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The existing literature on the influence of impurities on superconductivity follows two different approaches.
In the first one, a simple BCS-like instantaneous electron-electron interaction is considered, and special care is
taken to treat the scattering on impurities as accurately as possible. On the other hand, the second approach starts
with more realistic phonon-induced retarded electron-electron interactions, but treats the impurities only within
the simplest Born approximation. Here we develop a theory combining the strengths of both of these approaches.
This allows us to describe the recently introduced Dynes superconductors within an Eliashberg-like theory. One
of the results of the developed theory is that the Dynes scattering parameter may depend on temperature, in
qualitative agreement with recent experiments.
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I. INTRODUCTION

The relation between the BCS model and real-life super-
conductors is the same as that between the free Fermi-gas
model and real-life normal metals. As emphasized by An-
derson [1], both models are believed to exhibit the correct
symmetries of the superconducting and normal-metallic
states, respectively. However, in order to provide finite values
of certain physical quantities (e.g., resistivity in the normal
state), both models have to take into account that the quasi-
particle lifetime has a finite value.

As is well known, finite lifetime can be caused by elastic
scattering on disorder and/or by inelastic scattering on dy-
namic excitations of the system. Let us start by considering
the case of disorder scattering. In normal metals, in many
cases such processes can be taken into account by a simple
substitution of the energy ω by ω + i�, where � is the inverse
lifetime [2].

On the other hand, in superconductors it is essential to
distinguish between two different types of scattering pro-
cesses, depending on their action on the Cooper pairs. In
order to simplify the discussion, in this paper we will con-
sider single-band isotropic superconductors. If the scattering
does not affect the Cooper pairs, for instance, if it is due to
presence of finite time-reversal invariant potential disorder,
it is called pair-conserving and the rate of such scattering
will be denoted as �S. In the opposite case, i.e., when the
scattering does affect the Cooper pairs, as in the presence
of finite time-reversal breaking magnetic disorder, it is called
pair-breaking, with the corresponding rate to be denoted �M.
It has been known for a long time that, due to Anderson’s
theorem [3], weak pair-conserving scattering does not af-
fect the thermodynamic properties of superconductors, while
pair-breaking scattering does strongly disturb the supercon-
ducting state. Therefore, obviously, a superconductor has to
be characterized by at least two lifetimes, one for each type of
processes [2].

However, if pair-breaking scattering is present, no closed-
form expressions for the electron propagator can be found at

the simplest level of the self-consistent Born approximation
[2]. Therefore, it came as a big surprise that, when disorder
was described within the much more sophisticated coherent
potential approximation (CPA) [4], such closed-form expres-
sions featuring two lifetimes could in fact be found under only
some mild assumptions about the distribution of the disorder
[5]. The resulting description of two-lifetime superconduc-
tors has been dubbed the theory of Dynes superconductors,
because, inter alia, it does explain the frequently observed
phenomenological Dynes formula [6] for the tunneling den-
sity of states N (ω). The Dynes formula describes N (ω) by two
parameters: the gap magnitude � and the Dynes parameter
�. In [5] it has been shown that, within the theory of Dynes
superconductors, � is equal to the pair-breaking scattering rate
�M, and therefore it does not depend on temperature.

On the other hand, due to Migdal’s theorem, it is widely
believed that inelastic scattering of electrons on phonons
and the resulting effective phonon-mediated electron-electron
interactions are well described by the self-consistent Born
approximation, resulting in the well-known Eliashberg theory
[2]. A careful analysis of the theory shows that, at a finite
temperature T , the low-energy region of the density of states
N (ω) is also described by the Dynes formula [7]. However, in
this case, the Dynes parameter � does depend on temperature.
As a matter of fact, the temperature dependence of � is very
strong in this case: at T = 0, � vanishes, and with increasing
temperature it grows, until reaching the normal-state rate of
scattering on the phonons at Tc.

This means that there exist two independent explanations
of the Dynes formula, taking into account either elastic or
inelastic scattering. Unfortunately, the existing explanations
make use of very different formalisms: CPA for elastic scat-
tering [5], and self-consistent Born approximation in the
inelastic case [7].

The goal of this paper is to develop a unified theory, to be
called E-CPA, with the following two properties: (i) When
the retarded phonon-mediated electron-electron interaction
is replaced by the instantaneous BCS model interaction, the
theory reduces to the theory for Dynes superconductors [5].
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(ii) When elastic scattering is switched off, the theory reduces
to the usual Eliashberg theory [2]. This goal will be solved in
Sec. II.

In the rest of this paper we pursue the predictions of the E-
CPA theory. In Sec. III we study the thermodynamic aspects of
the theory. In particular, we ask whether the magnitude of the
critical pair breaking (which leads to a complete destruction
of superconductivity) bears some information on the pairing
mechanism. Next, motivated by the recent Ref. [8] where a
very strong temperature dependence of the Dynes parameter
� was reported in tunneling experiments, in Sec. IV we study
the temperature dependence of the tunneling density of states
within E-CPA.

II. THE E-CPA EQUATIONS

We consider a single band of electrons with bare energy εk.
The standard 2 × 2 Nambu-Gor’kov Green’s function of the
clean noninteracting problem in imaginary time is given by
Ĝ−1

0;nk = iωnτ0 − εkτ3, where ωn is the Matsubara frequency,
and τi with i = 0, . . . , 3 are the unit matrix and the Pauli
matrices.

