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Nonreciprocal electron transport in finite-size superconductor/ferromagnet bilayers
with strong spin-orbit coupling
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We show that spin-orbit coupling at the interface between a superconducting film of the finite lateral size
and the underlying ferromagnetic insulator with in-plane exchange field gives rise to a series of nonreciprocal
effects provided the superconducting pairing is enhanced near the boundaries of the superconductor due to, e.g.,
variation of the film thickness or of the interlayer electron transparency. Specifically, the critical temperature
and the critical depairing current are shown to depend on the relative orientation between the exchange field
in the ferromagnet and the superconducting film boundaries. The discovered anisotropy of the superconducting
properties is promising for the design of diode-type elements in superconducting spintronics.
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I. INTRODUCTION

Interplay between strong spin-orbit coupling (SOC) and
ferromagnetic (F) ordering of electron spins in supercon-
ducting (S) systems has attracted much attention because it
appeared to induce a variety of fascinating phenomena includ-
ing the appearance of Majorana edge states [1], Josephson
ϕ0 junctions [2–5], helical states with spontaneous electric
currents [6,7], etc.

In systems with the lack of inversion symmetry along a
certain direction characterized by the vector n the electron
free energy contains a term ∝(σ × n) · p which couples the
electron momentum p with its spin σ . If such system is put in
electric contact with a ferromagnetic material characterized by
the exchange field vector h (or is placed into external magnetic
field) the electron spins become polarized making the states
with two opposite momentum directions along the vector
(h × n) nonequivalent. As a result, in superconducting media
the Cooper pair wave function � in the ground state acquires
the spontaneous momentum p0 ∝ (h × n) taking the form of
the plane wave ψ ∝ eip0r (so-called “helical” state) [8–10].

Despite the comprehensibility of the above physical pic-
ture, the consequences of the helical states formation in
superconducting systems appeared to be extremely sensitive
to the origin of the magnetic ordering and the specific geom-
etry of the system. In particular, for the bulk superconductor
placed into the uniform magnetic field an appropriate phase
transformation � ′ = �e−ip0r applied to the superconducting
order parameter � completely eliminates the effect of SOC
on the system free energy so that no meaningful phenom-
ena appear [9,11]. This conclusion is valid also for the bulk
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ferromagnetic superconductors with the uniform exchange
field. However, for systems with nonuniform exchange field
there is no phase transformation which can cancel the con-
tribution from the SOC in the whole system, and the helical
states appear to reveal themselves in the measurable quantities
(e.g., superconducting critical temperature, critical magnetic
field, critical depairing current). Specifically, it was shown
that the system consisting of a half-infinite bulk supercon-
ductor covered by the layer of the ferromagnetic insulator
supports the formation of the spontaneous current flowing
along the S/F interface which does not affect the critical
temperature but gives rise to the stray magnetic fields as well
as change the slope of the critical field Hc3 (corresponding
to the emergence of surface superconductivity) as a function
of temperature [6]. The decrease of the S layer thickness
down to values of the order of the superconducting coherence
length ξ (which may be viewed as a decrease in the S sample
dimensionality) results in the changes of the superconducting
critical temperature and in this case even if the superconduct-
ing material belongs to the type-II family the superconducting
phase transition may become the first order [7].

In addition, the finite S-layer thickness in S/F bilayers with
strong SOC is responsible for the appearance of nonreciprocal
effects in the superconducting transport, namely, anisotropy of
the critical depairing current in the plane of S/F interface [7].
Choosing the transport current between the minimal and the
maximal values of the critical depairing current of the sample
one may have zero and finite resistance for two opposite cur-
rent directions which reminds the diode effect. Recently, the
diode effect in superconducting systems has attracted much
attention of both theoreticians and experimentalists since it
has promising perspectives for application in superconducting
electronics and spintronics (see, e.g., Ref. [12] for re-
view). Up to now several classes of superconducting systems
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simultaneously supporting the electron spin polarization and
some sort of SOC were shown to demonstrate the nonre-
ciprocal transport properties. Among them one recognizes
different types of hybrid structures where the superconductor
is put in electric contact with ferromagnets [13], topological
insulators [14], or conductive nanowires [15], [Nb/V/Ta]n

