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Ising machines (IMs) have emerged as a promising solution for rapidly solving NP-complete combinatorial
optimization problems, surpassing the capabilities of traditional computing methods. By efficiently determining
the ground state of the Hamiltonian during the annealing process, IMs can effectively complement CPUs in
tackling optimization challenges. To realize these IMs, a bistable oscillator is essential to emulate the atomic
spins and interactions of the Ising model. This study introduces a Josephson parametric oscillator (JPO) based
tile structure, serving as a fundamental unit for scalable superconductor-based IMs. Leveraging the bistable
nature of JPOs, which are superconductor-based oscillators, the proposed machine can operate at frequencies
of ∼7.5 GHz while consuming significantly less power (by three orders of magnitude) than complementary
metal-oxide semiconductor based systems. Furthermore, the compatibility of the proposed tile structure with the
Lechner-Hauke-Zoller architecture ensures its viability for large-scale integration. We conducted simulations
of the tile in a noisy environment to validate its functionality. We verified its operational characteristics by
comparing the results with the analytical solution of its Hamiltonian model. This verification demonstrates the
feasibility and effectiveness of the JPO-based tile in implementing IMs, opening new avenues for efficient and
scalable combinatorial optimization in quantum computing.
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I. INTRODUCTION

As semiconductor fabrication technology approaches its
physical limits, the conventional scaling of semiconductors,
which has driven the growth in integration density and op-
erating speed of complementary metal-oxide semiconductor
(CMOS) based designs, is reaching its end [1,2]. Therefore,
exploring alternative technologies and architectures beyond
CMOS that can enhance systems’ performance and energy
efficiency is essential. One solution to improve the efficiency
of conventional computers is to develop accelerator platforms
for today’s computing-intensive applications, such as artificial
intelligence (AI), optimizations, pattern recognition, bioinfor-
matics, and novel material simulations, that can keep up with
the growing complexity of these problems.

Many of the computational problems encountered in
current applications become increasingly intractable as the
problem size scales up. This exponential increase in compu-
tational resources and time needed to solve such problems
poses a significant challenge [3]. Combinatorial optimization
problems are often known to be nondeterministic polynomials
(NP-complete), implying that finding the exact optimal solu-
tion can require exponential time in the worst-case scenario.

A promising approach for solving NP-complete problems
involves identifying physical phenomena that can be modeled
as a combinatorial problem. By mapping the original problem
onto a physical system, we can leverage the system’s inherent
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properties and dynamics to solve the problem. As the system
reaches a stable state, the outcome represents the solution to
the initial combinatorial optimization problem and solves the
problem efficiently.

An intriguing physical system with a combinatorial model
is the behavior of free electrons’ spins within a material’s lat-
tice. The material’s lattice vibrates as it heats up, causing the
electrons to move more freely. As the material cools down, the
interaction force between electrons and the lattice exceeds
the electrons’ kinetic energy. Consequently, the electrons set-
tle into a configuration that minimizes the lattice’s energy.
This phenomenon was initially mathematically described by
Ising [4]. In the Ising model, each spin can be either up or
down. The spin’s behavior in the Ising model is determined by
an energy function that relies on the states of the neighboring
spins known as the Ising Hamiltonian. The electron configu-
ration in the minimum value of this function determines the
state of the matter.

Solving NP-complete problems using the Ising machine
(IM) can offer a significant speedup compared to conventional
computers [5]. Thus, mapping NP-complete problems onto
the Ising model is advantageous, as finding the solution is
equivalent to finding the ground state of the system’s Hamilto-
nian. Additionally, IMs are highly effective at formulating and
solving quadratic unconstrained binary optimization (QUBO)
problems [6]. This makes them a powerful tool for addressing
a variety of optimization challenges.

IMs can be implemented using various interacting bistable
oscillators as basic building blocks, such as optical parametric
oscillators (OPOs) [7,8], CMOS-based electronic oscillators
[9,10], spintronics and magnetic systems [11], and quantum
annealers [12].
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While optical systems offer notable benefits for imple-
menting Ising model solvers, including high processing speed
and minimal noise levels, they face challenges related to in-
tegration limitations, bulkiness, and the need for long optical
fibers [10]. Another approach involves CMOS-based imple-
mentations for realizing the Ising model [13–15]. Although
CMOS-based implementations offer simplicity through tech-
niques like iterative annealing in memory, they still encounter
delay and energy consumption challenges.