The electrons are supposed to be subject to scattering
on random spatially uncorrelated pair-conserving and pair-
breaking fields U and V with distribution functions P(U ) and
PM(V ), respectively. At the lattice site l , the local impurity
potential therefore reads

Ŵl = Ulτ3 + Vlτ0. (1)

Physically, Ul can be thought of as a random scalar potential at
site l , whereas Vl is a magnetic field with a random magnitude
and a fixed direction. Let us note in passing that, following
the discussion in [9], the direction of the magnetic field can be
taken as fluctuating as well, with no change of the subsequent
considerations. Since in that case we would need to work with
4 × 4 matrices, in what follows we shall deal instead with the
simpler case with 2 × 2 matrices.

The averaged full Green’s function Ĝnk is given by the
Dyson equation

Ĝ−1
nk = Ĝ−1

0;nk − �̂n, (2)

where we have assumed, as usual in the case of an isotropic
system with a featureless density of states, that the averaged
electron self-energy �̂n depends only on the frequency ωn and
not on the momentum k. Making use of Ĝnk, it is useful to
define also the averaged local Green’s function,

Ĝn = 1

N
∑

k

Ĝnk = N0

∫
dεkĜnk, (3)

where N0 is the normal-state density of states at the Fermi
level.

Furthermore we will assume that the electrons interact also
with the phonons. The contribution of this interaction to the
electron self-energy, when evaluated within the self-consistent
Born approximation, is given by [2]

�̂ph
n = T

∑
m

Dn−mτ3Ĝmτ3, (4)

where Dn−m is the phonon-induced electron-electron inter-
action with energy transfer ωn − ωm, appropriately averaged
over the Fermi surface, as usual.

This means that, at site l , the electrons are acted upon by
the total fluctuating potential Ŵl + �̂

ph
n due to both, disorder

and phonons. The goal of the theory is to choose the averaged
total self-energy of the electron �̂n in such a way that it best
represents the action of the total fluctuating potential.

We solve this task within the standard single-site CPA
[4], as recently reformulated in [10]. In complete analogy
with Ref. [10], we require that the averaged self-energy �̂n

has to satisfy the following elegant and intuitively appealing
equation:

Ĝn = 〈(
Ĝ−1

n − Ŵ − �̂ph
n + �̂n

)−1〉
, (5)

where the angular brackets represent taking an average with
respect to the disorder distribution functions P(U ) and PM(V ).
In what follows, we will assume that both distribution func-
tions P(U ) and PM(V ) are even.

Equations (2), (3), (4), and (5), to be called E-CPA equa-
tions in what follows, form a closed set of equations for the
unknown functions of the Matsubara frequency �̂n and Ĝn.

By considering the matrix structure of the E-CPA equa-
tions one can show that the averaged self-energy �̂n is a
linear combination of the matrices τ0 and τ1. Thus �̂n can
be parameterized by just two functions, the wave-function
renormalization Z tot

n and the gap function �n, as usual in the
Eliashberg theory:

�̂n ≡ �̂tot
n = iωn

(
1 − Z tot

n

)
τ0 + Z tot

n �nτ1. (6)

Neglecting the possibility of odd-frequency pairing, one can
show that Z tot

n and �n are real and even functions of ωn. It is
also worth pointing out that the functional form for �̂n implies
that the local Green’s function reads

Ĝn = −πN0
iωnτ0 + �nτ1√

ω2
n + �2

n

. (7)

In what follows we shall prove that the E-CPA equations do
satisfy the conditions (i) and (ii) mentioned in the Introduc-
tion. In doing so, we will therefore show that the E-CPA
equations do correspond to the generalized theory we were
looking for.

In order to prove (i), let us assume that the electron-electron
interaction does not depend on frequency, Dn−m = D, up to
a finite cutoff 	. Plugging Eq. (7) into Eq. (4) one finds,
since �n is an even function of frequency, that the phonon
self-energy �̂

ph
n = �τ1. Here the magnitude of the frequency-

independent gap � is given by a BCS-like gap equation

� = gπT
	∑

ωn=−	

�n√
ω2

n + �2
n

with the coupling constant g = N0D. One notes readily that,
with these identifications, our Eq. (5) reduces precisely to the
CPA equation (5) of [10], while our gap equation coincides
with Eq. (6) in [10]. Thus, if the electron-electron inter-
action is frequency-independent (instantaneous), the E-CPA
theory does in fact reduce to the CPA treatment of disorder
scattering which was utilized in previous works on Dynes
superconductors [5,10].
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On the other hand, in order to prove (ii), let us assume that
disorder is absent, Wl = 0. Plugging this assumption into our
Eq. (5), one finds readily that the total self-energy �̂n is simply
equal to �̂

ph
n . In other words, in the absence of disorder the

E-CPA theory does reproduce the Eliashberg theory, as was to
be shown.

To summarize, the E-CPA theory provides the necessary
framework which unifies the Eliashberg theory with the CPA
treatment of disorder scattering. In Appendix A we show that
the E-CPA equations can be derived variationally from an
appropriately chosen Luttinger-Ward-type functional.

Dynes superconductors within E-CPA theory

The actual form of the solution for Z tot
n and �n depends

on the electron-electron interaction Dn−m, as well as on the
distribution functions P(U ) and PM(V ). In general, further
progress is possible only numerically.