superlattices [16], solid superconducting materials includ-
ing SrTiO3 [17,18], MoS2 [19], NbSe2 [20], p-wave WS2

nanotubes [21], Weyl semimetal Td -MoTe2 [22], etc. From
the theoretical standpoint, the nonreciprocal superconducting
transport in systems with the simultaneous spin polarization
and SOC can be explained, e.g., by accounting the high-order
gradients terms in the Ginzburg-Landau theory due to the
SOC [23,24] or within microscopic approach [25–27] as well
as by considering the Meissner screening of the spontaneous
currents generated by the SOC at the S/F interface [7]. In-
terestingly, the diode effect was recently predicted in curved
nanowires with SOC and induced superconductivity [28].
Also, a number of theoretical models provide the descrip-
tion for the diode effect in different types of superconductors
where the interplay between electron spins and momentum
arises due to the peculiarities of the electron band structure
instead of Rashba SOC (see, e.g., Refs. [29–31]). Another
large class of systems where the diode effect was observed
incorporates Josephson junctions with the weak links made of
various semiconductors [32,33], ferromagnets [34,35], Dirac
and Weyl semimetals [36,37], graphene [38,39], etc. (see also,
e.g., Refs. [40–44] for the relevant theoretical models). Note
also that in a resistive state the asymmetry of the current-
voltage characteristics of superconducting systems can be
caused, e.g., by nonreciprocal motion of the vortex lattice
due to the special form of vortex pinning centers with lack
of inversion symmetry [45–47] or nonuniform distribution of
pinning centers [48]. Somewhat similar mechanisms respon-
sible for the diode effect were also studied in Refs. [49–51].

In this paper we show that the finite lateral sizes of the
superconducting film placed on top of the ferromagnetic
insulator are responsible for a series of peculiar nonrecipro-
cal effects including the dependence of the superconducting
transition critical temperature on the relative orientation be-
tween the exchange field in the ferromagnet and the S film
boundaries as well as the diode effect in the critical current.
We focus on the case when the superconducting transition
temperature is locally enhanced near the boundaries of the
superconducting film caused by the possible relaxation of
the interatomic distances at atomic scale or variations of the
S-layer thickness due to peculiarities of the sample fabrication
process. Similarly to the phenomenon of the twinning-plane
superconductivity [52–55], the local enhancement of the crit-
ical temperature near the S film boundaries gives rise to the
nucleation of the localized superconducting states at temper-
atures above the bulk critical temperature. We show that the
phase transition temperature corresponding to the formation
of these quasi-one-dimensional states depends on the angle
between the exchange field in the underlying ferromagnet and
the S film boundary being maximal when the exchange field
and the boundary are perpendicular to each other. In addi-
tion, when the exchange field is perpendicular to the S-layer
boundary the critical depairing current of the localized quasi-
one-dimensional superconducting channel becomes different

FIG. 1. Sketch of the boundary of a superconducting film placed
on top of ferromagnetic insulator. The exchange field h is parallel to
the interface between the layers.

for the opposite directions of the transport current producing,
thus, the diodelike effect. Such anisotropy is promising for the
design of the current controlling elements of superconducting
electronics and spintronics.

Recently, it was experimentally demonstrated that the crit-
ical temperature and the critical current of the thin elongated
superconducting stripe made of aluminum and placed on
top of dielectric ferromagnet yttrium iron garnet (YIG) with
in-plane magnetization depend on the mutual orientation be-
tween the current flow and ferromagnet magnetization [56].
Although the authors of [56] consider their results to be
caused primarily by the effect of stray magnetic fields pro-
duced by YIG, our calculations show that similar phenomena
may arise due to the nonreciprocal effects related to the SOC.

The paper is organized as follows. In Sec. II we describe
the geometry of the S/F system under consideration and in-
troduce the theoretical model based on the Ginzburg-Landau
approach. In Sec. III we analyze the dependence of the system
critical temperature on the orientation between the exchange
field in the F layer and the S-layer boundary. In Sec. IV we
describe the diode effect in the critical current. Finally, in
Sec. V we summarize our results.