Superconductor electronics offer an alternative to semi-
conductors, providing higher computing speed and reduced
power consumption [16–18]. Quantum annealers, like D-
Wave 2000Q (DW2Q) [19], utilize superconducting qubits
representing electron spins, enabling high-speed operations
through magnetic flux interactions. However, quantum an-
nealers face challenges related to the sparse “Chimera”
connective pattern coupling graph architecture, which neces-
sitates problem modifications and minor embedding methods
[20]. Additionally, achieving subkelvin temperatures for ob-
serving quantum states adds complexity and costs to these
systems.

This paper introduces a practical superconductor-based IM
system that operates at 4.2 K. A key component of our ap-
proach is the utilization of Josephson parametric oscillators
(JPOs) [21] as the fundamental spin elements within the IM.
We propose a JPO structure that enables the formation of a
four-body interaction network, a tile (plaquette), composed
of six JPOs. The tile represents the fundamental building
block in the IM architecture based on the Lechner-Hauke-
Zoller (LHZ) approach [22]. Through inductive coupling, we
establish controllable interactions between the JPOs by ma-
nipulating the phase differences between pairs of JPOs. These
interactions drive convergence towards the minimum energy
state of the Hamiltonian during the annealing process.

The proposed structure offers advantages in terms of low
power consumption and scalability, enabling the integration of
single flux quantum (SFQ) based control and readout circuits
on the chip. Similar circuits were proposed in [23] for qubit
control.

II. ISING MACHINE

An Ising machine determines the configuration states that
minimize the interaction energy between spins. In this context,
the Ising Hamiltonian for N spins can be expressed as

H = −
N∑

i=1

hiσi −
N∑
j,i

Ji jσiσ j, (1)

where σi (∈ −1,+1) is the ith spin, Ji j is the coupling inter-
action between the ith and jth spins, and hi is the local field
of the ith spin.

The IM can solve the QUBO problem by mapping it onto
the Ising Hamiltonian. This involves substituting the variable
x (∈ 0, 1) in the QUBO with 1

2 (σ − 1) in the Ising Hamilto-
nian. By finding the ground state of H, the IM can effectively
solve NP-complete combinatorial problems. However, achiev-
ing universal annealing requires control over each two-body
interaction Ji j . The challenge of physically implementing the
IM for large-scale problems arises from the all-to-all inter-

FIG. 1. A general structure of the JPO-based tile. S1 to S4 (the
equivalent of north, east, south, and west (n.e.s.w.). in the LHZ) are
the JPO-based spin nodes that are coupled together, and Sa1 and Sa2

are JPO-based ancilla spins which are used to impose the constraint
Cl . Ccnst is the offset value added to ensure that Cl is always negative
in the tile structure.

actions among spins represented by the interaction matrix J .
The LHZ IM was introduced to address scalability in [24]. The
LHZ architecture offers a compact solution by eliminating the
need for all-to-all interactions between spins.

In the LHZ IM, logical bits σi define the Ising Hamiltonian
(1), while physical bits σ̃i represent the relative configura-
tion of two logical bits along a specific connection edge Ji j .
Parallel and antiparallel alignments correspond to 1 and 0,
respectively. By treating optimization parameters Ji j as local
magnetic fields, the LHZ structure achieves full programma-
bility with local control. The system size expands from N
logical bits to K = N (N − 1)/2 physical bits to accommodate
all interaction matrix elements.

The physical bits form a two-dimensional triangular con-
figuration, with N − 1 bits in the base and decreasing levels
above, ending in a single bit at the apex. An additional row of
N − 2 fixed physical qubits with a spin value of “1” completes
the architecture. The connections between the physical bits are
limited to nearest neighbors, resulting in (N − 1)(N − 2)/2
closed paths of length 4, known as tiles. Each tile represents
a four-spin interaction pattern. Figure 1 illustrates an example
tile structure employed within the LHZ architecture with four
logical JPOs and two ancillary JPOs enforcing the constraints
Cl . The constant term is added to ensure term Cl is always
negative.

