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Topological qubits composed of unpaired Majorana zero modes are under intense experimental and theo-
retical scrutiny in efforts to realize practical quantum computation schemes. In this work, we show that the
minimum four unpaired Majorana zero modes required for a topological qubit according to braiding schemes
and control of entanglement for gate operations are inherent to multiplicative topological phases, which realize
symmetry-protected tensor products—and maximally entangled Bell states—of unpaired Majorana zero modes.
We construct and characterize both one-dimensional and two-dimensional multiplicative topological phases
with two parent Kitaev chain Hamiltonians. We furthermore characterize topology in the bulk and on the
boundary with established methods while also introducing techniques to overcome challenges in characterizing
multiplicative topology. In the process, we explore the potential of these multiplicative topological phases for an
alternative to braiding-based topological quantum computation schemes, in which gate operations are performed
through topological phase transitions.
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I. INTRODUCTION

Topological quantum computation schemes are central to
the study of topological condensed matter, and they are
viewed as one of their most important and practical applica-
tions. In particular, they hold great promise for overcoming
challenges of decoherence associated with scalable quantum
computation schemes [1]. These schemes rely upon the real-
ization of topological qubits consisting of quasiparticles with
non-Abelian exchange statistics, with the simplest and most
widely studied of these quasiparticles being the unpaired Ma-
jorana zero mode (MZM) [2–4]. This area of research has
expanded rapidly in the past two decades, with many recent
experimental works reporting signatures associated with un-
paired Majorana zero modes [5,6], along with a tremendous
number of theoretical proposals for experimental realization
and practical application [7,8].

To construct a topological qubit from unpaired Majorana
zero modes, two pairs of unpaired Majorana zero modes
are required at minimum by proposals based on braiding
[9,10], and some gate operations required for topological
quantum computation utilize controlled entanglement [11].
The recently introduced multiplicative topological phases
(MTPs) [12]—topological phases of matter corresponding
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to a symmetry-protected tensor product structure in which
multiple parent topological phases may be combined in a
multiplicative fashion to realize novel topology—present an
opportunity to elegantly meet these requirements. If two par-
ent topological phases, each realizing unpaired Majorana zero
modes, are combined in this manner, states consisting of ten-
sor products of unpaired Majorana zero modes are possible.
As shown in work introducing MTPs [12], it is further-
more possible to selectively entangle topologically protected
boundary modes while respecting symmetries protecting the
multiplicative topological phase in the bulk, which could po-
tentially be used to introduce entanglement in a controlled
manner for the purpose of gate operations.

For these reasons, we introduce multiplicative topologi-
cal phases constructed from parent phases realizing unpaired
Majorana zero modes in this work. We choose parent Hamilto-
nians to be instances of the canonical Kitaev chain model [13].
We find that, for the models considered, these MZMs realize
a variety of two-qubit states in different regions of the phase
diagram. This indicates that these MZMs have the potential
to serve as an alternative platform for topological quantum
computation to braiding schemes, in which each parent of
the multiplicative phase provides a qubit, and the minimum
number of MZMs for a qubit is instead effectively two.

We also explore the potential of multiplicative topology to
realize novel physics in this work of interest beyond quan-
tum computation schemes: while the Kitaev chain realizes
a one-dimensional topological phase, a multiplicative topo-
logical phase constructed from two parent Kitaev chains can
actually be one-dimensional or two-dimensional. We consider
both constructions in this work using Kitaev chain parent
phases, realizing one-dimensional and two-dimensional mul-
tiplicative Kitaev chain (MKC) constructions, and studying
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the multiplicative Majorana zero modes resulting in each case.
To characterize the arising multiplicative phases, we study
the Wannier center spectrum of the MKC, and we find that
its eigenvalues are sums of the eigenvalues of the parent
Wannier center spectra. As a result, Wilson loops can fail
to characterize multiplicative topology in certain cases. We
show, however, that the MKC can be decomposed into parts,
and winding numbers for these components can be used to
characterize topological phases realized by the MKC.

We begin by first reviewing the Kitaev chain and its topo-
logical classification in Sec. II. In Sec. III we introduce a
one-dimensional MKC and present its spectrum and bound
states. Finally, in Sec. IV we introduce a two-dimensional
MKC, also characterizing its spectral properties and bulk-
boundary correspondence.

II. PARENT HAMILTONIANS

To realize topologically protected states analogous to un-
paired Majorana zero modes in multiplicative topological
phases, we construct them from two parent Hamiltonians. The
latter are described by a Hamiltonian core to many leading
experimental proposals [3,14–19] for realization of unpaired
Majorana zero modes and topological qubits known as the
Kitaev chain [20,21]. Given the foundational nature of the
Kitaev chain in topological quantum computation [4,13], our
results are broadly relevant to the study of quasiparticles in
multiplicative phases relevant to topological quantum compu-
tation. We further show that phases in which multiplicative
Majorana zero modes are realized exhibit a number of unique
features of considerable fundamental interest in the study
of topological phases of matter, and they are promising for
topological quantum computation schemes.

First, we review the Kitaev chain model and its signifi-
cance to platforms for topological quantum computation. The
one-dimensional Kitaev chain model is a foundational tight-
binding model describing spinless complex fermions hopping
between nearest-neighbor sites, with additional p + ip su-
perconducting pairing [20]. More specifically, the real-space
Hamiltonian for the Kitaev chain (KC) takes the form [13]

HKC = −
N∑

j=1

μc†
j c j −

N−1∑
j=1

t (c†
j c j+1 + H.c.)

+
N−1∑
j=1

�(c jc j+1 + H.c.), (1)

where here c†
j creates an electron at site j, μ is the chemical

potential, t is the nearest-neighbor hopping integral, and � is
the superconducting pairing strength.

The fermion number parity conservation of the supercon-
ductor yields two sectors of the Hilbert space, one with even
ground-state parity and one with odd ground-state parity [13].
For odd parity and open boundary conditions (OBCs) for the
chain, the ground-state manifold is degenerate and composed
of states strongly localized at its ends. Within the ground-state
manifold, furthermore, states may be constructed with wave
functions strongly localized at only one end of the chain
or the other, which are of Majorana character [13]. These

two Majorana bound states constitute a physical fermion that
allows information to be encoded nonlocally, providing a ro-
bust platform for quantum computing.

The single-particle sector of the model also displays the
desired unpaired Majorana zero modes at the ends of the
chain for open boundary conditions, and it is widely studied
and experimentally relevant [22]. This version is sufficient for
the purpose of introducing multiplicative topological phases
based upon the Kitaev chain, and we restrict ourselves to this
case for the remainder of the manuscript.

We first consider the infinitely long chain in the single-
particle regime with periodic boundary conditions. Fourier-
transforming the Hamiltonian and imposing particle-hole
symmetry (PHS) through a redundancy, we express the model
in terms of a Bogoliubov–de Gennes Hamiltonian HBdG(k),

HKC = 1

2

∑
k

�
†
k HBdG(k)�k, (2)

HBdG(k) = − (2t cos k + μ)τ z + 2� sin kτ y. (3)

Here, �k = (ck, c†
−k )T , with ck annihilating a complex,

spinless fermion with momentum k, reflecting the particle-
hole degree of freedom incorporated explicitly into the
Hamiltonian, and τ j , where j ∈ {x, y, z} is a Pauli matrix.

For this effectively mean-field description of a
superconductor, the Bloch Hamiltonian may be diag-
onalized to compute the bulk spectrum as ε±(k) =
±

√
(2t cos k + μ)2 + 4�2 sin2 k. From this expression,

we see that the Bloch Hamiltonian is gapped for |μ| < 2t
and |μ| > 2t , with gap closings occurring at k = π (k = 0)
for μ = 2t (μ = −2t). A topologically nontrivial phase is
realized in the former regime, which may be characterized
in the bulk by various methods [23] as well as explicit
verification of unpaired Majorana zero modes. The latter
is facilitated by considering the Majorana representation
of the finite Kitaev chain [13]. For now, we consider
the latter and express the BdG Hamiltonian in terms of
Majorana operators with the convention c j = 1

2 (γ j,+ + iγ j,−),
where {γα, γβ} = 2δαβ and γ †

α = γα , yielding the following
expression for the Hamiltonian:

HKC = −
N∑

j=1

μ

2
(1 + iγ j,+γ j,−)

−
N−1∑
j=1

t

2
(iγ j,+γ j+1,− + iγ j+1,+γ j,−)

+
N−1∑
j=1

�

2
(iγ j,+γ j+1,− − iγ j+1,+γ j,−). (4)

Notice that for t = � and μ = 0, we have [HKC, γ1,−] =
[HKC, γN,+] = 0, which implies we have two Majorana zero
modes, each with zero energy and localized at one end of the
chain.

We will now construct multiplicative topological phases
(MTPs) with two parent Kitaev chain Hamiltonians Hp,1(ki )
and Hp,2(k j ), where ki and k j are momenta in directions i
and j. We take i and j to either be parallel (i and j are each
taken to be x, and ki = k j = kx corresponds to momentum in
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the x direction, for instance) or perpendicular [i and j are
taken to be x and y, for instance, with Hp,1(kx ) describing
a Kitaev chain parallel to the x-axis and Hp,2(ky) describing
a Kitaev chain parallel to the y-axis in the x-y plane]. In
this way, we may realize multiplicative topological phases
that are either one-dimensional (i = j) or two-dimensional
(i �= j). We express parent Hamiltonian α (with α ∈ {1, 2})
using a vector of momentum-dependent parameters d(k)α =
(d (k)1α, d (k)2α, d (k)3α ) dotted into a vector of Pauli ma-
trices τ = (τx, τy, τz ) for parent 1 and σ = (σx, σy, σz ) for
parent 2, as

Hp,1(ki ) = d(ki )1 · τ, (5a)

Hp,2(k j ) = d(k j )2 · σ. (5b)

The child Hamiltonian is then compactly expressed in
terms of the parent Hamiltonians using the concrete derivation
of the exceptional isomorphism SO(4) ∼= SU(2) × SU(2)/Z2

provided in Cook and Moore [12], as

Hc
12(k) = d(ki )1 · τ ⊗ ( − d (k j )12, d (k j )22,−d (k j )32) · σ,

(6)
and the momentum vector k = kiî + k j ĵ being simply k =
kiî for i = j. Alternative combinations of the parent Hamil-
tonians in tensor product constructions also yield child
Hamiltonians, including Hc

12(k) = Hp,1(ki ) ⊗ Hp,2(k j ). The
tensor product structure is protected by a combination of sym-
metries enforced on the child Hamiltonian and symmetries
enforced on the parent Hamiltonians as discussed by Cook
and Moore [12]. This results in the child Hamiltonian possess-
ing the following symmetries according to standard analysis
purely at the level of child [24,25]:

T = K, (7a)

P1 = I ⊗ σ xK, (7b)

C1 = I ⊗ σ x, (7c)

P2 = τ xK ⊗ I, (7d)

C2 = τ x ⊗ I, (7e)

where T , P , and C correspond to time-reversal, particle-hole,
and chiral symmetry, respectively. In addition to the discrete
symmetries, the child multiplicative Kitaev chain has a unitary
symmetry, given by U = τ xσ x. Such a unitary symmetry nat-
urally emerges in the child Hamiltonian by its tensor product
form in terms of the parent Hamiltonians and each parent
possessing chiral symmetry. This permits block diagonaliza-
tion of the child Hamiltonian, as we show in this work. This
motivates further development of methods for symmetry anal-
ysis, as such analysis at the level of the child and parents
in combination rather than strictly at the level of the child
reveals different information about the system that is useful
in characterizing topological systems given the possibility of
multiplicative topology.

We comment briefly on the interpretation of the basis
for the child Hamiltonian, as there are two possible options.
One possibility is to interpret the resultant Hamiltonian as
quadratic, describing an effectively noninteracting system.
However, we may also interpret the bases of the child Hamil-
tonians discussed here as tensor products of single-particle
bases of the parents, corresponding to a basis for the child that

is purely quartic. In this second interpretation, therefore, the
Hamiltonian characterizes a strongly correlated system. We
focus on the first interpretation in this work, and we will ex-
plore the second interpretation in greater detail in later work.

III. CHILD HAMILTONIAN
FOR PARALLEL PARENT CHAINS

We first consider the MKC for two parallel parent Kitaev
chains, corresponding to i = j above. We therefore take ki =
k j = k to simplify notation. The parent and child Hamiltoni-
ans then take the following forms:

HKC,1(k) = −(2t1 cos k + μ1)τ z + 2�1 sin kτ y,

HKC,2(k) = −(2t2 cos k + μ2)σ z + 2�2 sin kσ y,

Hc
MKC,||(k) = [−(2t1 cos k + μ1)τ z + 2�1 sin kτ y]

⊗ [(2t2 cos k + μ2)σ z + 2�2 sin kσ y]. (8)

We characterize the MKC in this case first by studying the
bulk spectrum and then by studying bulk boundary correspon-
dence analytically and numerically.

