, where we plot the convergence of the free energy
with the number of λ points).
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FIG. 1. Melting points and melting curves of SiO2 from this work and the literature. We fitted Simon-Glatzel melting equations using
Tmelting(P) = T0 × (1 + P−P0

a )b to the melting points from the Z method and two-phase calculations, which gave the following parameters: T0 =
6.018, P0 = −202.338, a = 4.736 × 10−4, and b = 0.5126 (two-phase calculations) and T0 = 6.462, P0 = −256.011, a = 6.474 × 10−4, and
b = 0.5141 (Z method calculations). For the two-phase calculations the data points used in the fitting were the mean values of the lowest liquid
and highest solid phases at a given temperature. All data points from the two-phase calculations are also reported in Table S1 in the SM. The
inset shows the steepness of the melting curves from the two-phase coexistence calculations.

The two-phase coexistence calculations were carried out
using a 486-atom simulation cell for stishovite and β-
stishovite, whereas a 648-atom cell was used for seifertite
and pyrite. These simulation boxes are made from units con-
structed from the primitive SiO2 unit cell of a given solid
phase. The liquid portion of the two-phase simulation box
was constructed by first heating to above the homogeneous
melting temperature, followed by a decrease in temperature to
Tini. The solid portion was then heated until Tini, and two equal
volumes of the solid and liquid subunits were glued together
[22]. We then launched the two-phase MD simulations at Tini

following the procedure discussed in the Sec. II Methods. All
two-phase calculations ran for at least 5 ps and sometimes for
more than 40 ps before they froze or melted. After they fully
melted (or crystallized) the MD runs continued for at least 1 ps
to calculate the equilibrium pressure with sufficient accuracy.
Equilibrium pressures and relaxation times for melting or
freezing are reported in Table S1.

We also investigated the sensitivity to melting using dif-
ferent surface cutoff schemes to represent the solid-liquid
phase boundary. A comparison with calculations carried out
on stishovite using a (001) vs a (100) crystallographic cutoff
plane showed very similar melting temperatures.

In total, we carried out more than 100 two-phase calcula-
tions in the pressure range from 50 to 500 GPa, and details for
most of these (including those used in the calculation of the
melting curve) are reported in Table S1 in the SM. We used a
large pressure overlap (∼25 GPa) for the different solid phases
to ensure that the correct (equilibrium) solid phases were
used to calculate the melting curve. The expected stability
range of the solids was estimated from an extrapolation of the

Clapeyron slopes determined from recent computational and
experimental studies (see, e.g., [2] and references therein).

IV. RESULTS AND DISCUSSION

In Fig. 1 we collect calculated melting temperatures us-
ing the Z method, TI, and two-phase method together with
previously reported results in the literature. We focus here on
the functional form of the SiO2 liquidus above about 50 GPa
because the steep increase in the melting curve between 14
and 50 GPa due to the coesite-stishovite transitions is well
documented [39–44]. Above about 50 GPa our melting curves
flatten significantly, and the discrepancy between the different
melting temperatures and curves reported in the literature
spans more than 1000 K in a large pressure interval. The
Z method and two-phase melting curves are in very good
agreement overall with the melting points calculated using
TI at around 100, 120, and 377 GPa, but the calculated TI
melting temperature at around 50 GPa is somewhat lower
compared to the melting curve from our two-phase and Z
method calculations as well as previous computational work
[1,9]. This discrepancy may be due to the possibly large error
bars in the solid and liquid free energy curves using TI and the
extremely steep melting curve below 50 GPa.

