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Valence electron concentration (VEC) is a crucial parameter affecting the structure and mechanical properties
of materials. Nevertheless, the influence of VEC in multicomponent alloys remains muddy. Here, the correlations
between VEC and phase stability, intrinsic mechanical strength, and deformation mechanism are revealed by
investigating six equiatomic CoNiM (M = Ti, V, Cr, Mn, Fe, and Cu) alloys with VEC ranging from 7.7 to 10.0.
As VEC increases, the ground-state structure evolves from bcc to hcp and ultimately to fcc. Both elastic moduli
and ideal tensile strength increase initially and then decrease with increasing VEC, i.e., an inverted parabolic
trend, which arises due to the orbital-filling effect of valence electrons. We highlight that a medium VEC (∼8.3)
has superior intrinsic strength at a full filling of the bonding state but an empty antibonding state. Furthermore,
a strong link between intrinsic strength and the energy difference between bcc and fcc (�Efcc→bcc) is built. The
stacking fault (SF) energy γsf roughly increases with VEC except for in CoNiCr; this correlation is inherited from
the energy difference between fcc and hcp. The dependence of intrinsic deformation energy barriers on VEC
follows that of �Efcc→bcc since both are linked to the bonding strength. Depending on orientation, dislocation
slip (SL) and SF can co-occur in the alloys with low VEC while SL and twinning (TW) coexist in those with
high VEC. Both competition between SF or TW and SL and competition between SF and TW are dictated by γsf .
This work unveils relations between VEC and phase stability, intrinsic strength, and deformation mechanisms
and could provide some useful information for designing novel multicomponent alloys.
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I. INTRODUCTION

Valence electron concentration (VEC) serves as a key pa-
rameter that significantly affects the phase structure [1–3] and
the mechanical [4–6] and functional [7–10] performance of
materials. In NbCr2 [1] and (FeCoNi)3V [3] alloys, VEC is
recognized as the dominant factor in controlling phase struc-
ture. At low VEC, (FeCoNi)3V prefers a hexagonal structure,
while an ordered cubic structure becomes the favorable phase
with the increase in VEC. For mechanical properties, a famous
case is TiCxN1−x, where the system with VEC of ∼8.4 per cell
exhibits the highest hardness [4,11]. Besides, superconductiv-
ity and the Invar effect were also reported to rely on VEC [9].
Nowadays, tuning VEC has been developed as a key strategy
in tailoring the structure and properties of materials.

During the past decade, multicomponent alloys, also
known as high- or medium-entropy alloys, have garnered
significant attention due to their innovative design concept
and remarkable mechanical and functional performance, such
as high strength-ductility synergy [12–15], excellent radiation
[16], catalytic performance [17,18], and corrosion and oxida-
tion properties [19–21]. In analogy to conventional materials,
the impact of VEC on structures and mechanical properties
of multicomponent alloys is also non-negligible [22–31]. Guo
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et al. [23] discovered that at room temperature the AlCoCr-
CuFeNi alloys possess the single body-centered cubic (bcc)
phase with VEC < 6.8, the dual phase with a mixed face-
centered cubic (fcc) and bcc with 6.8 � VEC � 8.0, and the
single fcc phase when VEC > 8.0. Chen et al. [27] reported
that by decreasing or increasing VEC, the phase structures
can be tailored to be bcc or fcc, respectively. For mechanical
properties, it is argued that by changing VEC, the inherent
ductility of refractory multicomponent alloys can be remark-
ably modified [29]. Besides, Rao et al. [30] discovered that
Fe34.2Mn12.1Co33.5Ni12.3Cu7.9 with a VEC of 8.7, which is
identical to that of the classical Fe65Ni35 Invar alloy [9], also
exhibits the Invar effect. These efforts significantly enhance
our understanding of the influence of VEC on multicompo-
nent alloys.

Nevertheless, the relations between VEC and the phase
structures and mechanical performance, as well as underly-
ing mechanisms, remain unclear in the fcc multicomponent
alloys. In particular, the link between VEC and the deforma-
tion mechanism has never been established. Specifically, the
following VEC-associated critical issues are still unaddressed:
(i) Quantitative differences in phase stabilities of fcc, bcc,
and hexagonal close-packed (hcp) affected by VEC are un-
clear. This knowledge is of utmost importance for a highly
efficient design of phase structure in multicomponent alloys.
(ii) The correlations between VEC and intrinsic strength,
including elastic moduli and ideal tensile strength, as well
as underlying mechanisms, remain unknown. The low yield
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FIG. 1. Distribution of the M element in the studied CoNiM multicomponent alloys.

strength is one of the key obstacles to rendering the practical
application of fcc multicomponent alloys. Clarifying the link
between VEC and intrinsic strength might open a door to in-
creasing the intrinsic strength of multicomponent alloys. (iii)
The relation between VEC and the activation of deformation
modes, such as dislocation slip, deformation twinning, and
deformation-induced phase transitions, is unexplored. The
plastic deformation ability of materials is majorly decided by
the activation of deformation modes. Thus, uncovering the
relation between VEC and deformation modes could be useful
for the design of novel multicomponent alloys.

To bridge these knowledge gaps, the phase structures,
intrinsic mechanical properties, electronic structures, and de-
formation mechanisms of a series of CoNiM multicomponent
alloys are systematically studied by first-principles calcu-
lations. Herein, the M element is covered 3d transitional
elements (M = Ti, V, Cr, Mn, Fe, and Cu, as highlighted
in Fig. 1) to achieve a wide VEC ranging from 7.7 to 10.0.
First, the lattice stabilities of the CoNiM alloys in the fcc,
bcc, and hcp structures are systematically studied (Sec. III A).
The relations between VEC and the energy difference among
various phases are explored. Second, the elastic moduli and
ideal tensile strength of the CoNiM alloys with the fcc struc-
ture are evaluated (Sec. III B). The dependences of intrinsic
strengths on VEC as well as underlying mechanisms are dis-
cussed. Third, the generalized stacking fault energy curves (γ
surface) are calculated (Sec. III C). The VEC dependences of
stacking fault energy, intrinsic and effective energy barriers of
dislocation slip, deformation twinning, and stacking fault (or
stress-induced fcc → hcp phase transition), and activation of
deformation modes are elucidated and discussed.