A. Bulk properties of the parallel MKC

In this subsection, we investigate the bulk properties of the
parallel multiplicative Kitaev chain. First, we start with the
properties of the bulk spectrum and then study the model’s
topological attributes.

1. Bulk spectrum of the parallel MKC

The spectrum of the child Hamiltonian Hc
MKC,||(k) consists

of doubly degenerate eigenvalues given by

E (k) = ±
√

[2t1 cos(k) + μ1]2 + [2�1 sin(k)]2

×
√

[2t2 cos(k) + μ2]2 + [2�2 sin(k)]2. (9)

This corresponds to the bulk gap closing under the following
conditions:

μ1,2 =

⎧⎪⎨
⎪⎩

−2t1,2 if k = 0,

+2t1,2 if k = π,

−2 cos(k)t1,2 if �1,2 = 0.

(10)

We illustrate these in Fig. 1, where we show the MKC
spectrum as a function of k for a set of representative points in
a phase diagram generated by fixing t1 = t2 = 1 and varying
μ1 and μ2. Figures 1(a)–1(d) show that the bulk gap closing
points are inherited from the parents, as the eigenvalues of
the MKC correspond to the product of two Kitaev chains
eigenvalues for different configurations.

2. Quasiparticle velocities near critical points

For the case of the parallel MKC, we examine the Dirac
Hamiltonians near each of the gapless points. For both μ1 ∼
−2t1 and μ2 ∼ −2t2, the gap closes for k = 0, so that we get
the following Dirac Hamiltonian in its vicinity:

Hc
Dirac(k) = − (2t1 + μ1)(2t2 + μ2)�zz + 2�1(2t2 + μ2)k�yz

− 2�2(2t1 + μ1)k�zy, (11)

014516-3



PAL, WINTER, AND COOK PHYSICAL REVIEW B 109, 014516 (2024)

E

E1 E2 E2 E4

(a) (b)

(c) (d)

2 0 2
k

5
0
5

E

Child bulk spectrum

2 0 2
k

10
0

10

E

Child bulk spectrum

2 0 2
k

5
0
5

E

Child bulk spectrum

2 0 2
k

5
0
5

E

Child bulk spectrum

FIG. 1. Dependence of the bulk dispersion of the child Hamilto-
nian Hc

MKC,||(k) in Eq. (8) on parameters of its parent Hamiltonians
HKC,1(k) and HKC,2(k). Example bulk dispersions for Hc

MKC,||(k) are
shown in (a), (b), (c), and (d) for parameter values ( μ1

t1
,

μ2
t2

) =
(−2, 2), (2, 2), (−2, 0), and (2, 0), respectively. The child bulk gap
closes at k = 0 along the green line, at k = π along the blue line,
and at k = 0, π on the yellow dots, in agreement with Eq. (10) for
�1 �= 0, �2 �= 0.

where �i j = τ iσ j . Denote mj = 2t j + μ j ( j = 1, 2). The en-
ergies are doubly degenerate and given as

E (k) = ±
√

4(�2m1 − �1m2)2k2 + m2
1m2

2. (12)

Notice, for the gapless point μ1 = −2t1, or m1 = 0, that the
energy expression can be simplified as E (k) = ±2�1m2k,
and similarly for the gapless point μ2 = −2t1, or m2 = 0,
the expression becomes E (k) = ±2�2m1k. It is important
to note that when m1 = 0 = m2 simultaneously, a quadratic
expansion is required to capture the low-energy dispersion,
which yields

Hc
2 (k) = − [m1m2 − (t1m2 + t2m1)k2]�zz + 2�1m2k�yz

− 2�2m1k�zy + �1�2k2�yy. (13)

Denoting t1m2 + t2m1 = M, the spectrum is given by the
four eigenvalues

E (k) = ± [[(M ∓ �1�2)k2 − m1m2]2

+ 4k2(�2m1 ∓ �1m2)2k2]
1
2 . (14)

As stated, for the case, m1 = m2 = 0, the dispersion relation
E = ±�1�2k2 is quadratic and doubly degenerate.

3. Bulk topology of the parallel MKC

While the computation of bulk topological invariants for
the parent Kitaev chains is known, this is not the case for
the topological invariants of the MKC. Although the topology
of multiplicative phases can be understood in terms of their
parents’ topological invariants, the methods for characterizing
these Hamiltonians, without knowledge of their decomposi-
tion into parent Hamiltonians, have not been established.

One of the more robust methods for characterizing topol-
ogy is the analysis of the Wilson loop spectrum. The Wilson
loop [26] is a unitary operator defined over a closed path as

W = exp

[
i
∫

BZ
dk · A(k)

]
, (15)

FIG. 2. Wannier centers for a child Hamiltonian at half-filling
with parents with parameters t1 = t2 and �1 = �2. These correspond
to the Wilson loop eigenvalues after integrating along kx .

where A is the non-Abelian Berry connection:

Amn(k) = i〈um(k)|∇k|un(k)〉. (16)

Here |un(k)〉 are Bloch states in the occupied subspace,
and A is defined a Hermitian operator. Consequently, W is
a unitary operator whose eigenvalues are ei2πν j , where ν j are
the Wannier centers of charge.

We compute the Wannier centers for topologically distinct
regions of the phase diagram determined by the topologi-
cal invariants of the parents. Each parent Hamiltonian has a
Z2 topological classification, so the child Hamiltonian has
a Z2 × Z2 classification, with its invariant νC expressed in
terms of the parent invariants ν (1) and ν (2) as νC = (ν (1), ν (2) ),
where ν (1,2) ∈ {0, 0.5} mod 1 indicates the topological phase
of each parent.

In the trivial phase, the Wannier center of the occupied
band is located at the center (ν = 0) of the unit cell, and
at the edge (ν = 0.5) in the topological phase. Therefore,
we calculate for the MKC parallel case, where we have a
single-momentum component, and find that the two eigenval-
ues indicate a shift of the Wannier centers to the edge when
only one of the parent phases is topological but not both. This
inability of the Wilson loop method to detect some multiplica-
tive phases results from the multiplicative dependence of the
child Wilson loop on the Wilson loops of the parents.

The Wannier centers of charge of the MKC at half-filling
(M = 2 is the number of occupied orbitals) are shown in
Fig. 2. The doubly degenerate occupied states correspond
to two equivalent Wannier centers ν1 and ν2, as shown by
Figs. 2(a) and 2(b). Unexpectedly, both an MKC with |μ1| =
|μ2| < 2 and an MKC with |μ1| = |μ2| > 2 have the Wannier
centers localized at the center of the unit cell (ν1 = ν2 = 0),
despite the fact that finite chains with the former set of pa-
rameters have bound states, while finite chains with the latter
set of parameters do not. It is only for parent Hamiltonians
of different topology that the Wannier centers of a half-filled
MKC localize at the edge (ν1 = ν2 = 0.5), showing that the
MKC Wilson loop eigenvalues correspond to the ones given
by the parents’ Wannier centers. This is analytically shown in
Appendix S2 of the Supplemental Material [27].

However, we have observed that the MKC possesses three
defining symmetries, namely two chiral symmetries inherited
from its parents—τ x ⊗ I and I ⊗ σ x—and the unitary sym-
metry generated from their product, τ x ⊗ σ x. We are able
to block-diagonalize the parallel MKC Bloch Hamiltonian
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via the diagonal basis of the unitary symmetry. The result-
ing two-band blocks of the four-band Hamiltonian are then
called component Hamiltonians. These component Hamil-
tonians look like the generic two-band Kitaev chains but
with next-nearest-neighbor coupling. The resulting compo-
nent Hamiltonians are defined as follows:

Hc
MKC,|| = 1

2

∑
k

c̃†
k,1H||,1(k)c̃k,1 + 1

2

∑
k

c̃†
k,2H||,2(k)c̃k,2,

(c̃k,1, c̃k,2)T = U †(ck,↑, ck,↓, c†
−k,↑, c†

−k,↓)T , (17)

where

c̃k,1 = (c̃k,↑, c̃†
−k,↓)T , c̃k,2 = (c̃k,↓, c̃†

−k,↑)T ,

U = 1√
2

⎛
⎜⎜⎜⎝

1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1

⎞
⎟⎟⎟⎠,

H||,1(k) = −[2(μ1t2 + μ2t1) cos k + 2(t1t2 + �1�2) cos 2k

+μ1μ2 + 2t1t2 − 2�1�2]σ z

+ [2(μ2�1 + μ1�2) sin k

+ 2(t2�1 + t1�2) sin 2k]σ y = d1(k) · σ, (18a)

H||,2(k) = −[2(μ1t2 + μ2t1) cos k + 2(t1t2 − �1�2) cos 2k

+μ1μ2 + 2t1t2 + 2�1�2]σ z

+ [2(μ2�1 − μ1�2) sin k

+ 2(t2�1 − t1�2) sin 2k]σ y = d2(k) · σ, (18b)

Here, each of the component Hamiltonians Eqs. (18a) and
(18b) results in the nondegenerate energy dispersion E (k)
from Eq. (9), which is equivalent to the MKC parallel
dispersion.

Next, we study the winding number for the two component
Bloch Hamiltonians by constructing the parametric curves
d1(k) and d2(k) from Eqs. (18a) and (18b) when k is varied
in the interval [0, 2π ). For each of the parent Kitaev chains,
the system is said to be in the topological phase with winding
number W = ±1 if the parametric curve winds around the ori-
gin once. At the critical point, the parametric curve intersects
the origin, while in the trivial phase it does not wind around
the origin at all. Based on similar views, we try to infer the
parametric curves due to our component Hamiltonians.

From Figs. 3(a) and 3(b), we observe that for t1 = t2 =
1 = �1 = �2, when both parent KCs are topological, i.e.,
μi < 2ti, i ∈ {1, 2}, the curve due to d1(k) winds around the
origin twice while the curve from d2(k) does not wind around
the origin at all, giving rise to an overall winding number,
W = 2. We also check all three critical points—when either
one of the parents is critical or both of them are, in which
case both the parametric curves intersect the origin, albeit
in different configurations. For example, Figs. 3(c) and 3(d)
show the case when one parent is topological while the other
is critical. Finally, we consider the case in which one parent is
topological while the other is trivial (μ1 < 2t1 and μ2 > 2t2
or vice versa). The winding for each component Hamiltonian
in this case is shown in Figs. 3(e) and 3(f). We see that both
curves derived from d1(k) and d2(k) each wind around the

FIG. 3. Parametric curves d1(k) and d2(k) for the Hamiltonian
components H||,1 (blue) and H||,2 (orange), respectively, as k is var-
ied in the interval [0, 2π ). The winding of the curves around the
origin shows the different topological characteristics for different
values of μ2 with μ1 = 0 for the cases t1 = 1 = t2 [first column, (a),
(c), and (e)] and t1 = −1 = t2 [second column, (b), (d), and (f)] at
�1 = �2 = 1 for all cases.

origin once, giving rise to the winding number W = 1 ⊕ 1.
The origin of these winding numbers can be linked to the
two chiral symmetries of the Bloch Hamiltonian. The basis
that results in the block diagonalization can also be seen as
performing a chiral decomposition in each parent and taking
their tensor product. The resulting blocks therefore contain
the winding integrand from each parent, and thus the winding
number of each component Hamiltonian is formed from these
integrands.

Ultimately, the bulk topology can be linked to a rich edge
phenomenology in the form of multiplicative unpaired Ma-
joranas. These novel states will be analyzed in the following
section, and importantly we will demonstrate their utility in
quantum information.

B. Parallel MKC Hamiltonian in real space

The lattice Hamiltonian in the Majorana representation
shows the different phases of the Kitaev chain as well as
the MKC rewritten in terms of different SSH models. We
utilize a diagrammatic approach in Fig. 4 to provide a clear
description about the position of the Majorana zero modes and
also an analytical explanation of the features we have shown
numerically.
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FIG. 4. MKC parallel Hamiltonian in the Majorana basis. The exact Majorana zero modes for the cases in which one parent is topological
and the other trivial, and the case in which both parents are topological, are shown schematically. The two Hamiltonians H1,|| and H2,|| are
represented in separate color schemes in (a) and (b), respectively, as shown in the adjoining legends. Parts (c) and (d) refer to the modified
system when one imposes the condition ti = �i (i = {1, 2}). Parts (f) and (g) show the respective systems when the first parent is topological
with μ1 = 0. Parts (e) and (h) show the respective systems when the second parent is topological with μ2 = 0. The last column shows different
outcomes for the positions of Majorana zero modes when either only one parent is topological or both of them are topological. The (red) square
indicates the position of the Majorana zero mode.