In order to proceed, in what follows we will assume that the
distribution function PM(V ) for magnetic fields is a Lorentzian
centered around V = 0 with a width of �M. On the other hand,
no further assumptions are needed for the distribution function
P(U ) for scalar potentials, except for requiring that it is even.
These requirements are precisely the same as those imposed in
the theory of Dynes superconductors at the BCS level [5,10].

As shown in Appendix B, with this special choice of the
distribution functions, describing what we call Dynes super-
conductors, the disorder averaging in (5) can be performed
analytically. Plugging the ansatz (6) into the E-CPA equations,
after some work we find that the gap function �n and an
auxiliary function Zn, which corresponds to the wave-function
renormalization of a hypothetical system without scalar disor-
der, satisfy the coupled set of equations

Zn = 1 + �M

|ωn| + πT

ωn

∑
m

gn−m
ωm√

ω2
m + �2

m

,

Zn�n = πT
∑

m

gn−m
�m√

ω2
m + �2

m

, (8)

where we have introduced a dimensionless electron-electron
interaction gn−m = N0Dn−m. In the presence of finite elas-
tic pair-conserving scattering, the (physical) wave-function
renormalization Z tot

n is given by

Z tot
n = Zn + �S√

ω2
n + �2

n

, (9)

where the scattering rate �S depends on the distribution
function P(U ). It can be determined from the self-consistent
equation

1

1 − πN0�S
=

∫ ∞

−∞

P(U ) dU

(1 − πN0�S)2 + (πN0U )2
. (10)

For the sake of completeness, we note that the above results
hold provided the inequality �S � 1/(πN0) is satisfied. This
condition requires that the disorder is not too large, but admits
in fact quite strong disorder scattering.

At this point, several remarks should be made. First, the
gap function �n is not influenced by elastic pair-conserving
scattering, since it is determined by the closed set of

equations (8) where �S does not enter. This is of course fully
consistent with Anderson’s theorem [3].

Second, once the closed Eqs. (8) have been solved, the
physical wave-function renormalization Z tot

n can be deter-
mined easily, without the need to solve a self-consistent
problem. Thus, the presence of a finite scattering rate �S

introduces only trivial changes (which are visible, e.g., in the
spectral functions). Therefore, in what follows we will discuss
only the case �S = 0.

Third, when comparing Eqs. (8) with the standard Eliash-
berg equations, one notes that the only difference is that, in the
present case, a term proportional to �M enters the equation for
Zn. This can be viewed as yet another confirmation of the
property (2) of the E-CPA equations.

III. DESTRUCTION OF SUPERCONDUCTING
ORDER BY �M

It is well known that elastic pair-breaking scattering,
gauged in the present paper by the parameter �M, leads to a
decrease of the superconducting critical temperature, Tc. Ulti-
mately, when �M becomes larger than a certain critical value,
to be called �M

c , the critical temperature vanishes completely.
Previous BCS-like work on the Dynes superconductors has

found that the critical pair-breaking rate, when measured in
units of the critical temperature Tc0 of a system in the absence
of pair-breaking disorder, is given by �M

c /Tc0 ≈ 0.88 in the
limit of weak coupling [5]. The question we would like to
answer in this section is how the ratio �M

c /Tc0 changes in a
full-fledged E-CPA description of a Dynes superconductor.
In particular, can one draw conclusions about the effective
electron-electron interaction gn−m from the measured value of
�M

c /Tc0?
As is customary in the literature, instead of the dimen-

sionless electron-electron interaction gn−m, we introduce the
interaction function α2F (y) defined by

gn−m =
∫ ∞

−∞

α2F (y) dy

iωn − iωm + y
. (11)

Note that α2F (y) is an odd function of its argument,
α2F (−y) = −α2F (y). In terms of the function α2F (y), it
is customary to define the dimensionless coupling constant
λ = 2

∫ ∞
0 dyα2F (y)/y.

In the numerical examples to be studied in later sections,
we will study the following set of model interaction functions
α2F (y):

α2F (y) = βλ

2
sgn(y)

∣∣∣ y

	

∣∣∣β, |y| < 	. (12)

For |y| > 	, the interaction functions α2F (y) are taken to
be zero. Note that the normalization in Eq. (12) is chosen
so that the dimensionless coupling constant equals λ. Thus,
interaction functions α2F (y) described by Eq. (12) are fully
characterized by three parameters: the energy scale 	 (to
be used as the unit of energy in what follows) and two
dimensionless parameters, the exponent β and the coupling
constant λ.

Different functions α2F (y) correspond to different ef-
fective electron-electron interactions. For instance, a three-
dimensional system of electrons coupled to acoustic phonons
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FIG. 1. Matsubara gap function �n for a superconductor de-
scribed by the model interaction function (12) with β = 2 and λ = 1
at temperature T/	 = 10−4. The indicated pair-breaking rates �M

correspond to top to bottom lines.

is described by a model with β = 2. In this case, 	

is the Debye energy of the phonons. Smaller values of
β correspond to systems with increasing importance of
electron-boson interactions in the limit of low energies. For
instance, as will be shown later, the model with β = 1 gen-
erates a standard Fermi-liquid-like behavior in the normal
state, while models with β < 1 lead to a more anomalous
behavior.