II. COMPUTATIONAL METHODOLOGY

A. Total energies of chemically disordered
multicomponent alloys

Total energies of chemically disordered multicomponent
alloys were calculated by using the exact muffin-tin orbit
(EMTO) method [32–36] in combination with coherent poten-
tial approximation (CPA) [37]. The Kohn-Sham equation was
solved within the scalar-relativity approximation and the soft-
core scheme. The exchange-correlation energy was described
with the generalized gradient approximation (GGA) in the
Perdew-Burke-Ernzerhof (PBE) parametrization [38]. The s,
p, d , and f orbitals were employed to treat the muffin-tin
basis set. The Green’s function was calculated for 32 complex
energy points around valence states. The full charge density

technique was applied for an accurate calculation of total en-
ergy [39]. The first Brillouin zone was sampled with uniform
Monkhorst-Pack [40] k-point meshes of 21 × 21 × 21 for bcc
and fcc and 21 × 21 × 17 for hcp, respectively. The param-
agnetic state was simulated by the disordered local moment
model [41].

B. Mechanical properties and stacking fault energy

Independent elastic constants were determined by using
the strain-energy method (Appendix A 1) [42]. The Young’s
modulus E and shear modulus G for isotropic polycrystalline
materials were estimated by using the Voigt-Reuss-Hill al-
gorithm (Appendix A 2) [35]. The ideal tensile stress-strain
curves of the fcc structure along [110] were calculated by
the strain-energy method [43–45]. During the calculations,
a series of uniaxial tensile strains ε, ranging from 0 to 0.09
with an interval of 0.01, were applied along [110], while the
vectors perpendicular to [110] were fully relaxed under the
conserved volume. The tensile stress σ (ε) under the strain ε

can be determined by the total energies of the strained lattices
with the following relation:

σ (ε) = 1 + ε

�

∂E (ε)

∂ε
, (1)

where E (ε) is the total energy per atom under strain ε and � is
the volume per atom of the system. The generalized stacking
fault energy curves of the fcc CoNiM alloys for [112] shear on
the {111} plane were calculated by an alias shear of a periodic
supercell lattice [46,47]. A 12-atom supercell structural model
with six {111} layers was adopted. The γ surface can be
calculated by using the following relation:

γ surface = E(x,y) − E0

A(111)
, (2)

where E0 and E(x,y) are the total energies of the system before
and after slip, respectively, and A(111) is the area of the {111}
slip plane of the supercell.

C. Electronic structure

The electronic structure was calculated by using the Vienna
ab initio simulation package (VASP) [48]. The energy conver-
gence criterion and the plane-wave cutoff energy were set to
be 10−5 and 600 eV, respectively. The PBE parametrization of
the GGA was employed to describe the exchange-correlation
function [38,49]. The electron-ion interactions were described
by the projector augmented wave (PAW) pseudopotential
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FIG. 2. Comparison of the total energies of the studied CoNiM
alloys with the bcc, fcc, and hcp structures plotted as a function of the
Wigner-Seitz radius. (a) CoNiTi, (b) CoNiV, (c) CoNiCr, (d) CoN-
iMn, (e) CoNiFe, and (f) CoNiCu. For a better illustration, the total
energies of various structures are normalized with the minimum
energy of the fcc structure. The inset in (b) is an enlarged image
of the region indicated by the solid box.

approach. The chemical disorder was simulated by using
the special quasirandom structure (SQS) approach as imple-
mented in Alloy Theoretic Automated Toolkit (ATAT) [50].
The range of atom pair correlations is up to second-nearest
neighbors. For the CoNiM alloys with the fcc structure, a
108-atom supercell, consisting of 36 atoms for each of Co,
Ni, and M, was utilized. The Brillouin zone sampling was
performed by the Monkhorst-Pack scheme with a 3 × 3 × 3
k-point mesh. The projected crystal orbital Hamilton popu-
lation (COHP) was determined by using Local Orbital Basis
Suite Towards Electronic-Structure Reconstruction (LOBSTER)
software [51,52]. The basis function sets of 3d , 4s, and 4p
orbitals for all elements were considered.

III. RESULTS AND DISCUSSION

A. Phase stability

Figures 2(a)–2(f) display the total energies of the CoNiM
(M = Ti, V, Cr, Mn, Fe, and Cu) alloys with the fcc, bcc,
and hcp structures. Here, the paramagnetism treated by us-
ing the disordered local moment approach [41] is considered
since the CoNi-based multicomponent alloys typically exhibit
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FIG. 3. VEC dependences of the ground-state structure and the
energy difference between different structures. (a) Ground-state
structure vs VEC. (b) �Efcc→bcc vs VEC. (c) �Efcc→hcp vs VEC. The
red dashed line in (c) is to guide the eye.

paramagnetism at room temperature [53–56]. We see that
CoNiTi, with the lowest VEC (VEC = 7.7), exhibits a prefer-
ence for the bcc structure with a thermodynamic advantage of
∼15 (meV atom−1) compared with the fcc and hcp structures
[Fig. 2(a)]. With increasing VEC, the most favorable structure
shifts towards the hcp type, as exhibited in CoNiV, with a VEC
of 8.0 [Fig. 2(b)], and CoNiCr, with a VEC of 8.3 [Fig. 2(c)].
Remarkably, for CoNiV, the thermodynamic stabilities of the
fcc and hcp phases are almost identical with an energy dif-
ference of less than 1 (meV atom−1). With further increase
in the VEC, the most stable structure becomes the fcc type,
as shown in CoNiMn with a VEC of 8.7 [Fig. 2(d)], CoNiFe
with a VEC of 9.0 [Fig. 2(e)], and CoNiCu with a VEC of
10.0 [Fig. 2(f)]. These findings highlight a strong correlation
between VEC and the phase structure. More clearly, as plotted
in Fig. 3(a), the CoNiM alloys with lower VEC favor the bcc
structure (VEC < 8.0), while those with higher VEC prefer
the fcc structure (VEC > 8.3); meanwhile, the alloys with a
medium VEC tend to adopt the hcp structure.

This result, i.e., the result that a high VEC favors the
fcc structure while a low VEC prefers the bcc structure, is
consistent with the observations of Guo et al. [23] and Chen
et al. [27]. It is known that the VEC dependence of the crystal
structure is ascribed to the distinct distribution features of the
electron density of state (DOS) of different structures [22,57].
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Normally, the perfect bcc structure possesses a bimodal DOS
of d orbitals, while the fcc and hcp structures exhibit a uni-
modal DOS. At low VEC, the filling in bimodal DOS leads
to a more negative electronic band energy compared with the
filling in unimodal DOS. Inversely, at high VEC, the filling
in unimodal DOS corresponds to a lower band energy. Be-
sides, one may note that the ground-state structure of CoNiCr
[Fig. 2(c)] is determined to be hcp, aligning well with the
results of a previous theoretical study [58]. Nevertheless, this
result seems to contradict the experimental observation of
a single fcc structure at room temperature [59]. The Gibbs
free energy calculation shows that the fcc phase gradually
evolves into being the favorable phase in the thermodynam-
ics compared with the hcp phase in CoNiCr with elevated
temperature. Details of the calculations are given in the Sup-
plemental Material [60] (see also Refs. [35,61–66] therein).
Moreover, very recently, a local hcp structure has been de-
tected in CoNiCr at 77 K [58].