We expect that the MKC has unpaired Majorana bound
states in even quantities from winding number calculations.
We use this fact to analytically characterize the MKC by defin-
ing pseudospinful Majoranas via the following expression:
c j,σ = 1

2 (γ j,+,σ + iγ j,−,σ ). We may then, for a given lattice

site, group two such Majoranas with opposite pseudospins
into the two-component vectors, γ j,+ = (γ j,+,↑, γ j,+,↓) and
γ j,− = (γ j,−,↑, γ j,−,↓)T , so that we can visualize any analysis
of the possible phases. The MKC parallel Hamiltonian is then
shown as follows:

Hc
MKC,|| = i

2

∑
j

−γ j,+[(μ1μ2 + 2t1t2)σ z − 2i�1�2σ
y]γ j,− − γ j,+{[(t2μ1 + t1μ2) − μ2�1]σ z − iμ1�2σ

y}γ j+1,−

− γ j+1,+{[(t2μ1 + t1μ2) + μ2�1]σ z + iμ1�2σ
y}γ j,− − (t1 − �1)γ j,+(t2σ

z − i�2σ
y)γ j+2,−

− (t1 + �1)γ j+2,+(t2σ
z + i�2σ

y)γ j,−. (19)

In this form, three kinds of interaction terms are distinguishable, namely the on-site interaction, the nearest-neighbor interaction,
and the next-nearest-neighbor interaction. The matrix structure of the coefficients implies the presence of inter-pseudospin
interactions.

To visualize the Majorana bound states, we perform a similarity transformation, h → UhU†, γ j,+ → γ̃ j,+ = γ j,+U†, and
γ j,− → γ̃ j,− = Uγ j,−, where, U = 1√

2
(σ 0 − iσ y), after which the two components of γ̃ j,± still satisfy the Majorana anticommu-

tation relations, {γ̃ j, γ̃k} = 2δ jk . The transformation U changes σ z to σ x, so that the resulting Hamiltonian is off-diagonal and
separates it into two separate inter-pseudospin coupling parts,

Hc
MKC,|| = i

2

∑
j

{−(μ1μ2 + 2t1t2 − 2�1�2)γ̃ j,↑,+γ̃ j,↓,− − [μ1(t2 − �2) + μ2(t1 − �1)]γ̃ j,↑,+γ̃ j+1,↓,−

− [μ1(t2 + �2) + μ2(t1 + �1)]γ̃ j+1,↑,+γ̃ j,↓,− − (t1 − �1)(t2 − �2)γ̃ j,↑,+γ̃ j+2,↓,−
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− (t1 + �1)(t2 + �2)γ̃ j+2,↑,+γ̃ j,↓,−} + i

2

∑
j

{−(μ1μ2 + 2t1t2 + 2�1�2)γ̃ j,↓,+γ̃ j,↑,−

− [μ1(t2 + �2) + μ2(t1 − �1)]γ̃ j,↓,+γ̃ j+1,↑,− − [μ1(t2 − �2) + μ2(t1 + �1)]γ̃ j+1,↓,+γ̃ j,↑,−
− (t1 − �1)(t2 + �2)γ̃ j,↓,+γ̃ j+2,↑,− − (t1 + �1)(t2 − �2)γ̃ j+2,↓,+γ̃ j,↑,−},

= H||,1 + H||,2. (20)

The transformation provided is a permutation of the block-
diagonalizing tranformation supplied by the unitary symmetry
used in Eq. (17). This indicates that the separation of the
Hamiltonian in real-space Majorana representation is also a
consequence of the unitary symmetry, which in turn emerges
from the chiral symmetries. Therefore, the resulting blocks
in this representation are real-space, Majorana basis comple-
ments to the component Bloch Hamiltonians.

Subsequently, we may view the problem as two sep-
arate systems as shown in Figs. 4(a) and 4(b) and then
consider a case-by-case approach. We again denote these
two commuting parts, component Hamiltonians, by H||,1 and
H||,2. We assume without loss of generality that ti = �i,
i ∈ {1, 2}, and we explore the different phases derived from
Figs. 4(c) and 4(d) corresponding to the phases of the parent
Hamiltonians.

Case 1. The first parent is topological with μ1 = 0 and
the second one is trivial with μ2 > 2t2. This is illustrated in
Figs. 4(f) and 4(k) and Figs. 4(g) and 4(m) for components
H||,1 and H||,2, respectively. One may notice that the graph in
the bulk is isomorphic to the Kitaev chain. The condition μ2 >

2t2 implies that the KC in (g) is topological with two Majorana
zero modes in addition to the two Majoranas provided by the
μ1 = 0 condition in (f). Consequently, we have four Majorana
edge modes, all situated at the first and last sites of the MKC
parallel system.

Case 2. The second parent is topological with μ2 = 0 and
the first one is trivial with μ1 > 2t1. This leads to a similar
situation to that in Case 1 with respect to the position of
the Majorana zero modes, and it is illustrated by Figs. 4(e)
and 4(i) and Figs. 4(h) and 4(o) for components H||,1 and
H||,2 respectively. We again have four Majorana zero modes,
two from each component at the first and last sites of the
MKC parallel system. However, we note that the pseudospin
configuration at the first site and the last sites are parallel,
unlike in Case 1, in which the pseudospins are antiparallel.

Case 3. Both parents are topological, i.e., μ1 = 0, μ2 < 2t2
and μ1 < 2t1, μ2 = 0. This case is illustrated by Figs. 4(k) and
4(m) and Figs. 14(n) and 14(p) for the components H||,1 and
H||,2, respectively. Observe that no Majorana zero modes are
present in H||,2, while for H||,1 we have Majorana zero modes
at positions 1, 2 and L − 1, L for L sites.

Primarily, these results are exactly what we expect from
our analysis of the bulk topology from Fig. 3. When both
parents are topological, we have winding number 2 ⊕ 0. This
corresponds to case 3, where we have two unpaired Majo-
ranas at each edge of the component Hamiltonian H||,1. This
ultimately results in two pairs of unpaired Majoranas in the
child. Furthermore, cases 1 and 2 have winding number 1 ⊕ 1,
which corresponds to one Majorana at the edge of each com-
ponent Hamiltonian, and four unpaired Majoranas in total.

Although in this case each of the Majoranas is on the same
lattice site, they do not hybridize due to the protecting unitary
symmetry. Ultimately, this illustrates that the tensor product
structure leads to novel edge phenomena protected by bulk
symmetries of the parents.

1. Edge states of the MKC parallel system from the component
Hamiltonians and entanglement

We are finally in the position to discuss the full analytical
expressions for the MZMs. We start with the Bloch com-
ponent Hamiltonians H||,1 and H||,2 derived from the MKC
parallel system, and we analyze their edge physics. We study
decaying modes, therefore we take the limit in which our
momenta is imaginary, k → iq. Hence, after this limit, H||,1
and H||,2 are given as

H||,1(iq) = −[(μ1 + 2t1 cosh q)(μ2 + 2t2 cosh q)

+ 4�1�2 sinh2 q]σ z

+ i[2�1 sinh q(μ2 + 2t2 cosh q)

+ 2�2 sinh q(μ1 + 2t1 cosh q)]σ y, (21a)

H||,2(iq) = −[(μ1 + 2t1 cosh q)(μ2 + 2t2 cosh q)

− 4�1�2 sinh2 q]σ z

+ i[2�1 sinh q(μ2 + 2t2 cosh q)

− 2�2 sinh q(μ1 + 2t1 cosh q)]σ y. (21b)

Now, we apply this Hamiltonian to a decaying ansatz, and we
calculate the zero-energy solutions. This provides a constraint
for each component Hamiltonian on the decay rate of the wave
function:

[(2t1 cosh q + μ1) ∓ 2�1 sinh q]

× [(2t2 cosh q + μ2) ∓ 2�2 sinh q] = 0 (22)

for the component H||,1 and

[(2t1 cosh q + μ1) ∓ 2�1 sinh q]

× [(2t2 cosh q + μ2) ± 2�2 sinh q] = 0 (23)

for the component H||,2. From the schematic diagrams Fig. 4,
the two unpaired MZMs on each edge may be on the same site
or neighboring sites. We study this in detail by considering the
condition Eq. (22) for sgn(ti ) = sgn(�i), i ∈ {1, 2},

[(2t1 cosh q + μ1) − 2�1 sinh q]

× [(2t2 cosh q + μ2) − 2�2 sinh q] = 0. (24)

If both the parents are topological, and μ1

μ2
= �1

�2
= t1

t2
—

which is satisfied when both parents are identical—then H||,2
vanishes. We then solve for the spinors by substituting the
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TABLE I. Null eigenvectors of the MKC parallel system for different topological characterizations of the two parent systems, ratio of signs
of ti and �i, i ∈ {1, 2}, and boundary conditions.

Parent 1 Parent 2

Phase sgn(t1 )
sgn(�1 ) Phase sgn(t2 )

sgn(�2 ) MZM eigenvectors

topo + topo + {
1√
2
(|00〉 − |11〉), |01〉, |10〉} or

{
1√
2
(|00〉 − |11〉), 1√

2
(|01〉 − |10〉)

}
+ − {

1√
2
(|01〉 − |10〉), |00〉, |11〉} or

{
1√
2
(|01〉 − |10〉), 1√

2
(|00〉 + |11〉)

}
− + {

1√
2
(|01〉 + |10〉), |00〉, |11〉} or

{
1√
2
(|01〉 + |10〉), 1√

2
(|00〉 − |11〉)

}
− − {

1√
2
(|00〉 + |11〉), |01〉, |10〉} or

{
1√
2
(|00〉 + |11〉), 1√

2
(|01〉 + |10〉)

}
topo + triv

{
1√
2
(|00〉 − |11〉), 1√

2
(|01〉 − |10〉)

}
− {

1√
2
(|00〉 + |11〉), 1√

2
(|01〉 + |10〉)

}
triv topo + {

1√
2
(|00〉 − |11〉), 1√

2
(|01〉 + |10〉)

}
− {

1√
2
(|00〉 + |11〉), 1√

2
(|01〉 − |10〉)

}

conditions back into the Schrödinger equation. The full basis
of the MKC parallel system is therefore given by four degrees
of freedom, (c̃k,↑, c̃k,↓, c̃†

−k,↑, c̃†
−k,↓)T , by combining the de-

grees of freedom of the two components. In this basis, the
null eigenvectors derived from H||,1(iq) are given as

|�〉MMZM =
{

1√
2

(|00〉 − |11〉), |01〉, |10〉
}
, (25)

where |0〉 = (1, 0)T , |1〉 = (0, 1)T . If the parameters are not
commensurate, we instead have the eigenvectors

|�〉MMZM =
{

1√
2

(|00〉 − |11〉),
1√
2

(|01〉 − |10〉)

}
. (26)

Next, say only parent 1 is topological and parent 2 is trivial,
only the first factor in Eq. (24) can be set to zero. Substituting
into Eqs. (21a) and (21b), the eigenvectors in the full basis
with four degrees of freedom are shown to be

|�〉MMZM =
{

1√
2

(|00〉 − |11〉),
1√
2

(|01〉 − |10〉)

}
. (27)

We would get the same eigenvectors if only parent 2 had been
topological except that the functional form of the decaying
ansatz would instead depend on parent 2 parameter values.
Detailed calculations can be found in Supplemental Material
Sec. S1 A [27]. Interestingly, by changing the topological
character of one of the parents or the parameters becoming
incommensurate, it is possible to transition from a product
state to a maximally entangled Bell state. We list all the
possible eigenvectors for different combinations of topology
of the parents and signs of ti compared to �i in Table I.

Here it is important to remember that in each case, one
has four eigenvectors. The table lists only the states at edge
x = 0. The eigenvectors at the other edge can be found by
changing sqn(ti )

sgn(�i )
from + to − and vice versa for both parents.

We will recover a total of four eigenvectors with two common
eigenvectors for both signs when both parents are topological
and the parameters are commensurate.

2. Spatial distribution of MZM wave functions for N-site MKC

We now characterize MZM wave functions in the MKC
parallel lattice with N sites by computing the associated spa-
tially resolved probability density for these states. This is
critical in highlighting the fact that the zero modes are truly
localized topological edge states. For the specific parameters,
μ1 = μ2 = 0 for t1 = �1 and t2 = �2, we exist in the dimer-
ized limit and therefore the wave function must be a δ function
at the two edges. As seen from the schematic diagram Fig. 4,
two more δ functions are situated at site indices j = 2 and
j = N − 1. We illustrate this with a numerical simulation for
this specific case in Fig. 5.