II. THEORETICAL MODEL

In this section we describe the theoretical approach based
on the phenomenological Ginzburg-Landau formalism which
we apply to calculate the critical temperature and the critical
depairing current of the finite-size S/F system with SOC. The
system geometry is sketched in Fig. 1. A superconducting film
of the thickness d with the flat boundary is placed on top of
the ferromagnetic insulator. A coordinate system is chosen in
a way that the superconducting film is parallel to the xy plane
with an edge oriented along the y axis. The z axis is chosen
perpendicular to the S/F interface and, thus, parallel to the
vector n characterizing the direction with the broken inversion
symmetry far from the S film edge. So, the S film occupies the
region x > 0, 0 < z < d while the F layer occupies the region
z < 0.

In the vicinity of the critical temperature the emergence
of superconductivity and the transport properties of the sys-
tem can be described in the frames of the Ginzburg-Landau
theory. For simplicity, we neglect the inverse proximity effect
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assuming that Cooper pairs do not penetrate into the ferro-
magnetic insulator. Then the system free energy is determined
only by the profile of the order parameter inside the supercon-
ductor and the free-energy density takes the form

f = −[α(T ) + α1(x)]|ψ |2 + β

2
|ψ |4 + κ|∇ψ |2

− ε + ε1(x)

2
[h0 × n](iψ∗∇ψ + c.c.), (1)

where ∇ is a gradient operator in the xy plane, α(T ) =
α0(Tc0 − T )/Tc0 and β are the standard Ginzburg-Landau pa-
rameters, Tc0 is the critical temperature of the isolated bulk
superconductor, n is the unit vector perpendicular to the S/F
interface, h is the exchange field directed in the plane of
the ferromagnet boundary, and the last term proportional to
[h0 × n] describes the effects of SOC [6,57,58]. We assume
that the S-layer thickness in the z direction is much smaller
than the superconducting coherence length ξ , which allows us
to neglect the variation of the order parameter and all coeffi-
cients in Eq. (1) considering all values to be averaged over the
film thickness d . We assume that the finite lateral size of the
superconducting film has a twofold effect on the properties
of the S film. First, the strength of the SOC in the vicinity
of the S film boundary may substantially differ from the one
at x � ξ0 (here ξ0 is the zero-temperature coherence length).
To account this difference in Eq. (1) we introduce the value ε

which stands for the spin-orbit coupling constant far from the
boundary as well as the function ε1(x) which is nonzero only
in the region of the width ∼ξ0 near the boundary x = 0 and
describe the difference between the edge SOC constant and ε.
Second, the boundary may affect locally the superconducting
transition temperature. This effect can originate from the local
variation of the SOC constant since in the presence of the SOC
the superconducting critical temperature contains the negative
contribution ∝ε2. Also, the increase in Tc near the sample edge
may originate from the local variation of the S-layer thickness
or the electron transparency of the S/F interface. Assuming
the local increase in the critical temperature we introduce the
function α1(x) in Eq. (1) which is nonzero only at x � ξ0.

The further simplification can be performed provided the
characteristic decay scale of the order parameter in the x
direction strongly exceeds the scale ξ0 where the critical tem-
perature and the SOC constant experience the local variations.
Then one may put α1(x) = γ0δ(x), ε1(x) = γ1δ(x) where γ0

and γ1 are the certain constants and the delta function has the
spatial scale ∼ξ0. Within the above assumptions we get the
following expression for the free-energy density:

f = − α|ψ |2 + κ|∇ψ |2 − iγ0

2
(wψ∗∇ψ − c.c.)

− δ(x)

[
γ0|ψ |2 + iκ

2
(gψ∗∇ψ − c.c.)

]
+ β

2
|ψ |4, (2)

where w = ε[h0 × n]/γ0 and g = γ1[h0 × n]/κ. Note that
the vectors w and g lie in the plane of the S film and are
perpendicular to the exchange field h0. The obtained func-
tional allows the further calculation of the system critical
temperature and depairing current.