To quantitatively clarify the difference in stabilization by
VEC in different phases, the correlations between VEC and
the energy differences between various phases are investi-
gated. In Fig. 3(b), we display the total energy difference
between the bcc and fcc structures (�Efcc→bcc) defined by
Ebcc − E fcc plotted as a function of VEC. As VEC increases,
�Efcc→bcc increases rapidly followed by a slight decrease. In
the subsequent text, for simplicity, we refer to this tendency
as an “inverted parabolic trend,” although the right side of
this curve is obviously higher than the left side. Notably,
�Efcc→bcc of CoNiCr, CoNiMn, and CoNiFe with medium
VEC possess the largest positive values (∼60 meV atom−1).
In contrast, CoNiTi, with the lowest VEC, shows a nega-
tive �Efcc→bcc (−15 meV atom−1). Figure 3(c) illustrates the
VEC dependence of the energy difference between the hcp
and fcc structures (�Efcc→hcp) defined by Ehcp − E fcc. With
the exception of CoNiCr, �Efcc→hcp shows a roughly linear
increasing trend with increasing VEC, as indicated by the
dashed line. This result implies that a higher VEC tends to
stabilize the fcc phase over the hcp phase. The large negative
deviation of CoNiCr is believed to be associated with the
special magnetoresistive frustration effect of Cr [67].

B. Mechanical properties

To clarify the relation between VEC and intrinsic strength,
the elastic moduli and ideal tensile strength of the CoNiM
alloys are calculated. Herein, for all the studied alloys, the
fcc structure is examined, even though some of the alloys are
not fcc at the ground state. The reasons for this selection are
twofold. First, most of the studied CoNiM alloys, including
CoNiCr and CoNiV, possess a single fcc phase in experiments
at room temperature [54,55,68,69]. Therefore, studying the
fcc structure is more meaningful to guide experiments. Sec-
ond, by focusing on the same structure, the results of different
CoNiM alloys can be directly compared, which facilitates
unveiling the hidden links between VEC and intrinsic me-
chanical properties.

1. Elastic moduli

In Table I, we list the determined lattice constant a0 and
independent elastic constants of the CoNiM alloys along with

TABLE I. VEC, lattice constant a0, and independent elastic con-
stant Ci j of fcc CoNiM (M = Ti, V, Cr, Mn, Fe, and Cu) paramagnetic
alloys.

Alloy VEC a0 (Å) C11 (GPa) C12 (GPa) C44 (GPa)

CoNiTi 7.7 3.68 131.4 111.3 115.3
CoNiV 8.0 3.58 247.3 196.4 147.8
CoNiCr 8.3 3.52 298.2 204.0 179.4

3.53a 290.1a 197.3a 175.9a

3.52b 278.8b 188.8b 183.0b

CoNiMn 8.7 3.53 197.5 101.3 182.1
3.53b 211.7b 116.4b 184.4b

CoNiFe 9.0 3.52 235.6 145.6 178.0
3.53b 234.2b 144.2b 177.9b

CoNiCu 10.0 3.54 224.1 152.3 145.0

aReference [70].
bReference [71].

those of CoNiCr, CoNiMn, and CoNiFe reported in the liter-
ature [70,71]. Calculation details are given in Appendix A 1.
We see that the determined a0 and elastic constants of CoNiCr,
CoNiMn, and CoNiFe are in good agreement with the pre-
vious results. For all the alloys, the elastic constants satisfy
the Born-Huang elastic stability criteria [72], i.e., C11 > 0,
C44 > 0, C11 + 2C12 > 0, and C11 > C12. It is known that for
cubic crystals, the tetragonal shear modulus C′ defined by
(C11 − C12)/2 serves as an indicator of dynamic instability,
resulting from the coupling of shear modes and leading to
a breaking of crystal symmetry [73]. In Fig. 4(a), we plot
the relation between C′ and VEC. We see that the variation
of C′ as a function of VEC displays an inverted parabolic
trend, mirroring that of �Efcc→bcc [Fig. 3(b)]. This result in the
CoNiM alloys is in good agreement with the observation in
pure transition metals [57,74,75]. It suggests that for CoNiM
alloys with fcc structure the dynamic stability is enhanced ini-
tially with an increase in VEC followed by a slight decrease.

Figures 4(b), 4(c), and 4(d) show the VEC dependences
of the isotropic shear modulus G, the isotropic Young’s mod-
ulus E , and the bulk modulus B, respectively. Calculation
details are described in Appendix A 2. Surprisingly, for all
G, E , and B, their variations with VEC roughly follow the
trend of C′ [Fig. 4(a)], i.e., an inverted parabolic trend, as
depicted by the dashed curves. This result suggests that the
CoNiM alloys with high elastic moduli can be found at a
medium VEC. Among the studied alloys, CoNiCr, with a VEC
of 8.3, exhibits the highest combination of elastic moduli,
namely C′ = 47.1 GPa, G = 105.0 GPa, E = 274.0 GPa, and
B = 235.4 GPa. One may note that the B values of CoNiMn
and CoNiFe exhibit relatively large deviations from the in-
verted parabolic trend [highlighted by the dashed ellipse in
Fig. 4(d)], which will be discussed later.

2. Ideal tensile strength

The ideal tensile strength is an indicator of inherent me-
chanical properties of materials, playing a crucial role in
understanding a material’s mechanical performance [76,77].
Figure 5(a) illustrates the ideal tensile stress-strain curves of
the fcc CoNiM alloys along the [110] direction [70]. The
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reason for this selection is that [110] is the weakest direction
of the fcc crystal. For comparison, the ideal tensile stress-
strain curve of CoNiCr [70] is also included. The excellent
agreement between our result and the previous report for
CoNiCr evidences the reliability of our calculations. We see
that CoNiCr exhibits the highest ideal tensile strength σm

(11.3 GPa) at a maximum strain εm of ∼7%. In contrast,
CoNiTi demonstrates the lowest σm (0.47 GPa) with εm of
∼2%. The lowest εm of CoNiTi could be attributed to the fact
that this alloy is inherently unstable in the fcc configuration
and tends to transform into the bcc structure [Fig. 2(a)].