Tuning away from this limit, we expect the δ functions
to broaden while still remaining localized at the edges. We
compare and contrast the Kitaev chain and the MKC in terms
of probability density distributions for topologically protected
in-gap states. These results are shown in Fig. 6. Similarly to
the Kitaev chain, we observe that the MKC zero modes can
be spatially separated from each other, with their probability
densities peaking near opposite ends of the chain and on sites

FIG. 5. MZMs for the MKC parallel system with N = 80 sites
for the parameter values μ1 = μ2 = 0, t1 = �1 = 1, and t2 = �2 =
1 obtained numerically. We observe MZMs at site indices 1, 2, 79,
and 80 as inferred previously from the schematic diagram.
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(a) (b)

(c) (d)

FIG. 6. (a) Bound states for the Kitaev chain in the topological
region with t = 1, � = 0.08, and μ = 0. (b) Ground states for the
Kitaev chain for t = 1, � = 0.08, and μ = 0.09. (c) Bound states
for a multiplicative chain with two identical parents in the topolog-
ical phase, each shown in subfigure (a). Here �1,2 = � ′

1 ± � ′
3 and

�3,4 = � ′
2 ± � ′

4, with � ′ an eigenvector of the finite Hamiltonian.
(d) Bound states for a multiplicative chain with two identical parents
in the topological phase, each shown in subfigure (b). Here �1,2 =
� ′

1 ± � ′
4 and �3,4 = � ′

2 ± � ′
3, with � ′ an eigenvector of the finite

Hamiltonian.

of different parity. When there are four degenerate zero modes
in the MKC, two are localized at each end of the chain, instead
of one zero mode localized at each end of the Kitaev chain.

Furthermore, the boundary modes of the child Hamiltonian
peak in probability density away from the ends of the chain,
though they are still predominantly near one end or the other.
The nature of the decay depends on the size of the bulk gap,
which is naturally smaller for the multiplicative model than
the parents for small gaps.

3. Robustness of the MKC parallel MZMs

Before proceeding further, one must check for the robust-
ness of the MZMs for the MKC parallel system to local
disorder. We know that for the two-band Kitaev chain, the
MZMs persist when subject to local disorder proportional to
σ z and σ y in the particle-hole basis. Only when the local
disorder is proportional to σ x in the particle-hole basis are
the MZMs shifted from zero energy (see Fig. 7). We simi-
larly investigate the effects of myriad disorder terms for the
MKC parallel system. We have both the particle-hole and

FIG. 7. Checking the robustness of Kitaev chain to disorder pro-
portional to (a) σ x , (b) σ y, and (c) σ z. MZMs are robust for σ y and
σ z disorder while they break off from zero energy for σ x disorder.

FIG. 8. Checking for robustness of the MKC parallel MZMs in
the presence of various on-site disorders with magnitude 0.2t . In the
case μ1 = μ2, only the on-site disorder proportional to τ xσ x perturbs
the MZMs from zero energy, signifying that the MZMs in the parallel
MKC system are naturally more robust than their constituent parents.

pseudospin basis in this case, however, so we must check
for all possible tensor-product combinations of local disorder.
We observe that the MZMs persist at zero energy for local
disorder proportional to any of the combinations τ iσ j , where
i, j ∈ {0, y, z} if at least one of the parents is topological. Also
it is robust to local disorder proportional to τ zσ x, τ xσ z, τ yσ x,
and τ xσ x if both parents are topological (see Fig. 8). The flat
midgap states corresponding to the MZMs only break down
when the local disorder is proportional to τ xσ x even if one of
the parents is topological. This suggests that the MKC parallel
child MZMs are more robust than those of its parents.

4. Quantum gate operations without braiding

According to Table I, numerous separable and maximally
entangled two-qubit states are realized by the MKC. For
instance, if each parent KC is in the topological phase and the
sign of ti

�i
is + for each i, with i ∈ {1, 2}, one realizes the Bell

state 1√
2
(|00〉 − |11〉) and the separable states {|01〉, |10〉}.

This situation can be easily reversed by changing the sign of
t2
�2

to −, so that the Bell state instead takes the form 1√
2
(|01〉 −

|10〉), while the separable states are instead {|00〉, |11〉}. Other
combinations of separable state sets or maximally entangled
states are possible, although only one parity possesses entan-
glement at a given point in phase space when both parent
systems are topological. Moreover, if one wants to retain the
entanglement of the complement parity while converting the
separable set of states to a Bell state, one tunes one of the
parents through phase space until it undergoes a topological
phase transition to its trivial phase. As transport of the MKC
through phase space corresponds to preparation of particular
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two-qubit states, including qubit entanglement, multiplica-
tive topological phases have some potential as platforms for
topologically protected quantum computation schemes. First,
there is the interesting possibility of using the degenerate
manifold of states for the case of each parent topological,
in braiding-based topological quantum computation schemes,
despite the resultant MKC corresponding to an even number
of particles in the ground state. Second, there also appears to
be the potential for topological quantum computation schemes
based on tuning the system through topological phase tran-
sitions of the parents in combination with changes in parity
of certain parameter ratios. This possibility of “phase space”
topological quantum computation schemes will be explored in
future work.

C. Finite MKC parallel system with open boundary conditions

Having presented the bulk spectrum of the multiplicative
Kitaev chain, as well as the corresponding edge phenomena,
we study the parallel MKC in the small finite lattice regime.
This regime is physically relevant for realistic systems, and
it has been shown to yield novel topological effects [28]. To
do so, we characterize the MZMs realized in topologically
nontrivial regions of the phase diagram analytically for the
case of parallel parent Kitaev chains. We then numerically
study the low-energy spectrum as a function of chain length
L and chemical potentials μ1 and μ2, as well as analytically
deriving the edge states in the small lattice size limit.

1. Spectral dependence on chain length

While the finite Kitaev chain can realize unpaired
Majorana zero modes, this is contingent on the bound states
not overlapping and thus hybridizing. In general, there is actu-
ally a finite split in energy between the topologically protected
bound states due to wave-function overlap. The dependence
of the finite Kitaev chain spectrum for open boundary con-
ditions is therefore typically studied to demonstrate that this
splitting decreases exponentially with increasing system size.
We thus study the spectral dependence of the MKC with open
boundary conditions as a function of chain length for direct
comparison.

For the topologically protected pair of low-energy modes
localized on the boundary of the finite-length Kitaev chain
described by HBdG given in Eq. (3) for OBC to be at E = 0, the
parameters t , μ, and � need to be fine-tuned [29]. Otherwise,
as shown in Fig. 9(a), these boundary mode energies oscillate
as a function of chain length L with a period determined
by μ/� [29] while also decreasing overall in exponential
fashion.

Comparatively, the finite multiplicative chain also presents
an oscillatory dependence on ground-state energy with respect
to chain length when at least one of the parents is in the
topological phase. Figure 9 shows the spectral dependence of
the finite multiplicative Kitaev chain Hc

MKC,||(k) in Eq. (8) for
two key cases:

(i) The parameter sets of parents 1 and 2 are equal, meaning
t1 = t2, �1 = �2, and μ1 = μ2, and each parent is topo-
logically nontrivial. The low-energy spectrum of the parents
for this case is shown in Fig. 9(a), and the corresponding

(a) (b)

(c) (d)

(f)(e)

FIG. 9. Low-energy spectrum vs chain length L for the Kitaev
chain shown in (a) and (b) and for the parallel MKC Hamiltonian
Hc

MKC,||(k) shown in (c)–(f). Each plot shows the spectrum only
for even values of L. (a) The three lowest-energy modes of the
Kitaev chain Hamiltonian in the topological phase with open bound-
ary conditions, corresponding to t = 1, � = 0.08, μ = 0.09, as a
function of chain length L. (b) The three lowest-energy modes of
the Kitaev chain Hamiltonian in the trivial phase corresponding to
t = 1, � = 0.08, μ = 2.09. (c) The six lowest-energy modes of the
MKC Hamiltonian with two parent Kitaev chains that each have a
parameter set corresponding to (a). (d) The six lowest-energy modes
of the MKC Hamiltonian with a parent Kitaev chain with parameter
set corresponding to subfigure (a) and the second parent Kitaev chain
with parameter set corresponding to subfigure (b). (e),(f) Energy
difference between the two lowest energies in (c),(d), indicating their
nondegeneracy.

low-energy spectrum of the child Hamiltonian is shown in
Figs. 9(c) and 9(e).

(ii) Parent 1 is topologically nontrivial and Parent 2 is topo-
logically trivial. The low-energy spectra of parents 1 and 2 for
this case are shown in Figs. 9(a) and 9(b), respectively. The
corresponding low-energy spectrum of the child Hamiltonian
is shown in Figs. 9(d) and 9(f).

In each case, the child Hamiltonian exhibits oscillations in
the two lowest-energy modes E2L+1 − E2L, indicating splitting
of the ground-state degeneracy due to finite-size effects. A
key difference is that the child exhibits negligible Friedel
oscillations relative to zero energy in case 1 as shown in
Fig. 9(c), although there is evidence of Friedel oscillations in
the splitting in energy between these two lowest energy states
as shown in Fig. 9(e). Friedel oscillations are significantly
more dramatic in the low-energy child spectrum for case 2 as
shown in Fig. 9(d), although splitting in energy between the
two lowest energy states is very similar to case 1 as shown in
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(a) (b)

FIG. 10. Spectra of the parent and child Hamiltonians as a func-
tion of chemical potential for relatively long chain length L = 80,
shown in black for periodic boundary conditions and blue for open
boundary conditions, respectively. The spectra for parents 1 and 2 are
identical as their parameter sets are identical, thus the spectrum for
parent 1 is shown in (a) for t1 = t2 = 1, �1 = �2 = 1, μ1 = μ2. The
corresponding child MKC spectrum is shown in (b) as a function of
μ1, with μ2 = μ1.

Fig. 9(f). Fundamentally, we still observe a localization of the
zero modes with respect to system size.

2. Spectral dependence on chemical potential of finite MKC

The competition between the chemical potential μ and
kinetic energy t controls the phase diagram of parent Kitaev
chains, and therefore it is also important in understanding
behavior of the MKC. Much can be learned, in particular, by
studying the spectra of the parent Kitaev chains and MKC as
a function of chemical potential, specifically the regions in
which MZMs may form. The dependence of the eigenener-
gies with respect to μ are shown for the parent and child in
Figs. 10(a) and 10(b), respectively, for a long chain length of
L = 80. Importantly, we observe a topological phase transi-
tion in the parent for μ1 = ±|2t1| due to closing of the bulk
gap as expected, with states dispersing linearly when tuning
μ1 away from these critical values. For −2t1 < μ1 < 2t1, we
see low-energy modes inside the bulk gap, corresponding to
the unpaired Majorana zero modes localized at each end of the
chain. Comparing this to the spectrum for the MKC, we see
clear similarities for μ2 fixed in value to μ1: the bulk gap also
closes at μ1 = ±|2t1| as the system undergoes topological
phase transitions, with −2t1 < μ1 < 2t1 again corresponding
to a topologically nontrivial phase and the presence of topo-
logically protected boundary modes. The spectrum instead
disperses quadratically as μ1 and μ2 are tuned away from
the critical values, and the maximum bulk gap is larger, being
the product of the maximum bulk gaps of the parents. This
multiplicative structure also yields a fourfold degeneracy of
the in-gap states, compared with a twofold degeneracy of the
in-gap states for the parents. More generally, the degeneracy
of states for the child is twice that of each parent.

We also explore the dependence of the multiplicative spec-
trum on chemical potential for relatively short chain length.
Here, edge modes overlap and therefore hybridize, however
one sees that zero modes still remain at a finite number of
μ values [28]. These results are shown in Fig. 11. While
the spectra for periodic boundary conditions display bulk gap

(a) (b)

FIG. 11. Spectra of the parent and child Hamiltonians as a func-
tion of chemical potential for relatively short chain length L = 6,
with black lines depicting spectra for periodic boundary conditions
and blue lines depicting spectra for open boundary conditions, re-
spectively. The spectra for parents 1 and 2 are identical as their
parameter sets are identical, thus the spectrum for parent 1 is shown
in (a) for t1 = t2 = 1, �1 = �2 = 1, μ1 = μ2. The corresponding
child MKC spectrum is shown in (b) as a function of μ1, with
μ2 = μ1.

closings at the same values of μ1 and states disperse linearly
as μ1 is tuned away from these critical values between the L =
80 case and the L = 6 case, striking differences are observed
for open boundary conditions. In particular, gap-closings oc-
cur at μ1 = 0 rather than μ1 = ±|2t1| in the parents, as shown
in Fig. 11(a), due only to destructive interference between
states resulting from bulk-boundary correspondence. In ad-
dition, the fourfold degeneracy of the in-gap states for the
child, shown in Fig. 11(b), is split away from μ1 = 0, with
the energy gap between two states increasing more rapidly
with increasing |μ1| than for the other two states.