To begin, in Fig. 1 we present the Matsubara gap func-
tion �n calculated from Eqs. (8) using the model interaction
function (12) and several values of the pair-breaking rate �M.
The parameters λ, β and the temperature T are kept fixed.
With increasing �M, one can observe that the overall gap
size decreases. At the same time, in the low-energy limit
we find that �n ∝ |ωn|, with the constant of proportionality
decreasing with increasing �M.

In Fig. 2 we show how the critical temperature Tc (mea-
sured in units of Tc0) of a superconductor described by Eqs. (8)
decreases with increasing elastic pair breaking. Since, as
shown in the next section, the observable pair-breaking scat-
tering is roughly given by �eff = �M/(1 + λ), the magnitude
of pair breaking is characterized by �eff/Tc0. Note that for
a Dynes superconductor with a BCS-like interaction, �eff is
simply equal to �M, because a frequency-independent inter-
action does not generate mass enhancement.

Figure 2 shows that the overall shape of the Tc/Tc0 vs
�eff/Tc0 curves is qualitatively similar for all studied inter-
action functions (12). The main difference between different
choices of α2F (y) concerns the value of the critical pair-
breaking rate �eff

c /Tc0. For Dynes superconductors with a
BCS-like interaction it has been found that �eff

c /Tc0 ≈ 0.88,
while Fig. 2 shows that larger values are obtained within
E-CPA theory. We find that �eff

c /Tc0 increases with both,
increasing coupling constant λ and increasing exponent β.
However, in order to determine the individual values of λ and
β, independent information is needed. Such information is
provided, e.g., by the magnitude of the gap-to-Tc ratio in the

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.2  0.4  0.6  0.8  1  1.2

T c
/T

c0

Γeff/Tc0

β = 1.0, λ = 0.7
β = 1.0, λ = 1.0
β = 2.0, λ = 0.7
β = 2.0, λ = 1.0

FIG. 2. Critical temperature θ = Tc/Tc0 as a function of γ =
�eff/Tc0 for superconductors described by Eq. (12) with several
choices of the parameters β and λ (symbols). Guides to the eye of
the form θ = √

(1 − aγ )(1 − bγ ) are also shown.

absence of elastic pair-breaking, which is accessible via the
standard Eliashberg theory for �M = 0.

IV. TUNNELING DENSITY OF STATES

Tunneling experiments with their very high energy resolu-
tion and wide accessibility are a popular tool in superconduc-
tivity research. When studying the differential conductance
between a disordered superconductor and an electrode in the
normal state, it has become customary (see, e.g., [8,11,12]) to
fit the conductance vs voltage curve by the thermally smeared
Dynes formula [6].

Very good fits are often obtained with a temperature-
independent pair-breaking parameter �; for a couple of
examples see the references in Ref. [5]. However, in some
cases the extracted parameter � has been found to ex-
hibit a slight increase with increasing temperature; see, e.g.,
Ref. [12]. Moreover, in a recent paper by Boschker et al., a
very large increase of � has been reported [8].

The goals of this section are twofold. First, we want to
determine a procedure for extracting the Dynes parameters
� and � from the results of the E-CPA analysis. Second,
we want to estimate the temperature dependence of �, taking
for the interaction function (12) with several choices of the
parameters λ and β.

Let us start by observing that, within E-CPA, the tunneling
density of states N (ω) in the superconducting state is given by

N (ω)

N0
= Re

[
ω√

ω2 − �2(ω)

]
, (13)

exactly as in the standard Eliashberg theory. The density of
states is seen to depend on the gap function. However, instead
of the Matsubara gap function �n, one has to use the gap
function on the real axis, �(ω). Therefore, it is necessary to
perform the analytic continuation from the imaginary to the
real axis.
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A. Analytical continuation to the real axis

Let us start by fixing the vocabulary. Complex frequencies
in the upper half-plane will be denoted z, and under X (z)
we will understand an analytic continuation of the function
X from the values Xn ≡ X (iωn) in the Matsubara points iωn

on the imaginary axis to the whole upper half of the complex
plane. On the other hand, X (ω) will be reserved for the values
of X (z) infinitesimally above the real axis, i.e., for z = ω + i0
with real ω. In general, X is a complex number with real and
imaginary parts to be denoted as X ′ and X ′′, respectively, i.e.,
X = X ′ + iX ′′.

Making use of the Eliashberg functions Z (z) and �(z)
which derive from Zn and �n, respectively, let us introduce
two other functions: ω̃(z) = Z (z)z and �(z) = Z (z)�(z).
In terms of these functions, the averaged self-energy can
be written for �S = 0 (i.e., in the absence of elastic
pair-conserving scattering) as �̂(z) = (z − ω̃(z))τ0 + �(z)τ1.
Thus, the real-axis solution for the Green’s function is com-
pletely specified by two complex functions of frequency, ω̃(ω)
and �(ω).

The problem of analytic continuation to the real axis is
known to be notoriously difficult. Here it will be circumvented
by a trick developed in Ref. [13]. As observed in that paper,
once the imaginary-axis solutions Zn and �n of Eqs. (8) have
been found, the functions ω̃(ω) and �(ω) can be determined
from a coupled set of equations, which in the present case read

ω̃(ω) =ω + i�M + 2πT
∑
ωn>0

g′′(ω + iωn)
ωn√

ω2
n + �2

n

+ iπ
∫ ∞

−∞
α2F (y)[ f (ω + y) + b(y)]n(ω + y) dy,

�(ω) = 2πT
∑
ωn>0

g′(ω + iωn)
�n√

ω2
n + �2

n

+ iπ
∫ ∞

−∞
α2F (y)[ f (ω + y) + b(y)]p(ω + y) dy.