In Fig. 5(b), we plot the relation between σm and VEC.
Amazingly, we observe that with the increased VEC, σm ex-
hibits an inverted parabolic trend. To validate the generality
of this trend, the σm of two classical alloys, FeMnCoCrNi
(the Cantor alloy) and CrFeCoNi [70], are also plotted. It
is clear that despite the significant composition difference
between these two alloys and the CoNiM alloys, they roughly
follow the inverted parabolic relation between σm and VEC.
Among the studied alloys, CoNiCr with a medium VEC (8.3)
possesses the highest σm, which is even higher than those of
the CrFeCoNi and Cantor alloys, although the configuration
entropy of CoNiCr (1.1R) is smaller than that of the CrFeCoNi
(1.4R) and Cantor (1.6R) alloys. This result provides us with
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an alternative viewpoint to understand the superior mechan-
ical properties of CoNiCr in experiment [68]. Moreover, this
finding implies that there exists a strong relation between VEC
(rather than configuration entropy) and the intrinsic strength
of the fcc multicomponent alloys. Besides, one may note that
the σm of CoNiV is smaller than that of CoNiCr, which seems
to contradict the experimental observations of a higher yield
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stress of CoNiV [55,68]. This discrepancy may be associated
with the neglected effects of local lattice distortion (LLD)
and chemical short-range order (SRO) in this paper, which
are believed to play key roles in the high yield strength of
CoNiV [55]. The presence of prominent LLD in CoNiV leads
to an atom strain field, which elastically interacts with the
strain field of dislocations and provides pinning forces to
the activation and movement of dislocations [55]. Moreover,
the existence of SRO in CoNiV [78] could also act as a
barrier to pinning dislocation, thus contributing to a high
yield stress. A detailed discussion about the roles of LLD
and SRO is given in the Supplemental Material [60] (see also
Refs. [12,22,55,56,58,79–91] therein). In this paper, consid-
ering that LLD and SRO vary greatly in different CoNiM
alloys, the effects of these two factors are omitted for a better
illustration of the role of VEC.

In Fig. 5(c), we display the ratio between σm and Young’s
modulus E along [110] (i.e., σm/E[110]) with respect to VEC.
As a reference, the line of σm/E[110] = 0.05, which is de-
termined by assuming sinusoidal stress-strain behavior for a
defined cell volume and is often used to estimate σm from
E[110] [92], is also plotted. We find that the σm/E[110] values
of all CoNiM alloys are smaller than 0.05. Among them,
the alloys with medium VEC, such as CoNiCr, CoNiMn,
and CoNiFe, are much closer to the line of 0.05 compared
with those with low and high VEC. This observation further
indicates that a medium VEC (∼8.3) is favorable to achieve a
superior intrinsic strength.

From Figs. 4 and 5, we know that the VEC dependences
of all the investigated intrinsic strengths, including C′, E , G,
B, and σm, exhibit the identical characteristic, i.e., an inverted
parabolic trend. This finding provides us with useful infor-
mation to tune the intrinsic strength of fcc multicomponent
alloys. Furthermore, we note that the VEC dependences of
intrinsic strengths are exactly the same as that of �Efcc→bcc

[Fig. 3(b)]. In Figs. 6(a) and 6(b), we display the elastic
moduli C′, E , G, and B and σm with respect to �Efcc→bcc.
Clearly, a roughly linear relation between intrinsic strengths
and �Efcc→bcc is observed. Thus �Efcc→bcc may also serve
as an indicator of intrinsic strength. As is known, �Efcc→bcc

can be routinely obtained by first-principles calculations. This
provides an alternative guidance to design novel fcc multi-
component alloys.

3. Mechanism of the VEC dependence of intrinsic strength

To clarify the correlation between VEC and intrinsic
strength, the crystal orbital Hamilton population (COHP) of
the CoNiM alloys is investigated. For each alloy, a 108-atom
supercell constructed by using the SQS method [50] was
built to mimic chemical disorder. For simplicity but without
the loss of generality, herein, nonmagnetism was considered.
Figures 7(a)–7(f) display the mean COHP curves of vari-
ous first-nearest-neighboring chemical bonds of the CoNiM
alloys. Remarkably, the mean COHP curves of the studied
CoNiM alloys share similar features, as depicted in Fig. 8(a).
At low energy, there exists a substantial bonding state with
−COHP greater than 0. As the energy rises, the nonbonding
state with −COHP equaling 0 appears. With further elevated
energy, the antibonding state with −COHP less than 0 is

-20 0 20 40 60 80

0

4

8

12

0

80

160

240

320

r = 0.97

CoNiMn

CoNiFe
CoNiCr

CoNiCu
CoNiV

m
(G

Pa
)

CoNiTi

CoNiTi CoNiV CoNiCr
CoNiMn CoNiFe CoNiCu

m

Linear fitting

E (meV atom-1)

(b)

C'

G

B

El
as

tic
m

od
ul

i
(G

Pa
)

E

(a)

FIG. 6. Relation between intrinsic strength and �Efcc→bcc. (a) C′,
G, E , and B. (b) σm.

observed. These bonding and antibonding states around the
Fermi level EF should be majorly associated with the 3d
orbital electrons of transition metal elements (i.e., Co, Ni, and
M) [93,94].

Despite the similar COHP frames of various CoNiM al-
loys, their EF positions with respect to the bonding and
antibonding states are greatly different. Figure 8(b) highlights
the position of EF of the different CoNiM alloys in the aligned
schematic COHP diagrams plotted with the information of the
calculated COHP curves. Note that the illustration in Fig. 8(b)
is different from that in Fig. 7, in which the COHP curves
are aligned with their normalized EF (i.e., E − EF = 0). For
CoNiTi and CoNiV, EF is located in the region of the bonding
state. Notably, from CoNiTi to CoNiV, EF moves up and
approaches the nonbonding state gradually, leading to a higher
filling degree of the bonding state in CoNiV compared with
CoNiTi [highlighted by the light blue areas in Fig. 8(b)]. For
CoNiCr, EF climbs to the region of the antibonding state but is
very close to the nonbonding state. As for CoNiMn, CoNiFe,
and CoNiCu, their EF continues to move upwards and further
away from the nonbonding state, resulting in an increasing
filling degree of the antibonding states [highlighted by the
light red areas in Fig. 8(b)].