While the finite Kitaev chain is known to have exact zero-
energy modes for discrete values of the chemical potential
[29] given by μn = 2

√
t2 − �2 cos ( nπ

L+1 ) with n ∈ {1, . . . , L},
which we refer to as Majorana points, these Majorana points
are clear in the short chain regime as they are sparse and
split the topological region into large separate domains. As
the chain length increases, these Majorana points proliferate
through the μ range within the topological region and form
a flat plateau of zero modes. The multiplicative short finite
chain does not present exact zero-energy modes for identi-
cal parent Hamiltonians with equal parameter sets such that
t1 = t2, �1 = �2, and μ1 = μ2, unless t1

�1
= t2

�2
= 1. The

latter configuration is represented in Fig. 11, where the ex-
act zero-energy dependence on the chemical potential of a
multiplicative chain is qualitatively similar to the behavior
of its two identical parents. Finite-size effects can lead to
more significant differences between parent and child spectra,

however. As shown in Fig. 12 for | t1
�1

| = | t2
�2

| = 2, the pres-
ence of exact zero modes in both identical parents, shown in
Figs. 12(a) and 12(b) for different chain lengths, does not im-
ply that a finite multiplicative chain also possesses exact zero
modes. In fact, we observe in Figs. 12(c)–12(f) that if ti �= �i,
the parents must be nonidentical for the child to have exact
zero modes, considering the example for which sgn( t1

μ1
) =

−sgn( t2
μ2

). Identical parents are shown by Figs. 12(c) and
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(a) (b)

(c) (d)

(e) (f)

FIG. 12. Child and parent spectrum dependence on the chemical
potential. Kitaev chain spectrum for parameters |t | = 1, � = 0.5 for
even and odd chains (L = 6, 7) is shown in (a) and (b), respectively.
Multiplicative chain spectrum for two identical parents as in (a) and
(b) is shown in (c) and (d), respectively. Multiplicative chain spec-
trum for two different parents with t1 = −t2 = 1, �1 = �2 = 0.5
and even and odd chains (L = 6, 7) is shown in (e) and (f), re-
spectively. The black curves correspond to solutions under periodic
boundary conditions, which are all doubly degenerate for the chil-
dren. The blue curves correspond to open boundary conditions, with
double-degeneracy indicated by dashed blue-orange curves.

12(d) for different chain lengths. In these cases, exact zero
energies are not obtained in finite chains.

The spectral dependence on the chemical potential reveals
interesting differences between the multiplicative chain and
its parents. In the latter, the number of zero modes is given by
the chain’s length L [see Figs. 12(a) and 12(b)], while in the
former the parity of the number of zero modes is always even
when the necessary conditions t1

�1
�= 1 and t2

�2
�= 1 for exact

zero modes with distinct parents are satisfied, regardless of the
chain length’s parity [see Figs. 12(e) and 12(f)]. Furthermore,
dependence of the child spectra on free parameters shows
greater variety than expected: the spectra shown in Figs. 12(c)
and 12(d), for instance, display a quadratically dispersing

child spectrum, which results quite naturally from the child’s
tensor product combination of two linearly dispersing Kitaev
Hamiltonians. This is a fairly general characteristic of multi-
plicative models. However, a linear dispersion can be obtained
when sgn( t1

μ1
) = −sgn( t2

μ2
), as shown in Figs. 12(e) and 12(f).

Both the quadratic and linear dispersions are explained in
Supplemental Material, Sec. S4 [27] in Eqs. S82 and S84.
Such results demonstrate the rich interplay between finite-size
topology and multiplicative topological phases.

3. Analytical theory of finite size parallel MKC edge states

Using the diagrammatic approach from previous sections,
we can gain greater understanding of the exact zero modes
prominent for finite-size MKC. In Figs. 12(e) and 12(f), we
observe that for the parameters |ti| = 2|�i|, i ∈ {1, 2}, and
t1 = −t2, one gets bubbles for the two energy levels near zero
versus μ1 = μ2. Notably, there is a difference in the posi-
tions of the zero energy or Majorana points between systems
with an even versus odd number of lattice sites in a finite-
size MKC parallel system. Systems with an even number of
sites, as shown in Fig. 12(e), exhibit a twofold degeneracy
in the spectrum, here highlighted by dashed blue and orange
lines, while systems with an odd number of sites exhibit
more complex structure for the low-energy states occurring
for open-boundary conditions as shown in Fig. 12(f). The
rich structure in this case is a consequence of the full chain
consisting of two decoupled subsystem chains. This is derived
in the schematic diagram Fig. 13 from Fig. 4(b) corresponding
to H||,2. As shown in Figs. 12(a) and 12(b), the number of Ma-
jorana points in the parent systems varies with chain length.
As a result, the spectra of the two subsystem chains will not
coincide when the subsystems are of different chain length.

We can see when μ1 = μ2 = μ, t1 = −t2 = −t , �1 =
�2 = �, the component Hamiltonian, H||,2 in Eq. (18b),
possesses only next-nearest-neighbor interactions. Thus, we
can split the chain into two KCs such that the number of
sites is conserved. Then for a system with 2L lattice sites,
we get two KCs of length L, while for a system with
2L + 1 sites, we get two KCs of length L and L + 1, re-
spectively. We know that for an L-site KC with parameters
μ′, t ′, and �′, the zero-energy Majorana points are found
at μ′ = 2

√
t ′2 − �′2 cos nπ

L+1 , where n ∈ {1, . . . , L} i.e., there
are L Majorana points. We apply a similar calculation to
our KCs with the mapping μ′ = μ2 − 2t2 + 2�2, t ′ + �′ =
−(t + �)2, t ′ − �′ = −(t − �)2 derived from Fig. 13. Then
we get the following identity:

μ = ±
√

2(t2 − �2)

(
1 + cos

nπ

L + 1

)
, n ∈ {1, . . . , L},

⇒ μ = 2
√

t2 − �2 cos
nπ

2L + 2
, n ∈ {1, . . . , 2L + 2},

(28)

for exact zero modes in each of the split KC systems of
length L.

From this calculation, we infer that H||,2 with 2L sites cor-
responds to 2L Majorana points, which are twofold degenerate
in this limit. Similarly, H||,2 with 2L + 1 sites produces 2L ⊕
2(L + 1) Majorana points due to contributions from each of
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FIG. 13. Schematic diagram of H||,2 (a) for the particular case
μ1 = μ2 = μ, t1 = −t2 = −t , �1 = �2 = �, and t �= �. Illustrat-
ing for the cases (b) L = 6 and (c) L = 7, the system can now be
broken down to two three-site KCs or one four-site and another
three-site KC. The zero-energy Majorana points can be explained
from here.

the two subsystem KCs. The set of μ values corresponding
to Majorana points derived from Eq. (28), {μi}, agrees with
the Majorana points shown from the numerical simulation in
Figs. 12(e) and 12(f).

We supplement our understanding of the diagrammatic
approach by analyzing boundary conditions on the edge state
wave functions when t1 �= �1 and/or t2 �= �2, in finite-size
lattices. Considering Eq. (24), we obtain four values for e−q,

e−q =
−μ1 ±

√
μ2

1 − 4
(
t2
1 − �2

1

)
2(t1 + �1)

and

−μ2 ±
√

μ2
2 − 4

(
t2
2 − �2

2

)
2(t2 + �2)

. (29)

We require standing-wave solutions for the finite-size lattice,
which require that our four e−q values transform to R1e±iθ1

and R2e±iθ2 , respectively. Hence, we propose a general form
for the wave function,

�(l ) =A1Rl
1eilθ1 + A2Rl

1e−ilθ1 + B1Rl
2eilθ2 + B2Rl

2e−ilθ2 ,

(30)

where A1, A2, B1, and B2 are constants, and l is the site
index. From recurrence relations derived from Eq. (24) (via
the alternative equivalent chiral decomposition) [30], one has
open boundary conditions at the artificial sites outside the
lattice, i.e., �(l = 0) = �(l = −1) = 0 = �(l = N + 1) =
�(l = N + 2). From these four boundary conditions, it is

possible to derive a quantization condition for the existence
of any MZM standing-wave eigenfunction on a finite lattice
of size N , which we have derived in Supplemental Material
[27], Sec. S1 A,

R2(N+2)
1 + R2(N+2)

2 − 2RN+2
1 RN+2

2 cos (2(N + 2)θ+)
R2

1 + R2
2 − 2R1R2 cos 2θ+

= R2(N+2)
1 + R2(N+2)

2 − 2RN+2
1 RN+2

2 cos (2(N + 2)θ−)
R2

1 + R2
2 − 2R1R2 cos 2θ−

,

(31)

where θ± = 1
2 (θ1 ± θ2).

Now we construct the wave function for the case
in which we have Majorana points, namely Figs. 12(e)
and 12(f), where t1 = −t2 and �1 = �2. For this spe-
cific case, R2eiθ2 = R1eiπ eiθ1 derived from the conditions for
component Hamiltonian 2. Substituting this into our de-
rived quantization condition, we can obtain values of μ

with μ = 2
√

t2 − �2 cos nπ
N+2 , n ∈ {1, . . . , N + 1} for N =

even and μ = 2
√

t2 − �2 cos nπ
N+1 n ∈ {1, . . . , N} and μ =

2
√

t2 − �2 cos nπ
N+3 n ∈ {1, . . . , N + 2} for N = odd. We note

that these comprise the same list of μ values as gathered from
our diagrammatic approach. From Eq. (30), one can show that
we get two eigenfunctions for the MZMs at the Majorana
points of the form

�1(l ) ∼ Rl
1[1 + (−1)l ]eilθ1

1 − Rl
1[1 + (−1)l ]e−ilθ1

1 , (32a)

�2(l ) ∼ Rl+1
1 [1 + (−1)l+1]ei(l+1)θ2

1

− Rl+1
1 [1 + (−1)l+1]e−i(l+1)θ2

1 , (32b)

where for N = even we have θ1
1 = θ2

1 = nπ
N+2 and for N = odd

we have θ1
1 = nπ

N+1 and θ2
1 = nπ

N+3 . The above expressions
include only eigenfunctions localized at or near the left edge
of the system. The eigenfunctions for the multiplicative Ma-
joranas localized at or near the right edge can be derived
analogously by the transformation l → N + 1 − l . We have
provided a comparison between our analytic derivation for
the edge state wave function and its numerical counterpart in
Fig. 14.

We can further use this quantization condition to process
situations that fall outside this small range. For example, one
may derive conditions for μ at different values of θ2 − θ1 = δ

for R1 = R2, which is found for |t1/�1| = |t2/�2|. We il-
lustrate the case for δ = 2π

3 in the Supplemental Material,
Sec. S1 A [27].

IV. CHILD HAMILTONIAN FOR PERPENDICULAR
PARENT CHAINS

To further explore the potential for multiplicative phases
to realize exotic phenomena, we now characterize an MKC
Hamiltonian with the two parent Kitaev chains which are
perpendicular to one another, constructing a two-dimensional
rather than one-dimensional MKC. That is, we take one parent
Kitaev chain to lie along the x̂-axis, and the second parent
Kitaev chain to lie along the ŷ-axis, respectively. The parent
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FIG. 14. We compare the numerically and analytically de-
rived wave-function probability density for the MZMs in the
parametric range t1 = −t2 = −1, �1 = �2 = 0.5, and μ1 = μ2 =
2
√

t2
1 − �2

1 cos (π/(N + 2)) for a lattice size, N = 30. We see that
the numerical and analytical expressions match.

Hamiltonians and child Hamiltonian then take the following
forms:

Hp,1(kx ) = −(2t1 cos kx + μ1)τ z + 2�1 sin kxτ
y, (33a)

Hp,2(ky) = −(2t2 cos ky + μ2)σ z + 2�2 sin kyσ
y, (33b)

Hc
⊥(kx, ky) = [−(2t1 cos kx + μ1)τ z + 2�1 sin kxτ

y]

⊗ [(2t2 cos ky + μ2)σ z + 2�2 sin kyσ
y]. (33c)

This system is significantly different from the parallel
MKC not only because the perpendicular orientation of the
two parent chains yields next-nearest-neighbor (NNN) hop-
ping along the (x̂ ± ŷ) and −(x̂ ± ŷ) directions, but also due
to the absence of correlation between the two parent Hamilto-
nians in the expression for the edge modes, as we shall show.

We characterize the MKC in this case first by studying the
bulk spectrum and then by studying bulk boundary correspon-
dence analytically and numerically.

A. Bulk properties of the perpendicular MKC

In this subsection, we investigate the bulk properties of the
perpendicular multiplicative Kitaev chain. First, we start with
the properties of the bulk spectrum and then study the model’s
topological attributes.