III. ANISOTROPY OF CRITICAL TEMPERATURE

The local enhancement of the critical temperature near
the superconductor boundary described by the constant γ0

gives rise to the surface superconductivity, i.e., formation
of the localized superconducting state at temperatures above
the critical temperature of the bulk superconductor. In this
section we calculate the critical temperature of localized su-
perconductivity (emerging above the bulk critical temperature
Tc0) in finite-size superconducting film and demonstrate its
dependence on the mutual orientation between the exchange
field in the underlying ferromagnetic insulator with SOC and
the film boundary.

To obtain the system critical temperature one can neglect
the terms ∝|ψ |4 in the free-energy functional (2). Varying
Eq. (2) with respect to ψ∗ and considering the order parameter
in the form ψ (x, y) = ψ0e(−s+ip)x+iqy (which is the general
solution of the linearized Ginzburg-Landau equation) with
the certain amplitude ψ0 and real constant parameters q, p,
and s (we require s > 0 to guarantee the decay of the order
parameter from the film edge) we obtain the following relation
for the defined constants:

−α + κq2 − κ(ip − s)2 − γ0wyq + iγ0wx(ip − s) = 0. (3)

The corresponding free energy per unit length along the S-film
boundary as a function of the parameters reads as

F = |ψ0|2d{−γ0 − κgx p − κgyq

+ (2s)−1[(−α + κ(s2 + p2 + q2) − γ0wx p − γ0wyq]}.
(4)

The transition from normal to superconducting state occurs
when the free energy F becomes negative for nonzero order-
parameter amplitude ψ0. The maximal value of the constant
αm which enables F = 0 for ψ0 �= 0 defines the critical tem-
perature Tc of the corresponding phase transition:

Tc = Tc0(1 + |αm|/α0). (5)

Using Eq. (3) one can express the parameters s and p via
the constant q. Then solving the equation F = 0 with the
free energy defined by Eq. (4) we find the dependence α

on q. Finally, maximizing the resulting function α(q) we
obtain the desired maximal value αm which determines the
critical temperature:

αm = γ 2
0

4κ

{
w2

x + (2 + gxwx )2 + [wy + gy(2 + gxwx )]2(
1 − g2

y

)
}

.

(6)

In the absence of the SOC the problem is formally equivalent
to the one previously analyzed in the context of the twin-
ning plane superconductivity (see [53]) with αm = γ 2

0 /κ. The
presence of the uniform SOC which does not depend on x
(i.e., g = 0) the parameter αm corresponding to the critical
temperature takes the form αm = γ 2

0 (1 + w2/4)/κ (where
w2 = w2

x + w2
y ) and does not depend on the orientation of

the exchange field in the plane of the underlying ferromagnet.
At the same time, the variation of the SOC constant near the
boundary of the S film (g �= 0) gives rise to the nontrivial de-
pendence of αm on the angle between the vector w and y axis.
In particular, we consider the situations when the exchange
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field is perpendicular (h0 = h0x0, w = wy0, g = gy0) and par-
allel (h0 = h0y0, w = wx0, g = gx0) to the film boundary. We
denote the corresponding maximal values of the parameter α

as |αm| = α⊥ and |αm| = α‖, respectively. The result has the
form

α⊥ = γ 2
0

κ

[
1 + (w/2 + g)2

1 − g2

]
, (7)

α‖ = γ 2
0

κ

[(
1 + gw

2

)2
+ w2

4

]
. (8)

Equations (7) and (8) show that the critical temperature is
higher in the case when the exchange field is perpendicular
to the film edge which corresponds to the modulation of the
order-parameter phase along the film edge. Indeed, consider-
ing the limit g 
 1 and expanding the denominator in Eq. (7)
into the Taylor series we find α⊥ − α‖ = g2γ 2

0 /κ + O(g3).
Experimentally, the discovered difference in the critical

temperature can be detected, e.g., by fabrication of a series
of superconducting stripes which have different orientation
relative to the magnetization in the underlying ferromagnetic
substrate and conventional critical temperature measurements.