As is known, electron occupation in the bonding state
is favorable to enhancing the strength of chemical bonding,
while the occupation of the antibonding state tends to weaken
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FIG. 7. COHP curves of the CoNiM alloys. (a) CoNiTi, (b) CoNiV, (c) CoNiCr, (d) CoNiMn, (e) CoNiFe, and (f) CoNiCu.

the bonding strength. From CoNiTi to CoNiV to CoNiCr,
the bonding state is gradually filled up (even with partial
occupation of the antibonding state in CoNiCr). This explains
the enhanced elastic moduli and σm of the CoNiM alloys with
the M element from Ti to Cr. From CoNiMn to CoNiFe to
CoNiCu, more and more antibonding states are filled. This
accounts for their gradually weakened mechanical strength.
Thus the band-filling effect of valence electrons should be
responsible for the various observed property trends with
the inverted parabolic relation. To quantitatively elucidate the
band-filling degree of various CoNiM alloys, the energy inte-
gration of COHP up to EF (ICOHP), an indicator describing
bonding strength [51,52], is calculated. The result is shown in
Fig. 9. We see that the absolute value of ICOHP (|ICOHP|) of
the CoNiM alloys increases first and then decreases with the
M element going from Ti to Cu, in good agreement with the
above analysis. Besides, in addition to bonding strength, the
band-filling effect also governs the value of �Efcc→bcc [57].
This accounts for the established link between �Efcc→bcc and
intrinsic strength (Fig. 6).

From the above discussion, it is evident that the position of
EF with respect to the bonding and antibonding states would
be the key factor affecting the degree of band filling and then
deciding the intrinsic mechanical strength. Specifically, with
the variation of the M element from Ti to Cu, EF moves up-
wards continuously from the bonding state to the antibonding
state, leading to an increase initially and then a decrease in
bonding strength, which is responsible for the variation in
mechanical properties of the CoNiM alloys. We now discuss
the reason behind the gradually raised EF from CoNiTi to
CoNiCu. As is known, EF represents the highest energy of the
occupied electron state, and the integration of the electronic
DOS up to EF equals the valence electron number of the sys-
tem. Thus, when the variation in the DOS structure is limited,
the number of valence electrons of the system, in other words,
VEC, would be the key factor in deciding EF [94,95]. For the
studied CoNiM alloys, the increased valence electron number
of the M elements from Ti (3d24s2) to Cu (3d104s1) accounts
well for the varying EF of the CoNiM alloys, which suggests
that VEC would be the key factor deciding the position of

CoNiTi CoNiV CoNiCr CoNiMn CoNiFe CoNiCu

VEC

low high

EF

-COHP-COHP

(a) (b)
VEC=7.7 VEC=8.0 VEC=8.3 VEC=8.7 VEC=9.0 VEC=10.0

EF

EF

EF
EF

EF

FIG. 8. Schematic diagram of COHP of the CoNiM alloys. (a) Schematic COHP diagram. (b) COHP of the CoNiM alloys with
highlighted EF.
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EF in various CoNiM alloys. This is reasonable since all the
studied CoNiM alloys have fcc structure and the various M
elements have similar valence electron configurations (char-
acterized by an open 3d shell), and thus the DOS structures
of the studied CoNiM alloys would share similar features. Al-
though the differences in atomic radius and electronegativity
(and also other factors) of the M elements could also tune
the position of EF by affecting the DOS structure, their roles
would be relatively limited compared with that of VEC.

We now discuss the possible reason for the anomalies in
B in CoNiMn and CoNiFe, i.e., the relatively large nega-
tive deviation compared with the inverted parabolic relation
[Fig. 4(d)]. Herein, a factor �r characterizing the expansion
or contraction of lattice volume during the formation of solid
solution is introduced. The definition of �r is as follows:

�r = r0 − r̄ = 3

√
3

16π
a0 −

3∑
i=1

ri

3
, (3)

where r0 is the average atomic radius of the CoNiM alloys
and r̄ represents the mean of the atomic radii ri of the Co,
Ni, and M elements. Figure 10(a) displays the �r determined
for various CoNiM alloys. Amazingly, except for CoNiMn
and CoNiFe, the �r possess negative values. This observation
shows that during the formation of the solid solution, the
mean atomic radii of CoNiMn and CoNiFe are elongated
while those of the other alloys are shortened. As is known, the
bulk modulus B is very sensitive to lattice volume [62]. The
expansion of the lattice typically weakens bonding strength.
This might be the reason for the relatively large negative
deviation in B in CoNiMn and CoNiFe. In Fig. 10(b), we
plot the atomic magnetic moments of the CoNiM alloys.
We see that the atomic magnetic moments in CoNiMn and
CoNiFe are obviously prominent compared with other alloys.
The atomic moments of Mn and Fe in CoNiMn and CoNiFe
are determined to be 2.24 and 2.36 μB atom−1, respectively,
which values are even larger than those in the pure metals
(0.58 μB atom−1 for Mn [96] and 1.32 μB atom−1 for Fe [97]).
As is known, the magnetic moment significantly affects the
lattice volume of a crystal [62]. Generally, a large magnetic
moment tends to expand the volume of the lattice. Thus the

FIG. 10. Variation of mean atomic radius during the formation
of solid solution and local magnetic moment of the CoNiM alloys.
(a) �r defined by r0 − r̄, where r0 is the average atomic radius of the
CoNiM alloy and r̄ represents the mean of the atomic radii ri of the
Co, Ni, and M elements. (b) Local atomic magnetic moments of Co,
Ni, and M in the paramagnetic CoNiM alloys.

large magnetic moment of Mn and Fe in CoNiMn and CoNiFe
could be the reason for their positive �r and, further on,
relatively small B.

C. Plastic deformation mechanism

We now focus on the relation between VEC and the ac-
tivation of the plastic deformation mode. The mechanical
performance of metallic materials is greatly shaped by the
plastic deformation mechanism [98–100]. A trade-off be-
tween strength and ductility is generally inevitable when
dislocation slip occurs solely. By contrast, introducing defor-
mation twinning or stress-induced phase transformation can
reliably break this dilemma. For the fcc alloys, the activation
of deformation mechanisms can be effectively predicted from
the generalized planar fault energy (GPFE) curve [101].

1. Generalized stacking fault energy

Figure 11(a) depicts the three typical GPFE curves of
the {111} close-packed plane shearing along 〈112〉. For
the perfect fcc structure, the stacking sequence of {111}
is · · · ABCABC · · · . When a Shockley partial dislocation
moves along 1/6 [112] (V1) on a certain (111) plane, an
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FIG. 11. GPFE curves and γ surfaces of the fcc CoNiM alloys for 〈112〉 alias shear on the {111} plane. (a) Three typical GPFE curves of
the fcc alloys. (b1)–(b6) γ surfaces of CoNiTi, CoNiV, CoNiCr, CoNiMn, CoNiFe, and CoNiCu. For comparison, γ surfaces of three typical
fcc alloys, i.e., Al, Cu, and Cantor alloy that possess high (142 mJ m−2) [104], medium (43 mJ m−2) [104], and low (−18 mJ m−2) [105] γsf ,
respectively, are included.