The increased degrees of freedom are balanced by K −
N + 1 constraints Cl , ensuring an even number of spin flips
along any closed loop in the logical bit. These constraints
can be implemented using local interactions in simple square-
lattice geometry. Consequently, the optimization problem is
encoded as

H =
K∑

k=1

Jk σ̃i +
K−N+1∑

l=1

Cl . (2)

The vector Jk encompasses all K elements of the interaction
matrix Ji j , effectively converting the optimization parameters
into local fields that can be easily controlled and applied to the
physical bits. Furthermore, the constraint Cl associated with
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the lth tile can be defined as

Cl = −Cσ̃ (l,n)σ̃ (l,s)σ̃ (l,w)σ̃ (l,e). (3)

This equation represents the four-body interaction between
the physical bits (the north, east, south, and west) within the
tile, with a penalty parameter of C. By applying the annealing
process and reaching the ground state of H, the solution to the
optimization problem can be determined (except for a global
inversion) by appropriately reading out a selection of N − 1
physical bits from the total of N (N − 1)/2 available.

III. SUPERCONDUCTOR-BASED COMPONENTS

A. Josephson parametric oscillator

Superconductor circuits offer unique quantum behavior at a
macroscale, making them well suited for innovative circuitry.
Conduction in these circuits is facilitated by supercurrents
from Cooper pairs that act as quasiboson particles. Like
photons in optical circuits, Cooper pairs possess the same
wave function. However, unlike photons, Cooper pairs exten-
sively interact due to their electric charge. This distinction
enables the creation of bistable parametric oscillators, similar
to OPOs, using superconductor circuits. These oscillators can
be coupled and scaled up, integrating numerous oscillators on
a single chip.

At the heart of most superconductor circuits, including
JPOs, lies the Josephson junction (JJ). A JJ forms at weak
links within a superconductor, generating a constant cur-
rent due to the phase difference in the wave function at the
junction’s terminals. The behavior of supercurrents in JJs is
described by the Josephson DC and AC equations [25].

Considering the Josephson equation pair, it is evident that
the JJ possesses an inductance that relies on the magnetic
flux or the current passing through it. This inductance can be
determined by

LJJ = h̄

2eIC
= �0

2π IC
, (4)

where LJJ is the inductance observed across the JJ and �0 is
the quantum of magnetic flux. Here, IC is the critical current
that can be described as IC0 cos(ϕ), where ϕ is the junction’s
phase and IC0 is the critical current at a zero phase value.
The nonlinear relationship between phase and current in the
JJ makes it an excellent candidate for nonlinear circuits and
oscillators in different devices such as superconductor quan-
tum interference devices (SQUIDs) and qubits [26–28].

A SQUID is formed by connecting two JJs in parallel
with a superconductor loop, as illustrated in Fig. 2. The
components of the SQUID include L1, L2, IC1, and IC2. The
SQUID can be described as a single JJ whose critical current
is IC = IC1 + IC2, and it is correlated with the flux applied to
the SQUID loop. Therefore, the current of the SQUID can be
modulated through magnetic coupling. In situations where the
loop inductance value of the SQUID is small, the inductance
value can be calculated as follows:

LSQUID = h̄

2eIC

1

| cos(π�ext/�0)| . (5)

�ext represents the external magnetic flux in the SQUID loop,
and ϕ denotes the SQUID phase. In JPOs, we utilize the

FIG. 2. Circuit schematic of the Josephson parametric oscillator
used as a cell to emulate the spin resonance. For symmetry we
assume that L1 = L2 = 7.5 pH, IC1 = IC2 = 80 µA with 15 � shunt
resistances, and CS = 4.5 pF. The resonator frequency is at 7.5 GHz.

SQUID as a variable inductance, which can be controlled
through external magnetic coupling. This capability enables
the modulation of the oscillation frequency. Figure 2 illus-
trates the resonator and SQUID loop combination, forming
the JPO. The resonance frequency can be finely adjusted by
altering the external flux on the SQUID loop.