The melting curve from the two-phase calculations have
a dT/dP ≈ 14 K/GPa at around 50 GPa, and the dT/dP
is about 5 K/GPa at 500 GPa without any abrupt changes
in the functional form. A possible flattening anomaly above
about 300 GPa is indicated in Fig. 1 as a dashed line. Such
a small anomaly could possibly be due to an increase in the
liquid electronic entropy rather than the configurational liquid

024106-4



AB INITIO CONSTRAINTS ON THE MELTING OF … PHYSICAL REVIEW B 109, 024106 (2024)

0 50 100 150 200 250 300 350 400

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Pressure (GPa)

P
ro
b
ab
il
it
y

4.0

4.4

4.8

5.2

5.6

6.0

A
v
er
ag
e
C
N

0 100 200 300 400

3000

4000

5000

6000

7000

8000

9000

Melting Curve Usui et al. 2010

Melting Curve This work Two Phase Fit

Melt CNs Sampling Points

This Study Melt Density

Pressure (GPa)

T
em
p
er
at
u
re
(K
)

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

D
en
si
ty
(g
/c
m
3
)

Average CN
CN=6

CN=5

CN=4
CN=3

CN=7

CN=8

CN=9

FIG. 2. Top and bottom graphs show the changes in the density and Si coordination numbers, respectively, in liquid SiO2 near the melting
curve. The coordination numbers are evaluated with a near-neighbor algorithm [48] which uses a Voronoi decomposition scheme to determine
the probability of various coordination numbers and then select the one with the highest probability.

entropy since there are no changes in the liquid structure
(i.e., distribution of coordination numbers) that point to a
configurational stabilization of the liquid state above 200 GPa.
That is, in a large pressure interval from 200 to 400 GPa, the
average coordination number (CN) for Si increases by less
than 0.2 from 5.7 to 5.9 (Fig. 2).

Although the Z method and two-phase melting curves are
in good agreement overall in the entire pressure range studied,
the Z method curve is slightly lower by about 300 K, and the
Simon-Glatzel fit to the Z method data indicates a slightly
flatter curve at lower pressures compared with the two-phase
melting curve. Since the same parameters for the electronic
wave function were used in the two methods, a possible ex-
planation for the small discrepancy could be the statistics, cell
size effects, or choice of electronic entropy in the NV E MD
runs (Z method).

In particular, the choice of electronic entropy is not evi-
dent in MD runs carried out in the NV E ensemble because
the Mermin free energy plus the ionic kinetic energy is a
conserved quantity, with the forces being propagated using

Hellmann-Feynman dynamics [32]. This means that the elec-
tronic temperature Tel is kept fixed along the entire trajectory.
A fixed electronic temperature, however, may introduce errors
in the calculated melting temperature because it is unable to
correctly capture electron-ion dynamics in both the solid and
liquid portions of the MD simulation since the temperature
difference between these states is large. If an MD run is
launched in the NV E ensemble with Tel chosen to be near
the liquid temperature, then Tel will be much lower than the
ensemble temperature in the solid state (before melting). A
too low electronic entropy, however, may favor the stabi-
lization of the solid and prevent melting. This will affect
the estimated homogeneous melting temperature and also the
“waiting time” for a solid to melt. Thus, the calculated melting
temperature may be too high. If an MD run is launched with
a much higher electronic temperature, for example, chosen
to lie close to the temperature of the solid state, a physi-
cally reasonable electronic-ionic interaction is ensured only
before melting. This is because once the solid melts at a
constant volume and total energy, the temperature drops by
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(1 − Tm/Th)Tm ≈ 2000 K (see Fig. S6), and the electronic
entropy will be much higher than the liquid temperature [33].
This generally favors an entropic stabilization of the liquid,
and the melting temperature may be too low. Here we choose
Tel ≈ Tm in the Z method calculations, indicating that the
melting temperature may be slightly overestimated by about
100 K for SiO2 at T ∼ 6000 K [33] (see also Fig. S6 in the
SM). Other possible sources of the small discrepancy between
these two curves could be the formation of defects in the solid
state accompanying freezing. Such defects were not seen in
the Z method runs when the box melted homogeneously, but
we noted that such defects sometimes form in the two-phase
calculations (as marked in Table S1 in the SM). Anyhow, the
overall good agreement between all three methods employed
in this work is encouraging and suggests the melting curve is
well represented by the smooth Simon-Glatzel fits shown in
Fig. 1.