1. Bulk spectrum for the perpendicular MKC

Similarly to the case of the parallel MKC, we first charac-
terize the spectral properties of the perpendicular MKC bulk.
We consider the simplest case here of two parent Hamilto-
nians with identical parameter sets but differing in that one
is a function of momentum in the x̂-direction, kx, and the
other is a function of momentum in the ŷ-direction, ky. Each
parent KC is in the topologically nontrivial phase, with a
minimum direct gap of 2(2ti − μi ) (i = 1, 2) at the edge of the
Brillouin zone, which is 1 in this case, as shown in Figs. 15(a)
and 15(b). Bands disperse quadratically near high-symmetry
points 0 and π , respectively. The minimum direct band gap
of the perpendicular MKC is analogously at (kx, ky) = (π, π )

FIG. 15. The dispersion for (a) parent KC 1 (t1 = 1.0, μ1 = 1.5,
�1 = 1.0) along the kx axis, (b) parent KC 2 (t2 = 1.0, μ2 = 1.5,
�2 = 1.0) along the ky axis, and (c) the MKC perpendicular child
Hamiltonian from the two parents.

and 2(2t1 − μ1)(2t2 − μ2), which in this case is 0.5. This
already shows greater variety in spectra of the perpendicu-
lar MKC when compared with the parallel case, where the
eigenvalues of the MKC in the bulk are products of eigenval-
ues of the parent Kitaev chains in the bulk. The direct gap
widens at (kx, ky) = (π, 0) and (0, π ), approximately match-
ing the value of each of the parent direct gaps, at kx = π

or ky = π , respectively. However, the direct gap widens sig-
nificantly beyond the maximum direct gap of the parents at
(kx, ky) = (0, 0). This value reflects the multiplicative nature
of the spectrum, being the square of the maximum direct gap
of each parent.

2. Quasiparticle velocity near critical points

In the vicinity of a critical point, such as μ ∼ −2t , the
two-band KC Dirac Hamiltonian exhibits quasiparticles that
propagate with a constant velocity along the system’s length
when k ∼ 0. Conversely, considering the MKC system with
perpendicular axes, the corresponding Dirac Hamiltonian, for
instance, when μ1 ∼ −2t1 and kx ∼ 0, is

HD,x(kx, ky) = − m1(2t2 cos ky + μ2)�zz

+ 2�1(2t2 cos ky + μ2)kx�
yz

− 2m1�2 sin ky�
zy + 4�1�2kx sin ky�

yy,

(34)

where m1 = 2t1 + μ1 and �i j = τ iσ j . The quasiparticles at
this critical point correspond to the parent 1 system. The
doubly degenerate energy is given as

E (kx, ky) = ±
√

4�2
1k2

x + m2
1

×
√

4�2
2 sin2 ky + (2t2 cos ky + μ2)2. (35)

Expanding further around the critical point originating from
the parent 2 system, near μ2 ∼ −2t2 when ky ∼ 0, reveals the
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resulting Dirac Hamiltonian to be

HD,y(kx, ky) = − m2(2t1 cos kx + μ1)�zz + 2m2�1 sin kx�
yz

− 2�2(2t1 cos kx + μ1)ky�
zy

+ 4�1�1ky sin kx�
yy, (36)

where m2 = 2t2 + μ2. The doubly degenerate energy in this
case is

E (kx, ky) = ±
√

4�2
1 sin2 kx + (2t1 cos kx + μ1)2

×
√

4�2
2k2

y + m2
2. (37)

Finally, we expand the MKC perpendicular Hamiltonian at the
vicinity of the critical point, μ1 ∼ −2t1 and μ2 ∼ −2t2, with
both kx, ky → 0, so that the Dirac Hamiltonian is found to be

HD,x,y(kx, ky) = −m1m2�
zz − 2m1�2ky�

zy + 2�1m2kx�
yz

+ 4�1�2kxky�
yy. (38)

Again, from the last expression, the doubly degenerate energy
is shown below,

E (kx, ky) = ±
√

4�2
1k2

x + m2
1

√
4�2

2k2
y + m2

2. (39)

As evident from all the Dirac Hamiltonian energies, the group
velocity of the quasiparticles has both x and y components.
We illustrate for the last case when both parents are near
criticality, when the group velocity turns out to be

v(kx, ky) = ±4�1�2(kyex + kxey). (40)

The velocity field in the k-space for this case looks like an
antivortex structure and may be helpful in creating further
exotic phases by stacking a similar Bloch Hamiltonian struc-
ture as the MKC perpendicular system with coupling in the
z-direction, as done in the case of the KC Bloch Hamiltonian
while constructing a Chern insulator.

3. Bulk topology of the perpendicular MKC

As in the case of the parallel MKC, we now character-
ize the topology of the child Hamiltonian without assuming
knowledge of how the child Hamiltonian is constructed from
parent Hamiltonians, nor how its topology is determined by
topological invariants of the parents. For this reason, we calcu-
late the Wannier spectra for the different topological phases of
the perpendicular MKC. For one-dimensional systems, a Wil-
son loop is expressed as in Eq. (15), but it can be generalized
for the two-dimensional Brillouin zone of the perpendicular
MKC as the Wilson loop across the kx BZ for a given ky

and across the ky BZ for a given kx. We use the alternative
definition of a Wilson loop matrix in terms of the occupied
state projectors,

Wmn = 〈um(k0)| lim
R→∞

1∏
i=R

P(ki )|un(k0)〉, (41)

and we calculate the matrix components for the case with a
loop along the kx BZ for a given ky as shown explicitly in

FIG. 16. Wannier spectra νx/y (color bar) for MKC perpendicular
system derived from Wilson loop operators, Wx [(a) and (b)] and Wy

[(c) and (d)], respectively. We also plot νx ± νy in row 3 [(e) and (f)]
in the left and right, respectively.

Supplemental Material, Sec. S2 [27] in Eq. S75,

W11 = 〈v1+(kx0)| lim
R→∞

[
1∏

i=R

P1+(kxi )

]
|v1+(kx0)〉,

W22 = 〈v1−(kx0)| lim
R→∞

[
1∏

i=R

P1−(kxi )

]
|v1−(kx0)〉,

W12 = W21 = 0. (42)

One can similarly work out the alternative case in which the
loop is along the ky BZ for a given kx and the final Wannier
spectra is given as

νi = νx = ν (1)mod 1 for BZ along kx and given ky,

νi = νy = ν (2)mod 1 for BZ along ky and given kx,
(43)

where ν ( j), j ∈ {1, 2} is the Wannier spectra due to the ith
parent Hamiltonian.

The topology of two-dimensional phases is then charac-
terized in terms of the winding of these two Wilson loops as
a function of kx and ky, respectively. We find, however, that
these two quantities are each constant as a function of kx or
ky, and we therefore may characterize the topology entirely
with W (kx ) [W (ky)], with kx (ky) fixed and integration over
ky (kx). We therefore compute Wannier center charge spectra
for Wilson loops computed by integrating over kx (ky) for each
ky (kx) and shown in Fig. 16. We find that the spectra exhibit
topologically nontrivial Wannier charge center values when
one of the parent Hamiltonians is in a topologically nontrivial
state. The spectra are topologically trivial when both parents
are topologically trivial, but also when both parents are topo-
logical, and the child is also actually topologically nontrivial.
In the regime, when both parents are topological, we have
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(νx, νy) ≡ (0.5, 0.5), where νx/y refer to the Wannier spectra
derived from Wilson loop operators Wx and Wy, respectively.

Akin to the parallel MKC, we still have two flavors of chi-
ral symmetries for the perpendicular MKC—τ x ⊗ I arising
from parent 1 and I ⊗ σ x arising from parent 2. Further-
more, we still possess the unitary symmetry—τ xσ x for the
perpendicular MKC formed from the combination of the two
chiral symmetries. Just like the parallel MKC, one can block-
diagonalize the perpendicular MKC in the diagonal basis of
the unitary symmetry. This results in two band blocks of the
four-band Hamiltonian, which we again denote as component
Hamiltonians. These component Hamiltonians are two-band
Kitaev systems in 2D with next-nearest-neighbor coupling,

and we define them as follows:

Hc
MKC,⊥ = 1

2

∑
k

c̃†
k,1H⊥,1(k)c̃k,1 + 1

2

∑
k

c̃†
k,2H⊥,2(k)c̃k,2,

(c̃k,1, c̃k,2)T = U †(ck,↑, ck,↓, c†
−k,↑, c†

−k,↓)T , (44)

where

c̃k,1 = (c̃k,↑, c̃†
−k,↓)T , c̃k,2 = (c̃k,↓, c̃†

−k,↑)T ,

U = 1√
2

⎛
⎜⎜⎜⎝

1 0 0 1

0 1 1 0

0 1 −1 0

1 0 0 −1

⎞
⎟⎟⎟⎠,

H⊥,1(k) = −[2μ2t1 cos kx + 2μ1t2 cos ky + 2(t1t2 + �1�2) cos(kx + ky) + 2(t1t2 − �1�2) cos(kx − ky) + μ1μ2]σ z

+ [2μ2�1 sin kx + 2μ1�2 sin ky + 2(t2�1 + t1�2) sin(kx + ky)

+ 2(t2�1 − t1�2) sin(kx − ky)]σ y = d1(k) · σ, (45a)

H⊥,2(k) = −[2μ2t1 cos kx + 2μ1t2 cos ky + 2(t1t2 − �1�2) cos(kx + ky) + 2(t1t2 + �1�2) cos(kx − ky) + μ1μ2]σ z

+ [2μ2�1 sin kx − 2μ1�2 sin ky + 2(t2�1 − t1�2) sin(kx + ky) + 2(t2�1 + t1�2) sin(kx − ky)]σ y = d2(k) · σ,

(45b)

It has been shown [31] that for 2D Kitaev chains, the topology
is characterized by vortices in the Bloch vector field over
kx and ky. However, we instead plot how the Bloch vec-
tor winds in kx(ky) as we fix ky(kx ) to highlight the vortex
structure clearly. Through this, we illustrate that it is possi-
ble to identify the bulk topology as well as relate it to the
number of the MZMs along a certain edge. We will work
with the matrices, d1(kx, ky) and d2(kx, ky) with PBC in both
the x- and y-directions so that the matrix element d1,2(n, m)
is given by kx = 2πn

Lx
and ky = 2πm

Ly
for n ∈ {0, . . . , Lx} and

m ∈ {0, ..., Ly}, with Lx and Ly being the number of sites in
the x- and y-directions, respectively (Lx + 1 or Ly + 1 values
are used for n and m, respectively, to close the curve; only
the first Lx and Ly values are considered for discussion). We
then plot the nth row of d1,y versus the nth row of d1,z and
similarly for d2,y and d2,z. Since we have varying kx with fixed
ky along a given row, we obtain the MZMs along the edge in
the y-direction in the form of Ly loops. These loops enclose
the origin if μ1 < 2t1; touch the origin if μ1 = 2t1 and do not
contain the origin if μ1 > 2t1. This is illustrated for Lx = 100
and Ly = 6 in Figs. 17(a), 17(c), and 17(e). In addition, for
the case t1,2 = �1,2, where the closed curve is a circle in the
two-band KC, we see that the polygon created by joining the
centers of the six circles also encloses the origin if μ2 < 2t2
and intersects the origin when μ2 = 2t2. In the latter case, due
to the discreteness of the lattice, the intersection of the origin
is only guaranteed if the chain is even; when the chain is odd,
it is possible that there is no critical point in which the loop
moves through the origin.

To analyze the appearance of MZMs in the perpendicular
direction, we investigate the winding of the mth column of d1,y

versus the mth column of d1,z and similarly for d2,y and d2,z.

The plot for Lx = 8 and Ly = 100 is displayed in Figs. 17(b),
17(d), and 17(f). Here for each fixed kx there is a closed curve
that encircles the origin. For the parameter region μ2 < 2t2,
these eight loops correspond to the eight MZMs along the
edges in the x-direction.

The locus of the curves is calculated when t1 = �1 for
varying kx and constant ky as follows (a detailed calculation
is in the Supplemental Material, Sec. S3 [27]):

2t1
√

M2
2 + R2

2 = (cos θd1,y + sin θd1,z )2

+ (
cos θd1,z − sin θd1,y + μ1

√
M2

2 + R2
2

)2
,

(46)

where we denote M2 = μ2 + 2t2 cos ky, R2 = 2�2 sin ky, and
tan θ = R2

M2
. The θ presented here is interpreted as the Bloch

angle of the second parent Hamiltonian. Upon calculation, one
sees that for each fixed ky the locus is a circle centered at a
vertex of an Ly-sided polygon, at a distance proportional to
the ky energy contour. Finally, the radius of each locus at a
vertex is also proportional to the energy contour defined by
the fixed ky. Through this geometric interpretation, we may
see that the origin is enclosed by the loci at fixed ky when
the radii of the loci are larger than the distance of the center
of each loci from the origin. Consequently, the ratio between
these two lengths provides the expected topological region
|μ1| < 2t1.