Calculating the JPO’s resonance frequency requires eval-
uating signal attenuation across various frequencies while
considering the circuit to be a simple quarter-wavelength
resonator. Therefore, it becomes crucial to determine the
impedance of the resonator. The surface impedance of a
superconductor, also known as optical conductivity, can be
estimated using Zimmerman’s approximation of the Mattis-
Bardeen equation [29]. In these equations, the real part of
the impedance σ1 is due to quasiparticles, and the imaginary
part σ2 corresponds to the supercurrent. The overall resonance
frequency can be determined by combining the impedance
of the resonator and the SQUID from Eq. (5). A DC flux
would shift the inductance to match the frequency of oscil-
lation. Therefore, the resonance frequency can be calculated
as follows:

ω0 = ωr

[
1 + LSQUID(�ext ) + L1/2

Lr

]
, (6)

where Lr represents the inductance of the resonator. In this
work, we set ω0 to 7.5 GHz as the desired resonance fre-
quency. Figure 3 illustrates the variation of the resonance
frequency when an external flux is applied to the SQUID
loop through the IDC current source. In Fig. 3, we calcu-
late the oscillation frequency of the JPO, considering the
parameters and limitations of the MIT Lincoln Laboratory’s
superconductor processes SFQ5ee. The parameter modulated
in the JPO is the critical current of the SQUID. By coupling
a small RF magnetic signal to the SQUID loop, the critical
current, and consequently the inductance parameter, can be
modulated, leading to a slight change in the resonance fre-
quency. If the frequency of the pumped RF signal is twice
the circuit’s resonance frequency, in our case, 15 GHz, it
will deposit energy into the circuit until oscillation is sus-
tained. Hence, the JPO is classified as a parametric oscillator.
The JPO exhibits two stable points corresponding to the
SQUID’s 0 and π phases. At these two phases, the flux
in the SQUID is quantized to φ0, representing the state of
minimum energy.
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FIG. 3. Resonator frequency calculation result with different ap-
plied DC currents. The material is Nb, and the characteristics are
chosen to match the MIT LL SFQee5 process. The graphs for 0 and
10 µA overlap since the generated magnetic flux is not enough to
shift the resonance.

B. Tile (plaquette)

The proposed tile employs coupled JPOs to realize spin
interactions. The coupling between JPOs is achieved through
magnetic coupling in an inductive loop, as depicted in
Fig. 4. The compact structure of the tile, compatible with
commercial superconductor fabrication processes, features a
coupler circuit highlighted in black. The coupler consists of
a superconductor loop and a constant voltage source act-
ing as an offset, which is pumped with the same frequency
as the JPOs but at zero phase. Adjusting the pump sig-
nal allows the interaction between JPOs to be programmed
in the IM.

FIG. 4. A tile for the scalable architecture of IM. The structure
has six JPOs, four as the logic and two as the ancilla. The coupler
connects all JPO cells and provides interaction between them.

An LHZ-compatible superconductive tile comprises six
physical JPOs. Four are the main spins (JPOs), while the
remaining two are ancillary bits. The physical coupling values
of the main JPOs are identical, while the coupling values of
the ancillary JPOs are twice as large. These coupling values
can be modified by introducing a phase difference between
the pump frequencies of the JPOs and the offset phase of the
coupler loop. A phase difference of zero corresponds to fully
coupled JPOs, while a phase difference of π results in negative
coupling. The tile structure solves combinatorial problems
with up to four variables, while scalability is achieved by
interacting multiple tiles based on the LHZ architecture. Con-
sidering each JPO as a spin, the total energy of this circuit can
be expressed as

E =
4∑

i=1

Jiσ̃i − Ja1σ̃a1

4∏
i=1

σ̃i − Ja2σ̃a2

4∏
i=1

σ̃i − Ccnst

4∏
i=1

σ̃i,

(7)

where σi represents the logical JPOs and σa1 and σa2 are
the ancillary JPOs. Ji represents the external field interaction,
and Ja1 and Ja2 correspond to the ancillary interactions with
the other JPOs. These values depend on the coupling values
determined by physical coupling and the phase of the pump,
as stated. The constant value Ccnst guarantees that the four-
body interaction between the logical JPOs (

∏4
i=1 σi) is always

positive.
The adjustment of parameter values in the superconductive

tile can be achieved by modifying the phase of the pump’s
current source. It is crucial to satisfy this constraint in the
context of the LHZ structure, where the number of spins with
positive (negative) orientation must always be even, which is
achieved by the ancillary JPOs, and the penalty term should
always be negative, which is fulfilled by appropriately adjust-
ing the parameter Ccnst [22].