intrinsic stacking fault (SF) with a stacking sequence of
· · · AB| ABCA · · · (“|” represents the SF plane) appears.
The energy barrier (b = 0.5) and valley (b = 1.0) are the
so-called unstable SF energy γusf and the stable intrinsic
SF energy γsf , respectively. Starting from this existing SF,
there are three travel routes for {111}, corresponding to
three common deformation modes of fcc metals, i.e., dis-
location slip, deformation twinning, and the stress-induced
fcc → hcp phase transition. (i) If the {111} plane moves
continuously but along 1/6 [2 1 1] (V2), the SF disappears
with a stacking of · · · ABCABC · · · , corresponding to a full
dislocation. (ii) When another partial dislocation is activated
on a consecutive {111} plane along 1/6 [112] (V1), the stack-
ing sequence becomes · · · A B | A| C AB · · · , and hence a

three-layer twin nucleus with the interfaces of B and C is
generated. The energy barrier (b = 1.5) and valley (b = 2.0)
are the unstable twinning fault energy γutw and extrinsic SF
energy γesf , respectively. Conventionally, the energy evolution
from the perfect fcc and passing through the intrinsic SF
to the extrinsic SF is referred to as the generalized stack-

ing fault energy or γ surface. (iii) When partial dislocations
regularly occur on every other {111} plane, the stacking
becomes · · · AB| AB| AB · · · , and hence an hcp nucleus is
formed. Normally, the energy evolution along routes (i) and
(iii) can be approximately evaluated from the γ surface,
which is due to the fact that the impact of SF on both lattice
strain and charge redistribution is limited on the adjacent two
{111} planes for typical fcc alloys [102]. Specifically, for
dislocation slip, the energy variation (dark yellow curve in
Fig. 11(a) is symmetric to that of the intrinsic SF [black curve
in Fig. 11(a)], which is reasonable as these two processes,
in fact, correspond to the leading and trailing partial disloca-
tions, respectively. As for the stress-induced fcc → hcp phase
transition, the energy variation [light blue curve in Fig. 11(a)]
typically is equal to a rigid shift of that of the intrinsic SF with
a magnitude of γsf [103].

In Figs. 11(b1)–11(b6), we display the γ surfaces of the
six studied CoNiM alloys along with those of three typical
fcc alloys with a high, medium, and low γsf , respectively, i.e.,
Al (142 mJ m−2) [104], Cu (43 mJ m−2) [104], and Cantor
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(−18 mJ m−2) [105]. We see that for the alloys with low VEC,
including CoNiTi [Fig. 11(b1)], CoNiV [Fig. 11(b2)], and
CoNiCr [Fig. 11(b3)], γusf is near to (or even larger than) γutw

and γsf is close to zero (or even negative). This shape of the
γ surface is similar to that of the Cantor alloy. Nevertheless,
for the alloys with high VEC, such as CoNiMn [Fig. 11(b4)],
CoNiFe [Fig. 11(b5)], and CoNiCu [Fig. 11(b6)], their γ

surfaces are more like those of Al and Cu. Specifically, γusf

is obviously smaller than γutw, and γsf is greatly larger than
zero. These results imply that there might be a link between
VEC and the γ surface in fcc multicomponent alloys. In what
follows, we will focus on exploring the relations between
VEC and γsf , intrinsic and effective energy barriers, and the
activation of deformation modes.

2. Intrinsic stacking fault energy

The correlation between γsf and VEC is first investigated
due to the key role of γsf in the plastic deformation mecha-
nism. For completeness, in addition to extracting it from the
γ surface, γsf is reevaluated by using the first-order axial in-
teraction model (AIM) with the neglect of the transformation
strain energy [86,106,107]. In the picture of the AIM, γsf is
estimated by

γsf = 2�Efcc→hcp

A(111)
, (4)

where A(111) is the unit area of the {111} plane. In Fig. 12(a),
we compare the γsf of the CoNiM alloys determined by AIM
with those extracted from the γ surface. It is evident that the
γsf values calculated using these two approaches align well
with each other. From Eq. (4), one knows that γsf is dictated
by two parameters, i.e., �Efcc→hcp and A(111), where the latter
solely relies on lattice constant a0. Thus a natural question
arises as to which factor is the dominant one in deciding γsf .
To address this issue, in Figs. 12(b1) and 12(b2), we plot the
γsf of the CoNiM alloys as a function of �Efcc→hcp and a0,
respectively. Remarkably, γsf increases in a roughly linear
manner with respect to �Efcc→hcp with a Pearson’s correlation
coefficient of as high as 0.96 [Fig. 12(b1)]. In contrast, no clear
pattern is seen in the a0 vs γsf plot [Fig. 12(b2)]. This result
illustrates that �Efcc→hcp, rather than a0, decides the variation
of γsf in the CoNiM alloys. In Fig. 12(c), we visualize the rela-
tion between VEC and γsf . As expected, following �Efcc→hcp

[Fig. 3(c)], γsf is roughly linearly correlated with VEC except
for in CoNiCr.

3. Intrinsic energy barrier

For any physical or chemical process, the energy barrier is
a critical parameter because a prerequisite for the occurrence
is a higher driving field against the energy barrier. In this sec-
tion, the VEC dependences of intrinsic energy barriers (IEBs)
of various deformation modes are investigated. As depicted in
Fig. 11(a), IEBs of full dislocation slip (SL, γ SL), deforma-
tion twinning (TW, γ TW), and stacking fault or stress-induced
fcc → hcp phase transition (SF, γ SF) can be calculated by

γ SL = γusf − γsf , (5)

γ TW = γutw − γsf , (6)

γ SF = γusf . (7)
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FIG. 12. Intrinsic stacking fault energy γsf . (a) Comparison of
γsf determined by the AIM with those extracted from the γsf surface.
(b1) and (b2) Relations between γsf and �Efcc→hcp (b1) and between
γsf and the equilibrium lattice constant a0 (b2). (c) Dependence of γsf

on VEC.

Figures 13(a1), 13(a2), and 13(a3) display the γ SL, γ TW, and
γ SF of the CoNiM alloys vs VEC, respectively. Amazingly,
the IEBs γ SL, γ TW, and γ SF all show an inverted parabolic
trend with respect to VEC, which is exactly the same as the
inverted parabolic trends of �Efcc→bcc [Fig. 3(b)], the elastic
moduli (Fig. 4), and the ideal tensile strength [Fig. 5(b)].
In Figs. 13(b1), 13(b3), and 13(b3), we plot γ SL, γ TW, and
γ SF, respectively, vs �Efcc→bcc taken as an example. Clearly,
γ SL, γ TW, and γ SF all exhibit strongly linear correlations with
�Efcc→bcc. This result tells us that in addition to �Efcc→hcp,
which can greatly shape the deformation mechanism by de-
ciding γsf , �Efcc→bcc should also play a non-negligible role in
the activation of the deformation mechanism due to the strong
link between it and the IEBs of various deformation modes.