The good agreement between our melting curves and that
reported by Usui and Tsuchiya [1] (plotted in Fig. 1) is
therefore possibly fortuitous because a very small two-phase
simulation box containing only 96 atoms was used in Ref. [1].
Such a box has a boundary similar in size to (or larger than)
the solid and liquid portions of the simulation box, and ex-
tensive statistics is needed to precisely determine the melting
temperature using such a small two-phase cell [21,22]. More-
over, the slope in Ref. [1] above about 60 GPa is also markedly
less steep than our melting curves, suggesting that it will lie
markedly lower than that of Millot et al. [8] if extrapolated
above 200 GPa.

It is also worth noting that our results are inconsistent with
the Z method calculations reported by González-Cataldo et al.
[9,10]. Whereas our curves show a smooth increase in the
pressure region between 200 and 400 GPa, the melting points
of González-Cataldo et al. [9,10] indicate a nearly flat curva-
ture from 200 to 350 GPa, followed by an abrupt increase in
temperature by more than 2500 K at around 400 GPa. This
anomaly was explained in Ref. [9] by the seifertite to pyrite
transition, which has been suggested to take place at around
280 GPa according to an experimental high-pressure study
[18]. Computational studies, however, consistently show that
this transition takes place at a much lower pressure, i.e., at
around 200 GPa or slightly less [2,7]. For example, highly
accurate hybrid functionals of DFT together with lattice dy-
namics predict that the transition to pyrite takes place at
around 200 GPa [2], indicating that the experimental work by
Kuwayama et al. [18] may be poorly constrained. Indeed, the
outcomes of four different experiments reported in Ref. [18]
all indicate a nearly vertical, but weakly constrained, dP/dT
slope, and the low experimental temperatures (<2000 K)
could therefore explain the delay in the transition pressure
due to slow kinetics. Such a “delayed” phase transition has
also been observed for other phase transitions in silica, for
example, the β-stishovite to seifertite transition (see, e.g.,
Ref. [5]), resulting in a too high transition pressure before the
high-pressure phase is visible in the x-ray diffraction patterns.

Moreover, the volume drop accompanying the seifertite to
pyrite transition is expected to be around 4% [2,18], which is
probably too small to explain the rapid increase in the melting
curve close to 400 GPa, as suggested in Refs. [9,10]. An
explanation for such a steep slope can possibly be associated

with the choice of electronic temperature in the DFT calcu-
lations and/or slow equilibration in the MD NVE runs close
to the homogeneous melting temperature which may prevent
melting. To investigate the origin of the discrepancy between
our melting curves and the melting point reported in Ref. [10]
at 8826 K and 391 GPa using the Z method, we attempted to
reproduce their high-temperature melting anomaly. We thus
carried out MD simulations with an initial temperature of
25 000 K and Tel = 7500 K with all atoms initially located at
their equilibrium positions. This initial temperature is slightly
lower than that used in Ref. [10], which is 26 000 K. With
these parameters, pyrite melts quickly (<5 ps in all our 11
parallel MD runs), reaching an average liquid temperature
and pressures of 8608 K and 383 GPa. This is quite close
to the liquid point estimated in Ref. [10] (i.e., 391 GPa and
8826 K). Although no electronic temperatures were reported
in Ref. [10], reasonable choices in the range 6000–9000 K
are expected to influence the melting temperature to less than
300 K [33]. Rapid melting in our MD simulations with Tini =
25000 K, however, indicate that the liquid temperature with
this choice of initial conditions is far higher than the equi-
librium melting temperatures. When we decrease the initial
temperature to as low as 22 000 K, the system still melts, but
the waiting time before melting is more than 120 ps in all
11 parallel MD runs, and the liquid temperature is 7747 K at
372 GPa. This is only about 100 K higher than the equilibrium
melting temperature extracted from a waiting time analysis.
This confirms that liquid temperature in MD runs with Tini =
26 000 K [10], assuming that the atoms are initially distributed
over their ideal positions with a reasonable choice of Tel, is
≈1000 K higher than the equilibrium melting temperature at
390 GPa.