Furthermore, it should be noted that the ancillary JPOs
are physically decoupled from each other and do not directly
interact. When considering the external field effect on the
logical JPOs Jb and the value of the ancillary JPOs Ja, the
expression for the plaquette energy (7) can be rewritten as

E =
4∑

i=1

Jbσ̃i − (σ̃6Ja + σ̃5Ja + Ccnst )
4∏

i=1

σ̃i. (8)

The interaction resulted from ancillas described in this equa-
tion will result in ground energy values similar to Eq. (2),
which characterizes the interactions in the LHZ structure.
Consequently, these ancillary interactions enable us to map
the current pair-to-pair interaction circuit to the quadratic
interaction of a tile required for the LHZ Hamiltonian imple-
mentation. As mentioned earlier, altering the coupling values
of the ancillary JPOs allows us to choose the expected ground
states of the tile, enabling the mapping of different prob-
lems onto it. For instance, let us assume that all the logical
JPOs have the same coupling value and the same interaction
strength, denoted by Jb. In contrast, we assign random values
to the ancillary interactions Ja that are physically twice as
strong as the value of the logical interactions (i.e., Ja = 2Jb).
Table I illustrates the stable minimum energy states achieved
in the circuit that depends on the values the ancillary JPOs
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TABLE I. The energy of different arrangements of spins for
a sample coupling set tile. Here, we consider the ancillary JPOs’
physical coupling to be twice that of the logical JPOs.

Physical
JPO state

Ancilla
JPO state Total energy

|1111〉 |00〉 E = 4Jb − 2Ja − JC = −JC

|1110〉 |00〉 or |11〉 E = 2Jb ± 2Ja − JC = 2Jb − JC

|1100〉 |10〉 E = −JC

|1000〉 |11〉 or |00〉 E = −2Jb ± 2Ja − JC = 2Jb − JC

|0000〉 |11〉 E = −4Jb + 2Ja − JC = −JC

settle into. When the ancillary JPOs settle into the |00〉 state,
they force the physical JPOs to go to the |1111〉 state. When
we set the ancillas to |01〉 or |10〉, only two logical JPOs can
settle into the |1〉 state, and finally, in the case in which the
ancillas are settled in the |11〉 state, they force the physical
JPOs to go to the |0000〉 state. This satisfies the ground state
condition of the LHZ tile, where only even numbers of similar
states should exist in a single tile. Note that in Table I, only the
valid states based on (3) have been provided.

IV. EVALUATION AND DISCUSSION

A. Analytical modeling of Ising Hamiltonian

To evaluate the functionality of the proposed tile circuit,
we analytically modeled the Hamiltonian of a four-body in-
teraction within the tile structure. For this, we implemented
Eq. (8) by considering noise using QUTIP [30]. In this case,
the Hamiltonian formulation is

H =
4∑

i=1

Jiσ
(z)
i − Ct

4∏
i=1

σ
(z)
i + UN , (9)

where Ji represents external field parameters and Ct represents
the interaction arising from the coupler (Ct = σ z

5 × Ja + σ z
6 ×

Ja + JC ), and the terms σ (z) correspond to Pauli’s z matrix.
Additionally, we incorporate UN as a noise component gener-
ated by multiplying a thermal coefficient by a pseudorandom
energy distribution.

The minimum energy states of the tile are investigated by
introducing all the possible states and measuring the minimum
energy value of the tile based on its Hamiltonian equation in-
troduced in Eq. (9). For simulation, the external field was
normalized to 1, and the interaction between the spins was
±0.2 for all the positive and negative combinations. Then,
based on the number of times the circuit is settled on a state,
we calculate the distribution probability. The result for the
probability of the states is shown in Fig. 5. Here, the tile settles
on the states in which the number of ones is even, as shown in
Table I. The difference between the probabilities of the states
is due to the noise we have considered in the simulations.
When we set the external field values to a specific point, with
half of the interactions being positive and half being negative,
the function settles only in two ground states, as depicted in
Fig. 6. The two cases shown in Figs. 5 and 6 confirm that
the solution of the quantum Hamiltonian agrees with LHZ
structure.