(14)

Here the function g(z) represents the analytic contin-
uation of the dimensionless electron-electron interaction
from gn−m ≡ g(iωn − iωm) to the complex plane, g(z) =∫ ∞
−∞ dyα2F (y)/(z + y). Moreover, we have introduced the

following auxiliary functions:

n(z) = ω̃(z)√
ω̃2(z) − �2(z)

, p(z) = �(z)√
ω̃2(z) − �2(z)

.

It should be noted that Eqs. (14), which mix the Mat-
subara and real-axis formulations, are much easier to solve
numerically than the corresponding integral equations written
directly on the real axis. A simplified derivation of Eqs. (14)
is presented in Appendix C.

The utility of Eqs. (14) is demonstrated in Fig. 3. There we
compare the gap function �n at discrete Matsubara frequen-
cies ωn, obtained by the solution of Eqs. (8), with the result
of analytic continuation. Note that, when looking just at the
Matsubara points, there exists no indication that the function
�(z) should vanish when z → 0. Nevertheless, making use
of Eqs. (14), this nontrivial behavior (which will turn out
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FIG. 3. The dots denote the values of the gap function �n in
the Matsubara frequencies ωn = (2n + 1)πT for a superconductor
described by Eq. (12) with β = 2, λ = 1, and �M = 0 at temperature
T/	 = 0.07. The broken line is the plot of the analytic continuation
�(iω) to the whole imaginary axis, obtained from the solutions of
Eqs. (14).

to be crucial in the discussion which follows) is correctly
reproduced.

B. N(ω) in the low-energy limit

The Dynes formula is meant to describe N (ω) in the limit
of low energy, thus from Eq. (13) it follows that we need
an approximation for �(ω) in that limit. To this end, let us
first observe that �(ω) = ωφ(ω)/ω̃(ω). Within the Eliashberg
theory, it was first recognized by Karakozov et al. that at low
energies one can use the low-energy expansions φ(ω) ≈ φ0

and ω̃(ω) ≈ Rω + iS, where φ0, R and S are (temperature-
dependent) constants [14]. A crucial observation was that S
is finite at any finite temperature, due to scattering on real
thermal phonons. From here it follows that

�(ω) = ωφ0

Rω + iS
≡ ω�

ω + i�
, (15)

where we have introduced � = φ0/R and � = S/R. But it
is well known that, once the gap function �(ω) is given
by Eq. (15), the density of states is described by the Dynes
formula [5].

It turns out that also within the E-CPA theory, Eq. (15)
is still valid. Thus, in order to determine the temperature
dependence of the pair-breaking parameter �, one needs to
calculate the parameters R and S.

Let us first note that the E-CPA equations on the real axis
differ from the standard Eliashberg equations only by the
presence of the term i�M in the equation for ω̃(ω). Therefore,
closely following the discussion in [14], one finds that the
scattering parameter S is given by

S(T ) = �M + 2π

∫ ∞

0
dx

n′(x)α2F (x)

sinh(x/T )
. (16)

In passing, let us note that from Eq. (16) it follows that
the inelastic part of the scattering rate S in the normal state
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FIG. 4. Temperature dependence of the Dynes parameter � for
a superconductor described by Eq. (12) with β = 1 and λ = 1. The
indicated pair-breaking rates �M correspond to bottom to top lines.
The dashed lines show the values of � in the hypothetical normal
state.

scales as ∝T β+1. In particular, as mentioned in the previous
section, the model interaction function Eq. (12) generates a
Fermi-liquid behavior in the normal state, if for the exponent
we take β = 1.

The mass-renormalization parameter R is given by a less
transparent expression. However, at temperature T = 0, the
formula for R simplifies to

R(0) = 1 + 2
∫ ∞

0
dyα2F (y)

∫ ∞

0
dx

n′(x)

(x + y)2
. (17)

In the hypothetical normal state at T = 0, when n′(x) = 1,
this formula reduces to the well-known result R(0) = 1 + λ,
where λ is the dimensionless coupling constant.

In order to compare our theory with experimental results,
let us introduce the total change δ� ≡ �(Tc) − �(0) of the
Dynes parameter �(T ) between T = 0 and T = Tc. When
evaluating δ�, let us first neglect the temperature dependence
of R and assume that R(T ) ≈ 1 + λ. Since �(Tc) = �n(Tc), in
that case we obtain the estimate

δ�

Tc
≈ πλIβ

1 + λ

(
Tc

	

)β

, (18)

where we have introduced a β-dependent parameter Iβ =
β

∫ ∞
0 dttβ/ sinh(t ). One observes easily that, in usual situa-

tions, δ�/Tc is small, because the fraction Tc/	 is usually very
small. A non-negligible temperature dependence of �(T ) is
therefore possible only in special situations: either the fraction
Tc/	 should not be very small, i.e., the coupling constant λ

should be large, or the exponent β should be anomalously low,
or both.