Our MD simulations may also provide insight into the
kinetics of shock-compressed silica and shed some light on
the discrepancy between our SiO2 equilibrium melting curve
and that extracted from the shock experiment by Millot et al.
[8]. Shock Hugoniots appear to lie at different branches cor-
responding to amorphous or crystalline states depending on
experimental methodologies and timescales [45]. If the liquid
is unable to relax to the crystalline state at the timescale of
the shock pressure, one might expect that the Hugoniot may
lie at lower temperatures compared to that of a fully relaxed
(crystalline) state. Indeed, large-scale atomistic MD simula-
tions carried out by Shen et al. [45] show that points on the
amorphous Hugoniot will shift to the crystallized branch at
longer timescales. The discrepancy between our equilibrium
melting curve and that predicted from a shock study by Millot
et al. [8] could therefore be due to the incomplete crystalliza-
tion of stishovite or amorphous shock-compressed silica.

Changes in density and coordination numbers with pres-
sure are shown in Fig. 2 and the total and partial PDFs in
Fig. 3. The Si-O PDF shows that the correlation length in
the liquid state is mainly short range (<5 Å), pointing to a
high liquid entropy quantified by the relative distribution of
Si CNs. (see bottom Fig. 2). Comparison of the Si-O partial
PDFs at different pressures along the liquidus shows surpris-
ingly small changes in the Si-O bond length: The first peak
in the Si-O partial PDF is located at 1.65 Å at 6000 K and
100 GPa, whereas Si-O bonds are only about 0.1 Å shorter at
8250 K and 373 GPa. The driving force to increasing liquid
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FIG. 3. Top left and right plots show the total and partial (Si-O) PDFs for liquid silica, whereas the bottom left and right plots show the
corresponding (total and partial) PDFs for the solid phases.

density (and entropy) is therefore due to changes in local
coordination and/or electronic entropy. In particular, the elec-
tronic entropy could be the main source of the very flat
melting curve above 300 GPa since there is very little change
in the liquid structure in this region, reflected by a very small
increase in the average Si CN from 5.8 (300 GPa) to 5.9
(400 GPa) with pressure (Fig. 2).

The partial PDFs of the solids are in good agreement with
previous studies overall (see, e.g., Ref. [6]). For example,
the comparison of the nearest-neighbor O-O distances is at
about 2.2 Å at 214 GPa, in good agreement with that seen
in Ref. [6] at slightly lower pressure. In Fig. S7 in the SM,
we collect x-ray diffraction patterns of the liquid at two pres-
sures (76 and 275 GPa). The pattern is consistent with the
that of a previous study [46,47] containing a broad peak that
shifts to higher values of 2θ with increasing pressure, in line
with the increasing densification of liquid with short-range
correlation.

V. CONCLUSIONS

We have constrained the melting curve of pure silica from
about 50 to 500 GPa using DFT at the level of GGA together
with three complementary approaches to melting: the solid-

liquid coexistence approach, thermodynamic integration, and
the Z method. The melting curves/points from the three dif-
ferent approaches are in very good agreement overall. After
an abrupt increase following the transition to stishovite, the
two-phase melting curves flatten markedly at about 50 GPa
and increase smoothly from about 50 GPa with a dT/dP
slope of ≈15 K/GPa to about 500 GPa with dT/dP ≈
5 K/GPa. We do not see any evidence of the abrupt change
at around 120 GPa which was seen in a recent experimental
study [14,15] or the flattening at 200 GPa followed by an
abrupt increase of almost 1500 K in the pressure window from
300 to 400 GPa as observed from simulations using the Z
method reported in Ref. [9]. The topography of the melting
curves from 50 to 500 GPa is consistent with a gradual change
in the distribution of the Si coordination numbers in the liquid
state and the absence of large changes in the density following
solid-solid phase transitions. The pair distribution functions
show that the correlations in the liquid structure are mainly
short range and that the Si-O bond decreases by less than 0.2 Å
along the melting line from 100 to 400 GPa. The densification
of the melt structure with pressure above 50 GPa is therefore
mainly due to a gradual increase in seven-, eight-, and ninefold
coordinated silicon and a gradual decrease in Si with six or
fewer oxygens in the first coordination shell.
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