IV. ANISOTROPY OF CRITICAL CURRENT
(DIODE EFFECT)

In this section we analyze the diode effect and show that if
the in-plane exchange field in the ferromagnetic insulator has
a component perpendicular to the S film boundary the critical
depairing current of the quasi-one-dimensional superconduct-
ing channel formed near this boundary above Tc0 depends on
the current direction.

The key ingredient required for the diode effect in super-
conducting systems with SOC is the impossibility to exclude
the odd-degree terms over the Cooper pair momentum by a
certain phase transformation. Such impossibility may origi-
nate from the third-order gradient terms in the GL equation,
nonuniform Meissner screening currents or, e.g., nonuniform
SOC strength. In this paper we will focus on the latter situa-
tion assuming the SOC constant to be varying near the S film
boundary (γ1 �= 0). We also assume that the critical tempera-
ture is enhanced near the boundary x = 0 which corresponds
to γ0 > 0.

Let us introduce the dimensionless units, namely, the di-
mensionless coordinates x̃ = xγ0/κ and ỹ = yγ0/κ as well
as the order parameter ψ = γ0ϕ(x̃) exp(iq̃ỹ)/(

√
βκ) with the

real amplitude ϕ(x̃) and the wave vector q̃ = qκ/γ0. For
simplicity we assume that the exchange field has only the x
component (h0 = h0x0, w = wy0, g = gy0) so that the free-
energy density takes the form

f = γ 4
0

κ
2β

[
−καγ −2

0 ϕ2 + 1

2
ϕ4 +

(
∂ϕ

∂ x̃

)2

+ (q̃2 − wq̃)ϕ2 − (1 + gq̃)ϕ2δ(x̃)

]
. (9)

The variational derivative of the corresponding free-energy
functional with respect to ϕ gives the following equation for

the order parameter:

−ϕx̃x̃ − καγ −2
0 ϕ + ϕ3 + (q̃2 − wq̃)ϕ−(1 + gq̃)ϕδ(x̃) = 0.

(10)

It is convenient, first, to solve this equation in the region x̃ > 0
where the delta function is equal to zero so that

−ϕx̃x̃ − καγ −2
0 ϕ + ϕ3 + (q̃2 − wq̃)ϕ = 0 (11)

and then account for the last term of Eq. (10) by imposing the
boundary condition

−ϕx̃(0) = (1 + gq̃)ϕ(0), (12)

which can be obtained directly from Eq. (10) by integrating
it over the small vicinity of the point x̃ = 0. The resulting
equations (11) and (12) are very similar to the one previously
studied in the context of the twinning plane superconduc-
tivity [52–55]. Following the calculation procedure used in
Ref. [52] we obtain the solution of Eq. (10) in the form

ϕ(x̃) =
√

2τ [(1 + q̃g)2 − τ ]√
τ cosh(x̃

√
τ ) + (1 + q̃g) sinh(x̃

√
τ )

, (13)

where τ (q̃) = −καγ −2
0 − q̃w + q̃2. The critical temperature

Tc of the system is defined by Eq. (7) and the resulting optimal
values q̃ = q0 and τ = τ0 corresponding to T = Tc read as

q0 = g + w/2

1 − g2
, τ0 = (2 + gw)2

4(1 − g2)2
. (14)

The density of the superconducting current corresponding
to the certain wave vector q is equal to a variational derivative
j = (c/�0)∂ f /∂q and takes the form [see Eq. (9)]

j(x̃) = cγ 3
0 ϕ2(x̃)

�0κβ
[2q̃ − w − gδ(x̃)]. (15)

Note that similarly to the result of [6] there is a current flowing
inside the narrow region of the width ∼ξ0 counterbalanced by
the current flowing in the opposite direction far from the S
film boundary. Substitution ϕ(x̃) into Eq. (15) and integration
over the coordinate x perpendicular to the film boundary gives
the total current

I = κd

γ0

∫ +∞

0
j(x̃)dx̃

= 2cγ 2
0 d

�0β
(1 + q̃g − √

τ )[2q̃ − w − g(1 + q̃g + √
τ )].