Here, the difference in the winding number character-
ization between the MKC parallel system and the MKC
perpendicular system is explicit. For the MKC parallel system,
Fig. 3 has shown that the winding number is a combina-
tion of the winding numbers corresponding to the parents.
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FIG. 17. Winding from the Bloch vectors (d1,y, d1,z ) (red) and
(d2,y, d2,z ) (blue dashed) with PBC along both the x and y directions.
Parts (a), (c), and (e) are the closed curves due to PBC Lx = 100 and
Ly = 6, where the six circles show the situation along the edge in
the y-direction for (a) μ1 = 1, μ2 = 0 (MZMs present), (c) μ1 = 2,
μ2 = 0 (critical), and (e) μ1 = 3, μ2 = 0 (trivial along the y edge),
respectively. Similarly, (b), (d), and (f) are the closed curves due to
PBC Lx = 8 and Ly = 100, where the eight circles show the situation
along the edge in the x-direction for (b) μ1 = 0, μ2 = 1 (MZMs
present), (d) μ1 = 0, μ2 = 2 (critical), and (f) μ1 = 0, μ2 = 3 (triv-
ial along the x edge). The Bloch vectors d1 and d2 overlap so that
the situation is similar for both the component Hamiltonians. All the
cases assume t1 = 1 = t2 = �1 = �2.

Therefore, even if at least one of the parent systems is topo-
logical, the sum of the absolute value of winding derived
from both systems adds up to two. However, in the MKC
perpendicular system, the winding curves of both component
Hamiltonians are equivalent, such that the component Hamil-
tonians always have equal winding. The difference here is in
the nature of the winding when one varies the kx direction
compared to the ky direction, keeping the perpendicular mo-
menta constant for a given curve.

We will follow our analysis of the bulk topology in the
MKC perpendicular system with a systematic analysis of the
edge states in the real-space Hamiltonian in the next sec-
tion. We will demonstrate that the relevant bulk boundary

FIG. 18. Winding from the Bloch vectors (d1,y, d1,z ) (red) and
(d2,y, d2,z ) (blue dashed) with PBC along both x and y directions.
We see more clearly the modulation of the winding curves in one
direction due to its perpendicular part, and the curves are actually
polygons if both edges are smaller. But since the winding depends
on the bulk, this should not change the final outcome. Parts (a), (c),
and (e) are the closed curves due to PBC Lx = 10 and Ly = 6, where
the six circles show the situation along the edge in the y-direction
for (a) μ1 = 3, μ2 = 1 (MZMs along x, trivial along y), (c) μ1 =
1, μ2 = 3 (MZMs along y, trivial along x), and (e) μ1 = 3, μ2 = 3
(trivial along both edges), respectively. Similarly, (b), (d), and (f) are
the closed curves due to PBC Lx = 8 and Ly = 10, where the eight
circles show the situation along the edge in the x-direction for (b)
μ1 = 3, μ2 = 1 (MZMs along x, trivial along y), (d)μ1 = 1, μ2 = 3
(MZMs along y, trivial along x), and (f) μ1 = 3, μ2 = 3 (trivial along
both edges). The Bloch vectors d1 and d2 overlap so that the situation
is similar for both the component Hamiltonians. All the cases assume
t1 = 1 = t2 = �1 = �2.

correspondence directly maps to the number and nature of the
windings we have shown in Figs. 17 and 18.

B. Perpendicular MKC Hamiltonian in real space

For convenience again, we redefine our notation from
Sec. III B, γ j,+ = (γ j,+,↑, γ j,+,↓) and γ j,− = (γ j,−,↑, γ j,−,↓)T .
Then one can express the MKC Hamiltonian in the case of
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perpendicular parents as follows in real space:

Hc
MKC,⊥ = 1

2

∑
i, j

−(t1 − �1)iγi, j,+(t2σ
z − i�2σ

y)γi+1, j+1,− − (t1 + �1)iγi+1, j+1,+(t2σ
z + i�2σ

y)γi, j,−

− (t1 − �1)iγi, j, + (t2σ
z + i�2σ

y)γi+1, j−1,− − (t1 + �1)iγi+1, j−1,+(t2σ
z − i�2σ

y)γi, j,−
− μ2(t1 − �1)iγi, j,+σ zγi+1, j,− − μ2(t1 + �1)iγi+1, j,+σ zγi, j,−,

− μ1iγi, j,+(t2σ
z − i�2σ

y)γi, j+1,− − μ1iγi, j+1,+(t2σ
z + i�2σ

y)γi, j,− − μ1μ2iγi, j,+σ zγi, j,−. (47)

We execute the same similarity transformation as done in the MKC parallel case, which changes the Hamiltonian expression to

Hc
MKC,⊥ = i

2

∑
i, j

[−(t1 − �1)(t2 − �2)γ̃i, j,↑,+γ̃i+1, j+1,↓,− − (t1 + �1)(t2 + �2)γ̃i+1, j+1,↑,+γ̃i, j,↓,−

− (t1 − �1)(t2 + �2)γ̃i, j,↑,+γ̃i+1, j−1,↓,− − (t1 + �1)(t2 − �2)γ̃i+1, j−1,↑,+γ̃i, j,↓,− − μ2(t1 − �1)γ̃i, j,↑,+γ̃i+1, j,↓,−
− μ2(t1 + �1)γ̃i+1, j,↑,+γ̃i, j,↓,− − μ1(t2 − �2)γ̃i, j,↑,+γ̃i, j+1,↓,− − μ1(t2 + �2)γ̃i, j+1,↑,+γ̃i, j,↓,−

− μ1μ2γ̃i, j,↑,+γ̃i, j,↓,−] + i

2

∑
i, j

[−(t1 − �1)(t2 + �2)γ̃i, j,↓,+γ̃i+1, j+1,↑,− − (t1 + �1)(t2 − �2)γ̃i+1, j+1,↓,+γ̃i, j,↑,−

− (t1 − �1)(t2 − �2)γ̃i, j,↓,+γ̃i+1, j−1,↑,− − (t1 + �1)(t2 + �2)γ̃i+1, j−1,↓,+γ̃i, j,↑,− − μ2(t1 − �1)γ̃i, j,↓,+γ̃i+1, j,↑,−
− μ2(t1 + �1)γ̃i+1, j,↓,+γ̃i, j,↑,− − μ1(t2 + �2)γ̃i, j,↓,+γ̃i, j+1,↑,− − μ1(t2 − �2)γ̃i, j+1,↓,+γ̃i, j,↑,− − μ1μ2γ̃i, j,↓,+γ̃i, j,↑,−],

= H1,⊥ + H2,⊥. (48)

Based on the diagram shown in Fig. 19, it is possible to
deduce the possibility and placement of Majorana zero modes
even if the system has finite length and width. We introduce all
the interactions present with respect to one site in Figs. 19(a)
and 19(b) for the component Hamiltonians H⊥,1 and H⊥,2, and
then we prioritize the case for which t1,2 = �1,2 [Figs. 19(c)
and 19(d)], where we find the Majorana zero mode parent
Hamiltonian for suitable μ1,2.

Case 1. We first look at the case when parent 1 is topo-
logical, with μ1 = 0, while parent 2 is trivial with μ2 >

2t2. Figures 19(f) and 19(g) show that both H1,⊥ and H2,⊥
have Majorana zero modes running along both the edges
parallel to the y-axis of the square lattice. Numerical sim-
ulation in Fig. 20(a) agrees with this analytical calculation.
The schematic diagram further illustrates that the states lo-
calized along each edge are twofold-degenerate, as each
component Hamiltonian in Eq. (48) contributes a Majorana
edge state.

Case 2. Now, we consider parent 2 in the topological phase,
with μ2 = 0, and parent 1 in the trivial phase by requiring
that μ1 > 2t1. From Figs. 19(e) and 19(f) for H1,⊥ and H2,⊥,
respectively, one observes Majorana zero modes in the square
lattice along the two edges parallel to the x-axis. Again, each
Hamiltonian component contributes one Majorana state lo-
calized at each edge, yielding a twofold degeneracy of the
Majorana zero modes. Numerical simulations in Fig. 20(d) are
consistent with our analytical expressions.

Case 3. Finally, we consider the case in which each parent
is topologically nontrivial. This is illustrated in Figs. 19(i) and
19(j) and Figs. 19(k) and 19(l) for μ1 = 0, μ2 < 2t2 and μ1 <

2t1, μ2 = 0, respectively. Notice the alternatively connected
dashed and solid lines, which indicates a number of decoupled
Kitaev chains. The conditions μ1 < 2t1 in Figs. 19(i) and 19(l)
and μ2 < 2t2 in Figs. 19(j) and 19(k) then naturally imply that

each of the decoupled Kitaev chains is topologically nontriv-
ial and hence has a Majorana zero mode at the edges. The
interesting fact to notice, however, is that the whole perimeter
of the finite-size system now has Majorana zero modes with
twofold degeneracy (each of H1,⊥ and H2,⊥ provides one
MZM). This also agrees with our numerical simulation in
Figs. 20(g) and 20(h). In addition, the corners seem to host
three degenerate Majoranas. This may indicate the presence
of higher-order [32] topological edge modes, but we defer this
discussion to a later article.

Ultimately, these results validate our analysis of the bulk
topology from Figs. 17 and 18. In Case 3, when both parents
are topological and the child has dimensions Lx × Ly, we have
Lx pairs of Majoranas along the edge parallel to y and Ly pairs
of Majoranas parallel to x. This number is equal to the number
of circles enclosing the origin in Figs. 17(a) and 17(b), and
the MZMs directly correspond to the winding derived from
these circles. Again from Case 1 and Case 2, the Majorana
pairs are localized along edges parallel to the direction along
which the nontopological parent lies. The number of such
Majorana pairs maps to the number of circles or polygons
with the winding one in Fig. 18(b) which is the value of Lx

and in Fig. 18(c) the value being Ly—this directly provides
the bulk-boundary correspondence in Cases 1 and 2. There
exists no winding for the circles or polygons in Figs. 18(a) and
18(d), which again confirms our real-space analysis—there
exist no Majorana pairs along the direction of the topological
parent. The topology derived from each parent seems to be
disconnected in the MKC perpendicular system unlike the
MKC parallel system, which our winding number and real
space confirms. Moreover, the Wilson loop analysis, which
seemed to be unreliable in the MKC parallel case, agrees with
the winding number analysis in the MKC perpendicular case
as shown from Fig. 16.
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=Majorana Zero Mode

(a) (c)

(d)

(e)
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FIG. 19. Schematic representation of the MKC perpendicular system in terms of Majorana fermionic interactions using the color scheme
mentioned in the legends at the bottom left corner of the figure, (a) for t1 = �1 and (b) for t1 = �1 and μ1 = μ2 = 0. One can see that for
translational symmetry in the y-direction, one gets Majorana edge modes along the whole y-axis for a finite slab in the x-direction, as discussed
beforehand.

1. Edge states of the MKC perpendicular system from
the component Hamiltonians and entanglement

Having convinced ourselves about the bulk-boundary cor-
respondence in the MKC perpendicular system, next we
analytically derive the expressions for the edges from the
component Bloch Hamiltonians in Eqs. (45a) and (45b). Here
we assume OBC in both the x and y directions so that one
can implement localization in both directions as kx → iqx and
ky → iqy resulting in the conditions

[(2t1 cosh qx + μ1) ± 2�1 sinh qx]

× [(2t2 cosh qy + μ2) ± 2�2 sinh qy] = 0, (49a)

[(2t1 cosh qx + μ1) ± 2�1 sinh qx]

× [(2t2 cosh qy + μ2) ∓ 2�2 sinh qy] = 0 (49b)

on the decay constants. We calculate these relations explicitly
from H⊥,1 and H⊥,2, respectively, in Sec. S1 B of the Supple-
mental Material [27]. We assume a semi-infinite 2D system
with the wave function for the edge states vanishing at x = 0
for any y and y = 0 for any x. Taking a separable ansatz, and
inputting the boundary conditions, �( j, 0) = �(0, l ) = 0, we
have, for example, in H⊥,1 for the sign (+,+),

�( j, l ) ∼ [
pj

1,+ − pj
1,−

][
sl

1,+ − sl
1,−

]
, (50)

and in H⊥,2 for the sign (+,−),

�( j, l ) ∼ [
pj

1,+ − pj
1,−

][
sl

2,+ − sl
2,−

]
. (51)

Here we denote p1,± = −μ1±
√

μ2
1−4(t2

1 −�2
1 )

2(t1+�1 ) , p2,± =
−μ1±

√
μ2

1−4(t2
1 −�2

1 )
2(t1−�1 ) , s1,± = −μ2±

√
μ2

2−4(t2
2 −�2

2 )
2(t2+�2 ) , and s2,± =

−μ2±
√

μ2
2−4(t2

2 −�2
2 )

2(t2−�2 ) .
As in the case of the MKC parallel system, the Majorana

zero modes (MZMs) can be shown to be entangled or product
states based on the topological nature of the parent Hamil-
tonians or the boundary conditions one imposes. Unlike the
MKC parallel system, the MKC perpendicular system has the
added advantage that even if both parents are topological, it
is possible to change the entanglement by considering cylin-
drical geometries. To show this, let us consider the condition
Eq. (49a) for sgn(ti ) = sgn(�i ), i ∈ {1, 2},

[(2t1 cosh qx + μ1) − 2�1 sinh qx]

× [(2t2 cosh qy + μ2) − 2�2 sinh qy] = 0. (52)

If there exists OBC along both the x and y directions and
both the parents are topological, we have, 2t1 cosh qx + μ1 =
2�1 sinh qx and 2t2 cosh qy + μ2 = 2�2 sinh qy, which im-
plies that H⊥,2 vanishes as shown in Supplemental Material
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(a) µ1 = 0, µ2 = 3 (b) µ1 = 1, µ2 = 3 (c) µ1 = 2, µ2 = 3

(d) µ1 = 3, µ2 = 0 (e) µ1 = 3, µ2 = 1 (f) µ1 = 3, µ2 = 2

(g) µ1 = 0, µ2 = 0 (h) µ1 = 1, µ2 = 1 (i) µ1 = 2,µ2 = 2

FIG. 20. Density plots for zero-energy Majorana modes for a
finite 20 × 50 slab of MKC perpendicular system at different values
of μ1 and μ2. All the systems have t1 = t2 = 1 and �1 = �2 = 1.