We now discuss the mechanism behind the inverted
parabolic correlation between IEBs and VEC. Herein, we take
the IEB of SF as an example, i.e., from · · · ABCABC · · ·
to · · · AB| ABCA · · · . As shown in Fig. 13(c), during the
formation of an intrinsic SF, e.g., when layer C of {111}
moves to the position of layer A, atom C′ in layer C should slip
across between atoms B′ and B′′ in the adjacent layer B. The
IEB indeed corresponds to the configuration where atom C′
is exactly between atoms B′ and B′′. During the movement of
layer C, the spacing between atoms B′ and B′′ in the adjacent
layer B would be inevitably disturbed. In return, the bonding
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FIG. 13. Intrinsic energy barriers of dislocation slip γ SL, defor-
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γ SF as a function of the energy difference between the bcc and fcc
structures �Efcc→bcc. (c) Sketch of atom positions of layers A, B, and
C during the formation of an intrinsic SF.

strength between atoms B′ and B′′ would affect the formation
of intrinsic SF. As revealed in Sec. III B 3, with the increase in
VEC, the bonding strength is enhanced first with the increased
filling fraction of the bonding state and weakens when the
antibonding state is filled. This could be the reason for the
inverted parabolic correlation between IEBs and VEC.

4. Effective energy barrier

Engineering materials are usually serviced in their poly-
crystalline form, in which different grains exhibit distinct
crystallographic orientations. Apart from the IEB, the grain
orientation with respect to the loading direction greatly affects
the activation of the deformation mode, since SF, TW, and SL

Deformation twinning

cation

FIG. 14. Relative orientation of the Burgers vectors of partial
dislocations for SF, the fcc → hcp transition, TW, and SL on (111)
of the fcc structure. τ indicates the resolved shear stress on (111).
θ measures the deviation between τ and the Burgers vector of the
leading partial dislocation, which ranges from 0◦ to 60◦ according to
the symmetry of the (111) planes of the fcc structure.

occur on specific and different crystal systems. For the fcc
alloys, the angle deviation between the resolved shear stress
τ on {111} and the partial directions of various deformation
modes takes a critical role in their competition. As shown in
Fig. 14, the partial directions of TW and SF are identical (e.g.,
[112]), which is exactly the same as that of leading partial
dislocation. By contrast, the partial direction of SL is 60◦

deviated from it (e.g., [2 1 1]). Under certain τ on {111}, the
effective energy barriers (EEBs) for SL, TW, and SF can be
calculated by

γ SL(θ ) = γ SL

cos(60◦ − θ )
= γusf − γsf

cos(60◦ − θ )
, (8)

γ TW(θ ) = γ TW

cosθ
= γutw − γsf

cosθ
, (9)

γ SF(θ ) = γ SF

cosθ
= γusf

cosθ
, (10)

where θ , ranging from 0◦ to 60◦, measures the deviation be-
tween τ and the Burgers vector of leading partial dislocation
[104]. Theoretically, the activated deformation mode should
be the one with the lowest EEB.

Figure 15(a) displays the two-dimensional deformation
mode map of the CoNiM alloys along with those of Al [104],
Cu [104], and Fe40Mn40Co10Cr10 [105] as references. Herein,
the projections of γ SL, γ TW, and γ SF on (111), i.e., γ ∗

SL,
γ ∗

TW, and γ ∗
SF, are adopted as the coordinate axes. Under

this projection, the deformation mode map is clearly divided
into three regions, that is, region SF (red), region TW (blue),
and region SL (green). In each region, a single deformation
mode, e.g., the SF mode in region SF, possesses the lowest
EEB in the thermodynamics and thus tends to be activated
[104]. In the map, each line represents the EEB trajectory of a
given material with θ varying from 0◦ to 60◦. We see that the
EEB trajectories of CoNiTi and CoNiV are between those of
Fe40 Mn40 Co10 Cr10 and Cu. For CoNiCr, its trajectory is the
leftmost one among all the examined CoNiM alloys, which is
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FIG. 15. Deformation mode maps. (a) Projected deformation mode map on (111). (b) Normalized deformation mode map scaled by
γusf − γsf . The data for Fe40Mn40Co10Cr10 (pink-outlined white symbols) is extracted from Ref. [105], and those for Cu (orange-outlined white
symbols), and Al (brown-outlined white symbols) are from Ref. [104].

attributed to this alloy having the smallest γsf [Fig. 12(a)]. As
for CoNiMn, CoNiFe, and CoNiCu, their trajectories, residing
between those of Cu and Al, almost coincide with each other.
To gain deeper insight into these three alloys, the normalized
deformation mode map with respect to the IEB of SL (i.e., γusf

− γsf ) is shown in Fig. 15(b). We see that the EEB trajectory
of CoNiMn is located between those of CoNiFe and CoNiCu.
Among all the CoNiM alloys, the trajectory of CoNiCu is
the rightmost one, which is majorly ascribed to its having the
highest γsf [Fig. 12(a)].

With the variation of θ , the EEB trajectories of all the
studied CoNiM alloys are located in two regions. Thus, the-
oretically, depending on the grain orientation, two kinds of
deformation modes might be activated in these alloys. In
CoNiTi and CoNiCr, the EEB projections with small θ are
located in region SF, while those with large θ enter region
SL. By contrast, the EEB projections of CoNiV, CoNiFe,
CoNiMn, and CoNiCu with small and large θ are within
regions TW and SL, respectively. Thus, in these alloys, a
co-occurrence of TW and SL could be possible.

Lastly, the relation between VEC and the competition be-
tween SF or TW and SL is discussed. In Fig. 16(a), we display
the critical values of θ (denoted θc) for the transition of the
deformation mode from SF (for CoNiCr and CoNiTi) or TW
(for CoNiV, CoNiFe, CoNiMn, and CoNiCu) to SL plotted as
a function of VEC. Interestingly, with the increase in VEC,
θc exhibits a monotonically decreasing tendency except for
in CoNiCr. Notably, this tendency is exactly opposite to that
of γsf [Fig. 12(c)]. In Fig. 16(b), we visualize the relation
between θc and γsf . A perfect linear correlation between θc

and γsf is obtained with a Pearson’s coefficient r of as high
as −0.99. Thus γsf would be a key factor in deciding θc.
Figure 16(c) shows the relation between θc and �Efcc→hcp.

Clearly, θc is also linearly correlated with �Efcc→hcp with a
Pearson’s coefficient r of −0.96, which is reasonable owing
to the strong link between γsf and �Efcc→hcp [Fig. 12(b1)].