(16)

The factor (1 + qg − √
τ ) in this expression is proportional

to the Cooper pair density in the localized channel while
the factor [2q − w − g(1 + qg + √

τ )] is proportional to the
superconducting velocity.

For the further analysis it is convenient to introduce the
dimensionless parameter η characterizing the system temper-
ature T :

η = α0κ

γ 2
0

(Tc − T )

Tc0
. (17)

Then the superconducting current becomes the function of
the wave vector q̃ and the parameter η, i.e., I = I (q̃, η) and
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FIG. 2. Typical dependence I (q̃) for the values η = 0.05, g =
0.1, w = 0.1. The dotted line shows the I (q̃) dependence for η =
0.05, g = 0.1, w = 0.3.

the critical current Ic at a fixed temperature is defined as the
maximal value of this function over q̃:

Ic(η) = max
q̃

I (q̃, η). (18)

The typical dependencies I (q̃) are shown in Fig. 2. These
dependencies have two features: (i) the current is equal to
zero at a finite value of phase gradient q̃ = q∗ �= 0 and (ii)
there is the asymmetry I (q∗ + q′, η) �= −I (q∗ − q′, η), where
q′ = q̃ − q∗. Exactly this asymmetry is responsible for the
appearance of the diode effect. Note that the stable states
for the fixed current are realized for the wave vectors in the
range qmin < q̃ < qmax (the values qmin and qmax are defined
in Fig. 2) while the states with q̃ outside this range (i.e.,
for q1 < q̃ < qmin and qmax < q̃ < q2) correspond to the local
maximum of the system free energy. The ranges q̃ < q1 and
q̃ > q2 formally correspond to |ψ2| < 0 and have no physical
meaning.

To demonstrate the diode effect arising in the system under
consideration we calculate the values of the critical depairing
current at a given temperature slightly below Tc for two oppo-
site current directions and show that they are different:∣∣ min

q̃
I (q̃, η)

∣∣ �= max
q̃

I (q̃, η). (19)

First, we calculate the wave vector q∗(η) corresponding to the
absence of the superconducting current in the localized chan-
nel at the fixed temperature characterized by the parameter η

[obviously, q∗(0) = q0, see Eq. (14)]. In the limit η 
 1 we
get

q∗ ≈ q0 − η
g

2(2 + gw)
+ O(η2). (20)

The corresponding value of the parameter τ = τ ∗ which de-
fines the width of the superconducting channel reads as

τ ∗ = τ (q∗) ≈ τ0 − η
2 − g2

2(1 − g2)
+ O(η2). (21)

FIG. 3. The typical dependencies I (|q′|) illustrating the diode
effect, i.e., the difference in the critical depairing current for
two opposite current directions (compare blue and red curves).
In our calculations we took η = 0.05, w = 0.3, and (a) g = 0.1,
(b) g = 0.2.

Substitution of Eqs. (20) and (21) in the total current (16)
gives the following expression:

I = 2cγ 2
0 d

�0β
q′s(2ηp − 3q′ηgsp2 − 2q′2sp + 5q′3gs2 p2),

(22)

where s = 1 − g2, p = (2 + gh)−1, and inside the brackets we
have neglected the terms of the order of O(η2, q′4, ηq′2). The
corresponding dependence I (q′) for two sets of parameters
is shown in Fig. 3. In the limit η 
 1 the current reaches
maximal value at q′ = √

ηs/3 so that the critical current I±
for the two opposite directions reads as

I± = 8cγ 2
0 d

9�0β
(
√

3η3/2s3/2 p−2 ± gη2s2 p2). (23)

In Eq. (23) the first term stands for the usual Ginzburg-Landau
expression for the critical current which is proportional to
(Tc − T )3/2 while the second nonreciprocal contribution to the
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FIG. 4. The dependence (I+ − I−)/(I+ + I−) on the structure
temperature for the value w = 0.3. The relative strength of the diode
effect becomes stronger for the lower temperature.