[27], Sec. S1 B. We note that we are actually working in
the full basis of the MKC perpendicular system, given by
the four degrees of freedom, (c̃k,↑, c̃k,↓, c̃†

−k,↑, c̃†
−k,↓)T , which

combines the degrees of freedom of the two component
Hamiltonians. In this basis, the null eigenvectors derived from
H⊥,1(iqx, iqy) are given as

|�〉MZM =
{

1√
2

(|00〉 − |11〉), |01〉, |10〉
}
, (53)

where |0〉 = (1, 0)T and |1〉 = (0, 1)T .
Now, say if parent 1 is topological while parent 2 is trivial

while we retain OBC in both x and y directions, we must only
satisfy the condition, 2t1 cosh qx + μ1 = 2�1 sinh qx. Again
from calculations shown in Supplemental Material, Sec. S1 B
[27], the null eigenvectors in the full basis with four degrees
of freedom are shown to be

|�〉MZM =
{

1√
2

(|00〉 − |11〉),
1√
2

(|01〉 − |10〉)

}
. (54)

One must note that the above eigenvectors are also valid if
the y-direction is unopened or in PBC so that the topological
nature of the second parent does not matter. Then only the
condition 2t1 cosh qx + μ1 = 2�1 sinh q holds.

Consequently, in contrast to the MKC parallel system, the
entanglement between maximally entangled Bell states and
product states can be controlled completely, not only via the
topological nature of the parents but also the geometry of
the sample. We provide a small table (Table II) showing all
the possible MZM eigenvectors under various parent topol-
ogy and boundary conditions. The table lists only the MZM
eigenvector at edges x = 0 and y = 0. The eigenvectors at the
other edges can be found by changing sqn(ti )

sgn(�i )
from + to − and

vice versa for both parents. We will recover a total of four
eigenvectors with two common eigenvectors for both signs
when both parents are topological. Thus, the MZMs obtained
in this case have a similar entanglement structure as in the
parallel case.

2. Parallel quantum gates without braiding

The MZMs of the perpendicular MKC system can also be
entangled states and separable two-qubit states via variation of
the system parameters at a given parity. In this case, however,
there is the potential to perform parallel gate operations: since
the number of MZM pairs that the perpendicular system has
is proportional to the perimeter of the system (when there are
open boundary conditions in each direction), it is possible to
carry out CNOT operations simultaneously on a large number
of MZM pairs. The full potential for universal quantum com-
putation schemes by manipulating multiplicative topological
phases in combination with this potential for parallelized gate
operations warrants further investigation, but this is beyond
the scope of this work.

C. Finite MKC perpendicular system
with open boundary conditions

To begin characterizing the perpendicular MKC with open
boundary conditions, we consider a slab geometry, with open
boundary conditions in the x̂-direction and periodic in the
ŷ-direction. We first characterize the spectral properties of
the system with these boundary conditions, finding evidence
of additional topologically protected boundary modes under
these conditions. We then characterize these topologically
protected boundary states in greater detail focusing on lo-
calization of the states. We support numerical findings with
additional analytical characterization of the boundary modes
in a variety of limiting cases.

1. Spectral dependence on the chemical potential

We begin by considering the slab geometry with Lx = 80,
which is much larger than the coherence length of the edge
states. These results are shown in Fig. 21.

We see along the cut in the phase diagram μ1 = μ2 the
existence of zero-energy states, in fact these are actually dis-
persionless as expected in the schematic diagram Fig. 19.
Furthermore, this numerically verifies what we would expect
from the bulk topology.
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TABLE II. Eigenvectors of the MKC perpendicular system for different topological characterizations of the two parent systems, ratio of
signs of ti and �i, i ∈ {1, 2}, and boundary conditions.

Parent 1 Parent 2

Phase sgn(t1 )
sgn(�1 ) x-BC Phase sgn(t1 )

sgn(�1 ) y-BC MZM eigenvectors

topo + OBC topo + OBC
{

1√
2
(|00〉 − |11〉), |01〉, |10〉}

+ OBC − OBC
{

1√
2
(|01〉 − |10〉), |00〉, |11〉}

− OBC + OBC
{

1√
2
(|01〉 + |10〉), |00〉, |11〉}

− OBC − OBC
{

1√
2
(|00〉 + |11〉), |01〉, |10〉}

topo + OBC topo +,− PBC
{

1√
2
(|00〉 − |11〉), 1√

2
(|01〉 − |10〉)

}
− OBC +,− PBC

{
1√
2
(|00〉 + |11〉), 1√

2
(|01〉 + |10〉)

}
+,− PBC + OBC

{
1√
2
(|00〉 − |11〉), 1√

2
(|01〉 + |10〉)

}
+,− PBC − OBC

{
1√
2
(|00〉 + |11〉), 1√

2
(|01〉 − |10〉)

}
topo + OBC triv

{
1√
2
(|00〉 − |11〉), 1√

2
(|01〉 − |10〉)

}
− OBC

{
1√
2
(|00〉 + |11〉), 1√

2
(|01〉 + |10〉)

}
triv topo + OBC

{
1√
2
(|00〉 − |11〉), 1√

2
(|01〉 + |10〉)

}
− OBC

{
1√
2
(|00〉 + |11〉), 1√

2
(|01〉 − |10〉)

}

2. Analytical theory for finite size MKC perpendicular edge states

We consider now a fully open geometry, therefore bound-
ary conditions at x = Lx + 1 and y = Ly + 1 enforced on the
edge state expressions in Eqs. (50) and (51) stipulate that

μ1 = 2
√

t2
1 − �2

1 cos
nxπ

Lx + 1
, nx ∈ {1, . . . , Lx},

μ2 = 2
√

t2
2 − �2

2 cos
nyπ

Ly + 1
, ny ∈ {1, . . . , Ly}. (55)

Henceforth, the plot of energy E versus μ1 = μ2 = μ

should include a total of Lx × Ly gapless points, with the gap-
less points due to μ1(μ2) being Ly(Lx )-degenerate [degenerate
by the number of sites along the y(x)-edge] as observed in
Fig. 22. As with the MKC parallel, the existence of bubblelike
features is a result of the hybridization of edge states when the

FIG. 21. Slab spectra with Lx = 80 for OBC along the x direction
(black) and PBC along the y direction (blue) for (a) parent KC with
t = 1 = � vs μ, and (b) child MKC perpendicular with t1 = t2 =
1 = �1 = �2 and ky = 0 vs μ1 = μ2.

system size is comparable to the correlation length of the edge
states.

V. DISCUSSION AND CONCLUSION

In this work, we introduce multiplicative topological
phases of matter realizing unpaired Majorana zero modes.
We find that the recently introduced multiplicative topological
phases [12] realize such zero modes through bulk-boundary
correspondence, specifically considering a canonical Hamil-
tonian for realizing such multiplicative topological phases
consisting of a symmetry-protected tensor product of two
Kitaev chain Hamiltonians. While considerable impor-
tant work currently focuses on smoking-gun experimental

FIG. 22. Spectrum E vs μ1 = μ2 for OBC (blue) and PBC
(black) along both the x and y directions with Lx = 6 and Ly =
7 for t1 = t2 = 1 and �1 = �2 = 0.5. We see six gapless points
corresponding to OBC along x with sevenfold degeneracy, and
seven gapless points corresponding to OBC along y with sixfold
degeneracy.
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confirmation of unpaired Majorana zero modes and individ-
ual topological qubits in experiment, it remains important to
identify practical platforms for scalable topological quantum
computers. Results discussed here are relevant to realizing
such scalable systems of many topological qubits, given
that multiplicative Majorana zero modes are individual states
composed of multiple symmetry-protected unpaired Majo-
rana zero modes. Additionally, results here indicate there are
opportunities for controlled introduction of entanglement be-
tween degrees of freedom derived from both parents in the
Majorana eigenvectors, potentially useful for performing gate
operations of topological quantum computation schemes.

We demonstrate the richness of multiplicative topo-
logical phases by constructing one-dimensional but also
two-dimensional multiplicative Kitaev chain models capable
of realizing myriad topologically nontrivial phases. These
models consist of either two parent Kitaev chain Hamil-
tonians that depend on the same momentum component,
or perpendicular momentum components, combined in a
symmetry-protected, tensor product construction. We lay the
groundwork for studying these systems by characterizing bulk
topology and corresponding topologically protected boundary
states, focusing on the dependence of the resultant multiplica-
tive topological phases on the topology of the parents.

We characterize the bulk of multiplicative Kitaev chains
first by demonstrating that eigenvalues of the bulk spec-
trum are products of the eigenvalues of the parent Kitaev
chain bulk spectra, indicating topological phases of the child
are stable up to gap-closing of either parent. We also ex-
plore characterization of multiplicative topology in the bulk,
and we find that Wilson loop spectra successfully char-
acterize some multiplicative topological phases, but they
can also indicate trivial topology in the case when each
parent is topologically nontrivial. We show, however, that it is
possible to decompose the MKC into chiral subsectors to more
fully characterize the topology under certain conditions. This
exploits the fact that the degrees of freedom of these Hamil-
tonians are symmetry-constrained, locking together into pseu-
dospins yielding winding numbers that successfully character-
ize all topologically nontrivial states realized through different
combinations of trivial and nontrivial parents considered here.
Fully characterizing multiplicative topological phases, how-
ever, is an important issue to explore in future works.

Topologically protected boundary states possible for the
multiplicative Kitaev chain Hamiltonians are varied. We con-
sider child Hamiltonians, which can be block-diagonalized
into chiral subsectors. Based on the topology of the parents,
the MZMs of the child may possess either a tensor product
or maximally entangled Bell state structure. We characterize

the topology of the child chiral subsectors in the bulk by
computing winding numbers for the parallel case, which seem
to possess an algebra as one might infer from the addition
of angular momentum. We find a relationship between the
winding numbers of the child chiral subsectors in the case
of two parallel parent Kitaev chains. Schematically, from
real-space Hamiltonian expressions, we show that for suitable
parametric conditions, MZMs are localized at the outermost
and second outermost sites for the 1D (parallel) case or along
two or four edges for the 2D (perpendicular) case.

Similarly, we illustrate a winding number calculation for
the perpendicular case which accurately reflects the number of
MZMs and the edge along which they are localized. A quanti-
zation condition for the existence of topologically protected
boundary modes in finite-size MKC systems has also been
obtained, and we have shown that it agrees with our numerical
results for one of the simpler cases. More complicated cases
may still be studied, such as one example in Sec. S1 A of the
Supplemental Material [27]. This shows that a topologically
protected, multiplicative Majorana zero mode of the child
MKC, in both the parallel and the perpendicular case, is not
just a tensor product of parent Hamiltonian states in general.
Instead, they can more generally possess emergent properties
evident in their localization, i.e., entanglement and topological
robustness.

Future work will explore topological characterization in
systems with lower symmetry, for which the multiplicative
Majorana zero modes are expected to take more general
forms, as well as control of the entanglement properties,
which hold great promise for developing more robust and ver-
satile topological quantum computation schemes. This could
include further study of the potential for braiding schemes,
with the degenerate manifold of zero-energy states, when each
parent is topologically non-trivial, being a particularly inter-
esting case for such future study, as well as further study of the
potential for alternatives to braiding schemes for topologically
protected quantum computation.
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