FIG. 5. Analytical modeling result of a tile that will be used for
large-scale integration of the IM. Here, the penalty term is positive,
and the external field values are swiped so that the circuit can show
all the possible states.

B. Analog simulation setup

We selected the MIT LL SFQ5ee fabrication process for
the proposed superconductor-based spin and tile. The MIT LL
process allows for a high current density of 100 µA/µm2 for
JJs. This process involves nine superconductor metal layers
that facilitate the wiring and interconnect between JPOs and
control circuits. Our design simulates a JPO with a resonance
frequency of 7.5 GHz, which is pumped at 15 GHz.

With the proposed design, higher frequency values can be
achieved. While higher frequencies result in a smaller tile
layout and better noise performance, we chose this value to
align with our plan of utilizing on-chip control and readout
circuits. The control circuits will use SFQ pulses to generate
the microwave pump signal. The frequency of the SFQ pulses

FIG. 6. Analytical modeling result of a tile that will be used for
large-scale integration of the IM. The external field values are fixed
so that the circuit settles on only two of the minimum states.
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FIG. 7. Effect of Brownian noise on the Josephson I-V
characteristic.

should be about 5 times the pump frequency. After filtering
to get a clear sinusoidal signal and attenuation to match the
noise level and avoid quasiparticle poisoning, the signals are
applied to the tiles via coupled inductances.

However, for an analog simulation, we have not used
control circuits, and signals are applied directly via voltage
sources. We employ the DC flux by introducing it to the
SQUID loop through a DC voltage source via coupled in-
ductance with the SQUID loop inductances. To enhance the
accuracy of the simulation, a resistor with thermal noise is
incorporated into the voltage source. A similar approach is
adopted for applying AC pump flux to the SQUID loop. The
presence of coupled inductances can impact the behavior of
the SQUID loop and resonator, and as a result, their influence
needs to be considered in the overall circuit design.

We introduced thermal noise into the studied circuits to
ensure more realistic simulation results. Thermal noise arises
from the presence of normal electrons in normal metals and
superconductors when the temperature exceeds absolute zero.
This noise has two effects on superconductor circuits. The
first effect, Johnson noise, can be modeled as white noise and
can be applied to the circuit’s resistances [31]. The second
effect of thermal noise in the circuit is due to interactions
between Cooper pairs and normal electrons in the JJ. As the
temperature increases, this noise causes slight variations in the
JJ’s current-voltage (I-V ) characteristic and can be modeled
as Brownian noise [32]. Figure 7 illustrates the change in the
I-V characteristic of our junction in the presence of Brownian
noise at different temperatures. Semistochastic white noise
sources were added paralleled to resistances in the circuit’s
netlist at the sources that apply bias and pump currents. Its
value is given by IN = √

4RT kB, where T represents the
noise temperature, kB denotes the Boltzmann constant, and
R signifies the resistance value. To analyze the circuit’s be-
havior and specifically observe its oscillation, we utilized the
SPICE-based simulator JOSIM. We performed simulations and
obtained time-domain results. Then the fast Fourier transform
(FFT) of the time-domain results was calculated to extract the
frequency and phase characteristics. The state of the JPO is
determined via its phase.

FIG. 8. Amplitude and phase of the simulated JPO cell. Follow-
ing simulation with JOSIM, fast Fourier transform analysis reveals
distinct phase states at the resonance frequency obtained from multi-
ple simulations.

Simulating a tile is more complicated since the inputs
should be applied to six different JPOs. For a tile, the pump
voltage phases are applied based on the J-i values. Then the
DC flux is increased to destabilize the circuit, and it is grad-
ually decreased to the design point. At this point, the SQUID
voltage of each JPO is measured, and its phase should be at
either 0 or π . This process is done a thousand times to achieve
the statistical distribution of the states.

C. Analog simulation results

Figure 8 illustrates the FFT output of the SQUID loop’s
voltage obtained from simulating a single JPO cell. As shown,
the resonance frequency of the JPO is precisely at 7.5 GHz,
half of the Ipump frequency. We ran multiple simulations with
different random initial conditions. We observed that the
measured phase settles in two distinct values, indicating the
presence of two states with a phase difference of π .