Next we study how does the presence of a finite elastic
pair-breaking rate �M influence the temperature dependence
of the Dynes parameter �. In Fig. 4 we plot the numerical
results for �(T ) obtained for several values of �M. As was
to be expected, a finite value of �M increases the overall
magnitude of �.
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FIG. 5. Temperature dependence of the mass-renormalization
parameter R for the same parameters as used in Fig. 4 (bottom to
top lines). The topmost black line corresponds to the hypothetical
normal state.

In Fig. 4 we also plot the expected values of �n(T ) in the
hypothetical normal state. The low-temperature limit �n(T ) is
readily seen to be given by �M/(1 + λ). However, note that if
the elastic pair-breaking rate �M is finite, the Dynes parameter
�(0) in the true superconducting state is not equal to �M/(1 +
λ), but it is larger. As shown in Fig. 5, this effect is caused by
the fact that, in the superconducting state, the parameter R(T )
differs from its normal-state value. This difference decreases
with increasing �M.

This means that, if the elastic pair-breaking rate �M

is finite, the overall temperature dependence of the Dynes
parameter

δ� = [�n(Tc) − �n(0)] − [�(0) − �n(0)]

decreases for two reasons. First, a finite value of �M reduces
Tc, and, therefore, also the inelastic term �n(Tc) − �n(0). Sec-
ond, a finite �M leads at the same time to an increase of the
elastic term �(0) − �n(0).

Summarizing, in ordinary situations (i.e., for β > 1 and
λ � 1), the parameter δ�/Tc is small already for �M = 0, and
finite values of �M make it even smaller. This conclusion is in
qualitative agreement with most experiments [11,12].

Before concluding, let us discuss whether also the anoma-
lous results of Ref. [8] can be explained within the present
E-CPA theory. A successful description should explain two
observations: at T = 0, the ratio �(0)/�(0) is approximately
equal to 0.5, and, at the same time, the temperature increase
δ� is comparable to �(0). Note that a large value of �(0)
requires that �M should also be large. Moreover, a large value
of δ� might obtain only if β is small and λ is large.

In Fig. 6 we plot the temperature dependence of the
Dynes parameters � and � for a superconductor described by
Eq. (12) for several moderately anomalous choices of param-
eters β and λ. In order to obtain �(0)/�(0) ≈ 0.5, we have
made the following choices of the pair-breaking parameter
�M: �M/	 = 0.115 for β = 0.5 and λ = 2, �M/	 = 0.0315
for β = 0.5 and λ = 1, and �M/	 = 0.06 for β = 1 and
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FIG. 6. Temperature dependence of the Dynes parameters �

(dashed lines) and � (solid lines) for superconductors described
by Eq. (12) with several moderately anomalous choices of β and
λ (the indicated parameters correspond to top to bottom lines). In
all cases, the pair-breaking scattering rate �M is chosen so that
�(T )/�(0) ≈ 0.5.

λ = 1. One observes that, in agreement with expectations, the
overall temperature dependence of the Dynes parameter δ�,
measured in units of the zero-temperature gap �(0), grows
with increasing interaction strength λ and decreasing expo-
nent β. However, even in the most anomalous case we have
studied, β = 0.5 and λ = 2, the value of δ�/�(0) ≈ 0.3 does
not nearly come close to the experimentally observed value
δ�/�(0) � 1 [8].

V. CONCLUSIONS

In this paper we have developed what we call the E-CPA
theory of the superconducting state. The theory combines
two successful microscopic descriptions of superconductors:
an Eliashberg-like treatment of boson-mediated electron-
electron interactions, and a coherent-potential-approximation-
based description of elastic scattering.

For a Lorentzian distribution of pair-breaking disorder,
the theory reduces to Eqs. (8). These differ from the stan-
dard Eliashberg equations only by the presence of a new
term �M/|ωn| in the equation for the wave-function renor-
malization Zn, where �M is the rate of elastic pair-breaking
scattering.

We have shown that, if the boson-mediated electron-
electron interaction is replaced by an instantaneous interac-
tion, Eqs. (8) reduce to the recently developed theory for
Dynes superconductors [5,10].

In agreement with Anderson’s theorem [3], we have also
shown that pair-conserving scattering on disorder, even if
present, does not influence the form of the Eliashberg-like
Eqs. (8), although it does influence the electron spectral func-
tion via Eq. (9).

Within E-CPA theory, we can ask several questions
about Dynes superconductors with retarded electron-electron

interactions. In this work, we have presented a study of sim-
ple model interaction functions with anomalous low-energy
behavior, but it is possible to apply the theory also to more
realistic interaction functions which are determined by first-
principles calculations. Such calculations take into account
the coupling of electrons to all relevant modes from low to
high energy. It will be interesting to see the new features
which such realistic interaction functions imply.

We have applied the theory to two specific problems.
The first question we have asked is: how does the

critical value of the pair-breaking rate �M
c (leading to a

complete suppression of superconductivity) depend on the
pairing glue? Can one draw conclusions from the knowl-
edge of �M

c about the pairing glue? To this end, we have
studied �M

c for superconductors with model interaction func-
tions (12) for several choices of coupling constants λ and
exponents β.

We have found that �M
c , when measured in units of the crit-

ical temperature in the absence of disorder Tc0, does depend on
λ and β. Of course, if only the value of �M

c /Tc0 is known, it is
not possible to conclude about the individual values of λ and
β. To this end, independent information is required.