It is identified above that at small θ , SF tends to be activated
in the CoNiM alloys with low γsf , while TW prefers occurring
in the alloys with high γsf . Before closing this section, we
focus on the competition between SF and TW in the differ-
ent CoNiM alloys. Figure 17(a) displays the EEB difference
between the SF and TW modes for the CoNiM alloys plotted
as a function of VEC. Herein, the same θ of 0◦ is taken as
an example, which is representative since the θ dependence

7.7 8.0 8.3 8.7 9.010.0

24

27

30

33

36 (c)(b)(a)

c
(°

)

VEC
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ΔEfcc→hcp(meV atom-1)

Linear fitting

r = -0.96

-25 0 25 50

Linear fitting

sf (mJ m-2)

r = -0.99

FIG. 16. Critical values of θ (denoted θc) for the transition of the
deformation mechanism from SF (or TW) to SL: (a) θc vs VEC, (b) θc

vs γsf , and (c) θc vs �Efcc→hcp.
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FIG. 17. Competition between SF and TW. (a) VEC dependence
of the difference between γ SF and γ TW. (b) Correlation between
γ SF − γ TW and �Efcc→hcp. A negative value of γ SF − γ TW implies
a preference for SF, while a positive one indicates a preference
for TW.

of EEBs for SF and TW are exactly the same [Eqs. (9) and
(10)]. We see that the dependence of γ SF − γ TW on VEC
roughly follows the tendency of γsf [Fig. 12(c)]. In Fig. 17(b),
we display the relation between γ SF − γ TW and �Efcc→hcp.
Clearly, like the case of γsf , the difference between γ SF and
γ TW is linearly correlated with �Efcc→hcp with a Pearson’s
coefficient r of 0.94. Thus �Efcc→hcp would play a dominant
role in the competition between SF and TW.

IV. CONCLUSIONS

The correlations between VEC and the phase structures,
elastic moduli, ideal tensile strengths, and generalized stack-
ing fault energies of the equiatomic CoNiM (M = Ti, V,
Cr, Mn, Fe, and Cu) multicomponent alloys with VEC
ranging from 7.7 to 10.0 are systematically studied using
first-principles calculations. The specific conclusions are as
follows.

(i) With increasing VEC, the ground-state structure evolves
from bcc (VEC < 8.0) to hcp (8.0 � VEC � 8.3) and ulti-
mately to fcc (VEC > 8.3).

(ii) Both the elastic moduli C′, E , G, and B and the ideal
tensile strength σm show inverted parabolic trends with respect
to VEC, i.e., a rapid increase at first followed by a slight de-
crease. This tendency is attributed to the orbital-filling effect
of valence electrons. We emphasize that a medium VEC, such
as 8.3 in CoNiCr, facilitates a superior intrinsic strength, since
at a medium VEC a full filling of the bonding state but an
empty antibonding state can be realized. Furthermore, a strong
link between �Efcc→bcc and intrinsic strength is established.
Additionally, a factor characterizing the change in the mean
atomic radius during the formation of solid solution is intro-
duced to explain the anomalies in B in CoNiMn and CoNiFe.

(iii) The stacking fault energy γsf is positively correlated
with VEC except for in CoNiCr, and this positive correlation

is inherited from the correlation between �Efcc→hcp and VEC.
Depending on grain orientation, dislocation and stacking fault
could coexist in the CoNiM alloys with low VEC, while dislo-
cation and deformation twinning could co-occur in the alloys
with high VEC. Both the competition between stacking fault
(or twinning) and dislocation, characterized by the critical
angle θc of deformation mode change, and the competition
between stacking fault and twinning, indicated by γ SF − γ TW,
are linearly correlated with γsf . Different from γsf , which
follows the VEC tendency of �Efcc→hcp, the intrinsic en-
ergy barriers of various deformation modes show an inverted
parabolic trend, just like �Efcc→bcc and the intrinsic strength.
The reason could be associated with the fact that all these fac-
tors are linked to the strength of chemical bonding. Thus, apart
from �Efcc→hcp, �Efcc→bcc should also play a non-negligible
role in the activation of the deformation mechanism. The built
links between various easily obtained materials parameters,
e.g., VEC, �Efcc→bcc, and �Efcc→hcp, and the key factors
associated with activation of the deformation mode, e.g., γsf

and deformation energy barriers, supply a valid method to
tune the deformation mechanism and further ductility.

In conclusion, this work unveils the correlation between
VEC and phase structure, intrinsic strength, and deformation
mechanism and is expected to provide some guidance for
designing novel multicomponent alloys.
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APPENDIX

1. Determination of independent elastic constants of cubic
crystal by the strain-energy method

Independent elastic constants of cubic crystal, i.e., C11, C12,
and C44, are determined by using the strain-energy method
[42]. First, the bulk modulus B is determined by fitting the en-
ergy vs volume curve with the Birch-Murnaghan fourth-order
equation of state [61,108]. Second, a series of orthorhombic
[Eq. (A1)] and monoclinic distortion strains [Eq. (A2)] with
δm and δn varying from 0.00 to 0.05 with an interval of 0.01
are applied to the crystal, respectively.⎛

⎝1+δm 0 0
0 1+δm 0
0 0 1

1−δ2
m

⎞
⎠, (A1)

⎛
⎝ 1 δn 0

δn 1 0
0 0 1

1−δ2
n

⎞
⎠. (A2)

The total energies of the distorted crystal, i.e., �E (δm) and
�E (δn), are calculated by first-principles calculations. C′ and
C44 are then computed by fitting the total energies with respect
to δm and δn as follows:

�E (δm) = 2VC′δ2
m + O

(
δ4

m

)
, (A3)

�E (δn) = 2VC44δ
2
n + O

(
δ4

n

)
, (A4)
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where V is the lattice volume. Finally, C11 and C12 are derived
from B and C′ by solving the following two equations:

B = (C11 + 2C12)/3, (A5)

C′ = (C11 − C12)/2. (A6)

2. Estimation of isotropic and anisotropic elastic moduli

The isotropic shear modulus G and Young’s modulus E are
calculated by using the Voigt-Reuss-Hill method [35,109], as
follows:

G = 1

2
(GV + GR), (A7)

E = 9GB

G + 3B
, (A8)

where GV and GR are Voigt’s and Reuss’s shear modulus,
respectively. For cubic crystals, GV and GR can be calculated
by

GV = 1

5
[(C11 − C12) + 3C44], (A9)

GR = 5C44(C11 − C12)

3(C11 − C12) + 4C44
. (A10)

The Young’s modulus E and Poisson’s ratio υ along the [109]
direction [92] are computed by

E[110] = ν[110]

C12

[
C11(C11+C12)−2C2

12

]
, (A11)

ν[110] = 4C12C44

C11(C11 + C12 + 2C44) − 2C2
12

. (A12)
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