It is important to acknowledge that numerical simulators,
such as JOSIM, have certain limitations regarding time step,
simulation duration, and the FFT algorithm. Consequently,
the phase states observed may not be precisely 0 and π ,
exhibiting slight variations. However, these variations are
still distinguishable, identifying the two distinct phase states.
This demonstrates the functionality of the simple JPO and
establishes the |π〉 state as “1” and the |0〉 state as “0.”
To change the interaction between two JPOs, we can ma-
nipulate the phase values in the pump signal. When two
JPOs start with the same pump phase, constructive interfer-
ence occurs, resulting in maximum coupling between them.
Conversely, destructive interference occurs when there is a
phase difference of π between the JPOs, leading to mini-
mal coupling. The same destructive and constructive patterns
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FIG. 9. Results for 1000 simulations on the four-spin system
with all the same interaction on a four-node tile for 20 ns at ran-
dom input points. The states we expect are at even parities. The
results converge to the right answer in all of the cases in a noisy
environment.

can be used in ancillary JPOs to change the penalty term of
the tile.

To validate the functionality of the tile, we implemented
the tile design as depicted in Fig. 4 and compared the simu-
lation results of the circuit with the Hamiltonian formulation.
Initially, we simulated the tile by applying all possible states
to the JPOs in the tile. In this scenario, the ancillary JPOs
were set at π

2 , and we initialized the JPOs with random phases
selected from the set 0, π . In the four-parameter problem,
16 different states exist, and in this study, all the states with
an even number of ones are possible solutions (see Sec. II
and the states shown in Table I). We conducted one thou-
sand simulations; the outcomes are depicted in Fig. 9. The
expected solutions are the eight states with their respective
probabilities shown. The slight differences in the probabilities
of the states result from the noise added to the bias and
pump sources, as well as the offset applied to the interaction.
Considering the added noise, our current design can settle in
all the ground states in all cases. By setting the ancillary
bits at half the phase and fixing the main JPO phase values,
we performed 1000 simulations and observed the results il-
lustrated in Fig. 10. These simulation results align with the
outcomes obtained when the ancillary JPOs were in the |10〉
state, as shown in Table I. The results consistently converged
to the correct states in all the runs. As depicted in Fig. 10, the
probabilities of obtaining each state as the answer were equal,
and any slight differences in the probabilities can be attributed
to the added noise. These findings agree with the emulation
results illustrated in Fig. 6.

V. SUMMARY AND CONCLUSION

Superconductor electronics offer a potential solution for
high-speed and low-energy computing compared to conven-
tional devices. However, their unique properties have been

FIG. 10. Simulation result for 1000 runs on the four-parameter
network with fixed phase values on JPOs on a four-node complete
graph run for 20 ns. The states we expect are |0101〉 and |1010〉.

largely overlooked in developing novel computing appli-
cations. In this study, we leveraged the nonlinear phase
response of Josephson junctions to design and simulate a
network of oscillators capable of solving Ising Hamiltonian
problems.

The Josephson parametric oscillators, operating at a fre-
quency of 7.5 GHz, are interconnected through a coupler
circuit. By utilizing four logical JPOs and two ancillary
JPOs, we constructed a unit cell with quadratic interaction
between JPOs known as a tile, which forms the building
block of a large-scale Ising machine solver using the LHZ
architecture.

To validate our design, we studied the Hamiltonian en-
ergies of the tile in two different scenarios and compared
them with the numerical simulation results. We simulated it
in a noisy environment, and the circuit stabilized in a few
nanoseconds in all cases. The comparison between the cal-
culation and numerical simulation showed a perfect match
and satisfied the LHZ conditions. Therefore, the tile is suit-
able for implementation in the LHZ structure. Overall, our
findings demonstrate the immense potential of superconductor
electronics in computing, particularly for tackling computa-
tionally intensive problems through the utilization of Ising
solvers based on Josephson junctions.

The PYTHON code for the tile’s Ising Hamiltonian calcula-
tion can be found on GitHub [33].
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