The second problem we have studied dealt with predictions
of E-CPA theory for the tunneling density of states N (ω). Ex-
perimentally, it is well known that, quite often, N (ω) is given
by the Dynes formula with a phenomenological pair-breaking
parameter �. Usually, � is not temperature-dependent [11].
However, recently both weak [12] and strong [8] T depen-
dence of �(T ) has been observed. The question was: can such
T dependencies be explained within E-CPA theory?

We have found that, generically, our E-CPA formalism
does predict a T -dependent �. A rough estimate of δ� =
�(Tc) − �(0) is given by Eq. (18), which shows that δ� in-
creases with growing interaction strength λ and decreasing
exponent β. For standard values of λ and β, E-CPA theory
is qualitatively consistent with no or weak T dependence of
�, in agreement with most experiments [11,12]. However,
even when taking the very anomalous values λ = 2 and β =
0.5, we were not able to reproduce the large value of δ�

observed in [8].
We conclude that the very strong temperature dependence

of the Dynes parameter �(T ) observed in [8] is puzzling.
Within the one-band scenario considered in this work such
T dependence would require an extremely anomalous pairing
glue with very small exponent β and/or unphysically large
λ [15]. However, preliminary work suggests that when β

decreases and/or λ increases, the Dynes formula gives pro-
gressively worse and worse description of the true density of
states N (ω).

Could it be that the actual experimental N (ω) is not given
by the Dynes formula? Since the quantity which is actually
measured, namely, the differential conductance dI/dV , is
proportional to the thermally smeared density of states, one
would need to “unsmear” the data for dI/dV in order to deter-
mine the true N (ω). Obviously, it is most difficult to carry out
this “unsmearing” procedure close to Tc. But, unfortunately, it
is precisely close to Tc where also the reported T dependence
of �(T ) is strongest.
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APPENDIX A: DERIVATION OF E-CPA EQUATIONS

In this Appendix we present a variational derivation of the
E-CPA equations. We start by defining a Luttinger-Ward-type
free-energy functional F , which is analogous to that intro-
duced in the study of thermodynamic properties of Dynes
superconductors in [10]:

F = − T

N
∑
nk

Tr ln Ĝ−1
nk (�̂) + T

∑
n

Tr ln Ĝ−1
n

− T
∑

n

〈
Tr ln

(
Ĝ−1

n − Ŵ − �̂ph
n (Ĝ) + �̂n

)〉

− T

2

∑
n

Tr Ĝn�̂
ph
n (Ĝ), (A1)

Here we have assumed that F = F[�̂n, Ĝ−1
n , Ĝn], i.e., the

free energy F is a functional of three objects: self-energy
�̂n, local Green’s function Ĝ−1

n , and the auxiliary variable
Ĝn, which plays the role of the variable � in the functional
F = F[�̂n, Ĝ−1

n ,�] introduced in [10].
In order to simplify the appearance of Eq. (A1), we have

introduced the symbol Ĝ−1
nk (�̂), which is related to the self-

energy �̂n by the Dyson equation (2). Similarly, the symbol
�̂

ph
n (Ĝ) is an abbreviation for

�̂ph
n (Ĝ) = T

∑
m

Dn−mτ3Ĝmτ3.

Having defined the functional, we can search for the equa-
tions of motion which it implies. Minimization with respect to
(�̂n)i j gives

1

N
∑

k

Ĝnk(�̂) = 〈(
Ĝ−1

n − Ŵ − �̂ph
n (Ĝ) + �̂n

)−1〉
. (A2)

On the other hand, requiring F to be stationary with respect
to (Ĝn)i j yields in turn

Ĝn = 〈(
Ĝ−1

n − Ŵ − �̂ph
n (Ĝ) + �̂n

)−1〉
. (A3)

Finally, optimization with respect to (Ĝ−1
n )i j yields

Ĝn = 〈(
Ĝ−1

n − Ŵ − �̂ph
n (Ĝ) + �̂n

)−1〉
. (A4)

Comparing the above three equations of motion, we find that
Ĝn = Ĝn. In other words, the auxiliary variable Ĝn can be
replaced by the local Green’s function Ĝn. Moreover, we re-
cover the definition (7) as well as the CPA equation (5). This
completes the variational derivation of the E-CPA equations.

APPENDIX B: DERIVATION OF EQS. (8)

To begin, let us rewrite the expression for the to-
tal self-energy (6) in a simpler form, �̂tot

n = −i�tot
n τ0 +

�tot
n τ1. Similarly, let us parametrize the phonon self-energy

Eq. (4) as �̂
ph
n = −i�ph

n τ0 + �
ph
n τ1. Let us also introduce the

notation xn = �tot
n /

√
(ωn + �tot

n )2 + (�tot
n )2 and yn = (ωn +

�tot
n )/

√
(ωn + �tot

n )2 + (�tot
n )2.

With these notations, Eq. (5) can be written as

Ĝn = 〈(i(An + iV )τ0 − Bnτ1 + Uτ3)−1〉U,V , (B1)

where we have introduced

An = yn

πN0
+ �ph

n − �tot
n , Bn = xn

πN0
+ �ph

n − �tot
n .