current is proportional to (Tc − T )2 and describes the diode
effect. As a result, the relative magnitude of the diode effect

|I+ − I−|
I+ + I−

∝ √
Tc − T . (24)

This temperature dependence qualitatively coincides with the
one relevant to the two-dimensional (2D) superconducting
films if the higher-order gradients of the order parame-
ter [23,24] or a Meissner effect and consequent partial
screening of the magnetic field [7] are taken into account.
Note also that the magnitude of the diode effect |I+ −
I−|/|I+ + I−| (24) does not depend on the sign of the constant
ε1 in the initial free-energy functional. The typical dependen-
cies of the relative magnitude of the diode effect as a function
of temperature are shown in Fig. 4.

V. CONCLUSION

Thus, we have shown that local increase of the critical
temperature and the subsequent variation of the SOC strength
near the boundary of the superconducting film on top of
ferromagnetic insulator gives rise to the formation of quasi-
one-dimensional superconducting channel with nonreciprocal
transport properties. The critical temperature Tc of such chan-
nel is shown to depend on the orientation of the exchange
field in the ferromagnet relative to the superconducting film
boundary. The maximum of Tc is realized when the exchange
field is perpendicular to the film boundary which corresponds
to the emergence of the spontaneous currents flowing along
the boundary. Moreover, for this orientation of the exchange
field we have calculated the depairing critical current of the
localized superconducting channel and showed that it depends
on the current orientation which is a manifestation of the diode
effect. The difference |I+ − I−| between two critical current
values becomes stronger as the temperature T decreases down
from Tc, and the relative magnitude of the diode effect is
(I+ − I−)/(I+ + I−) ∝ √

Tc − T .

Note that the recent transport measurements performed
for the elongated Al stripe on top of the YIG substrate [56]
revealed the sensitivity of the superconducting transition
temperature on the sample orientation relative to the mag-
netization in YIG. More precisely, the critical temperature is
higher for the perpendicular orientation of the magnetic mo-
ment to the strip boundary which is in perfect accordance with
our prediction. Although such sensitivity may result from the
difference in the penetration of the stray magnetic field to the
superconducting stripe for two different sample orientations
(which is very improbable due to the in-plane orientation of
the YIG magnetic moment and much smaller size of the Al
strip comparing to the YIG substrate), our calculations show
that the formation of the quasi-one-dimensional channels due
to the local increase in the critical temperature may provide
an alternative explanation.

Note also that the nonreciprocal phenomena discussed
in this paper are not specific to the case when the critical
temperature and the strength of the SOC are modified near
the sample edge. For example, similar phenomena should
arise in superconducting film placed underneath the ferro-
magnetic film of the finite lateral size with the in-plane
exchange field directed perpendicular to the film edge. In
this case the effective exchange field acting on electron spins
reveals a jump inside the S film which should give rise to
the localized quasi-one-dimensional superconducting states
with nonreciprocal transport properties. Also, we expect the
diode-type behavior for the S/F systems where the magnetic
configuration inside the thick ferromagnet corresponds to
the so-called closure domains (see, e.g., [59]), so that near
the surface the domain walls separate the regions with the
antiparallel magnetic moments directed parallel to the ferro-
magnet surface and perpendicular to the domain wall. The
S/F systems with such magnetic structure should support the
regime of the domain-wall superconductivity with the one-
dimensional superconducting channels emerging along the
domain walls [60]. In this case the local increase in the critical
temperature and, therefore, the described nonreciprocal phe-
nomena can become much larger compared to the edge effect
considered in our model provided the width of the domain
wall is slightly smaller than the superconducting coherence
length and the exchange field in the ferromagnet is of the order
of the bulk superconducting critical temperature. Note that the
diode effect arising in the localized superconducting channel
induced near the domain walls due to the orbital effect was
theoretically considered in Ref. [61].

In summary, our results show that the combination
of the restricted geometry and spin-orbit coupling in
superconductor/ferromagnet systems may lead to the new
interesting effects with possible implementations in supercon-
ducting devices.
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