Taking the inverse of the matrix on the right-hand side of
Eq. (B1) and performing averaging with respect to V , we find

Ĝn = −
〈

i(An + iV )τ0 + Bnτ1

(An + iV )2 + B2
n + U 2

〉
U,V

= −Kn
[
i
(
An + �Msn

)
τ0 + Bnτ1

]
, (B2)

where in the second step we have used the notation sn =
sgn An and we have also introduced

Kn =
〈

1

(An + �Msn)2 + B2
n + U 2

〉
U

. (B3)

Comparing the coefficients in front of τ0 and τ1 on both
sides of Eq. (B2), we obtain the equations

πN0

Kn
yn = An + �Msn,

πN0

Kn
xn = Bn. (B4)

Adding the squares of the two equations in Eq. (B4) we find
that (An + �Msn)2 + B2

n = (πN0K−1
n )2. Plugging this identity

into Eq. (B3), we observe that Kn is given by the self-
consistent equation

Kn =
〈

1(
πN0K−1

n

)2 + U 2

〉
U

. (B5)

From here it follows that Kn does not depend on fre-
quency, Kn = K . If we introduce �S = (πN0)−1 − πN0/K ,
one checks easily that Eq. (B5) reproduces the definition (10)
of �S from the main text.

Making use of the explicit form of An and Bn in Eqs. (B4),
these expressions simplify to

�Sxn = �tot
n − �n, �Syn = �tot

n − �n, (B6)

where we have defined �n ≡ �
ph
n and �n ≡ �

ph
n + �Msn.

From here it follows that

yn/xn = (
�tot

n − �n
)
/
(
�tot

n − �n
)
.

But, on the other hand, by definition we have yn/xn = (ωn +
�tot

n )/�tot
n . Comparing these two expressions for yn/xn, we

find (ωn + �tot
n )/�tot

n = (ωn + �n)/�n. But this means that
we can express xn and yn in terms of �n and �n, instead of
�tot

n and �tot
n :

xn = �n/Dn, yn = (ωn + �n)/Dn,

where Dn = √
(ωn + �n)2 + �2

n. Making use of these expres-
sions in Eq. (B6), we find

�tot
n = (1 + �S/Dn)�n,

ωn + �tot
n = (1 + �S/Dn)(ωn + �n).

Introducing next the parametrizations �tot
n = Z tot

n �tot
n

and ωn + �tot
n = Z tot

n ωn, and similarly �n = Zn�n and
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ωn + �n = Znωn, we find that the relation between Z tot
n and

Zn is given by Eq. (9), and that �tot
n = �n, i.e., that �tot

n does
not depend on the pair-conserving scattering rate �S.

To finish the derivation, one just has to note that the phonon
self-energy �̂

ph
n is given by standard Eliashberg-like expres-

sions. Moreover, since �n = �
ph
n and �n = �

ph
n + �Msn, the

only difference between E-CPA and the standard expressions
comes from the presence of the term �Msn in �n. If one
observes that sn is the sign of ωn, one finally arrives at Eqs. (8).

APPENDIX C: DERIVATION OF EQS. (14)

The E-CPA equations (8) can be written down as a single
equation for the matrix self-energy �̂n = −i�nτ0 + �nτ1 de-
fined in Appendix B,

�̂n = −i�Msgn ωnτ0 + T

N0

∑
m

gn−mτ3Ĝmτ3. (C1)

In the upper half-plane we have sgn ωn = 1, and therefore
the analytic continuation of the first term in �̂n is simply
−i�Mτ0. The second term can be written as

1

N0

∫ ∞

−∞
dyα2F (y)τ3Ĥn(y)τ3, (C2)

where we have introduced the following function of the Mat-
subara frequency:

Ĥn(y) ≡ T
∑

m

Ĝ(iωm)

iωn − iωm + y
. (C3)

Our goal is to find an analytic continuation of Ĥn(y) to
the whole upper half of the complex plane, Ĥ (z, y). The

solution is

Ĥ (z, y) = T
∑

m

Ĝ(iωm)

z − iωm + y
+ Â(z, y). (C4)

Here we have defined

Â(z, y) = Ĝ(z + y)[ f (z + y) + b(y)], (C5)

where f (w) = 1/(ew/T + 1) and b(w) = 1/(ew/T − 1) are
the Fermi and Bose functions of the complex argument w.

In order to prove that Eq. (C4) does solve the problem, we
have to show (i) that H (iωn, y) = Hn(y) and (ii) that H (z, y)
is analytic in the upper half-plane of z.

As regards (i), using Eq. (C4) we find H (iωn, y) = Hn(y) +
Â(iωn, y). But, since for fermionic frequencies we have
f (iωn + y) + b(y) = 0, also Â(iωn, y) = 0 and the condition
(i) is satisfied.

As regards (ii), since the function Ĝ(z) is assumed to be an-
alytic in the upper half-plane, the function Ĥ (z, y) might have
poles only at some of the points z = iωm − y. Let us there-
fore assume that z = iωm − y + u, where u is an infinitesimal
complex number. Then the possibly singular contribution to
Ĥ (z, y) is given by

Ĥ (z, y) ≈ T

u
[Ĝ(iωm) − Ĝ(iωm + u)].

But, since Ĝ(z) is analytic at z = iωm, the residue of Ĥ (z, y)
at z = iωm − y vanishes. This finishes the proof.

Finally, plugging Eqs. (C4) and (C5) into Eq. (C2), mak-
ing use of the fact that Ĝ(z) = −iπN0[n(z)τ0 + p(z)τ1], and
requiring that z = ω + i0, we arrive at Eq. (14).
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