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Frustrated magnets with degenerate ground states exhibit exotic ground states and rich phase structures
when perturbations and/or thermal fluctuations lift the degeneracy. In two-dimensional models with short-range
interactions, continuous symmetries cannot spontaneously break at finite temperatures, leading to the suppression
of conventional magnetic long-range ordering. In this paper, we numerically study the classical J1-J2 XY
antiferromagnet on the kagome lattice as a prototype model of such frustrated magnets, where J2 denotes the
next-nearest-neighbor exchange interaction. We map out the J2-T phase diagram of this model employing exten-
sive classical Monte Carlo simulations. The obtained phase diagram features Berezinskii-Kosterlitz-Thouless
transitions of q = 0,

√
3×√

3 magnetic orders, and octupole orders, in addition to finite-temperature phase
transitions of both ferrochiral and antiferrochiral long-range orders. Additionally, we find a nontrivial first-order
transition for antiferromagnetic J2/J1 < 0. The origin of this transition is discussed in the context of nonlocal
loop structures present in local 120◦ spin structures.
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I. INTRODUCTION

Classical spin models on frustrated lattices, such as the
triangular lattice and the kagome lattice, often have a large
number of degenerate ground states at a macroscopic level.
When the degeneracy is lifted by perturbations, such as mag-
netic fields, long-range interactions, and thermal fluctuations,
several exotic states emerge [1].

A prototype of such frustrated spin models is the classical
J1-J2 XY antiferromagnet on the kagome lattice. Its Hamilto-
nian is defined as follows:

H = J1

∑
〈i j〉

�Si · �S j − J2

∑
〈〈i j〉〉

�Si · �S j . (1)

Here, �Si=(Sx
i , Sy

i ) represents a unit vector at the site i. J1 (= 1)
denotes the nearest-neighbor interactions, and J2 denotes the
next-nearest-neighbor ones [see Fig. 1(a)]. 〈i j〉 represents a
pair of nearest-neighboring sites, and 〈〈i j〉〉 represents a pair
of next-nearest-neighboring ones. We note that the sponta-
neous symmetry breaking of continuous degrees of freedom in
two-dimensional models with short-range interactions, such
as the conventional magnetic long-range ordering (LRO)
at finite temperatures, is prohibited by the Mermin-Wagner
theorem [2].

We first review the basic properties of the J1-J2 XY antifer-
romagnets. When J2 = 0 and T = 0, although the local 120◦
spin order occurs at each triangle, there is no constraint on
the global covering of the local 120◦ spin order as shown in
Fig. 1(b). Thus, magnetic orders are prohibited even at zero
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temperature because of the macroscopic degeneracy. How-
ever, it is proposed that the higher-order multipole degrees of
freedom, i.e., octupole degrees of freedom, can have LRO [3].

When J2 = 0 and T > 0, it is expected that the system
undergoes a Berezinskii-Kosterlitz-Thouless (BKT) transition
[4,5] from an octupole quasi-long-range ordered (QLRO)
phase to a paramagnetic phase [6]. Previous Monte Carlo
(MC) simulations have estimated the BKT transition tempera-
ture TBKT to be TBKT = 0.070–0.076 [7]. Additionally, a recent
tensor network calculation has also estimated TBKT � 0.0755
[8], which is consistent with the results obtained from the MC
simulations.

Compared with the case of J2 = 0, less is known about
the effects of finite J2. At T = 0, J2 ( �= 0) lifts the macro-
scopic ground-state degeneracy. As a result, the q = 0 state
[Fig. 1(c)] becomes the ground state for J2 < 0, while the√

3×√
3 state [Fig. 1(d)] becomes the ground state for J2 > 0

[9].
In the XY model on a kagome lattice, the LRO of the z

component of the vector chirality κ can occur. The definition
of κ on the ith triangle is given by

κi ≡ 2

3
√

3
(ηi1,i2 + ηi2,i3 + ηi3,i1 ), (2)

ηi, j = Sx
i Sy

j − Sy
i Sx

j . (3)

Here in signifies the index of sites in the triangular [refer to
Figs. 1(c) and 1(d), and Sec. II]. As shown in Figs. 1(c) and
1(d), ferrochiral (antiferrochiral) ordering is accompanied by
the q = 0 (

√
3×√

3) magnetic order.
For T > 0, the magnetic orders become QLROs, while

the Ising-type chiral orders are anticipated to remain LROs.
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FIG. 1. Schematic illustrations of the classical J1-J2 XY kagome
antiferromagnet and its ground states. (a) Primitive vectors, lattice
constant a (= 1), a unit cell, and nearest-neighbor (J1) and next-
nearest-neighbor (J2) interactions. (b) Typical spin configuration of
the octupole order at J2 = 0. The + and − denote the signs of the z
component of the vector chirality. The red lines denote typical closed
“loops” (see Sec. II) under periodic boundary conditions. (c) Fer-
rochiral and q = 0 magnetic order for J2 < 0. (d) Antiferrochiral and√

3×√
3 magnetic order for J2 > 0.

Thus, the system undergoes magnetic BKT transitions and
chiral long-range transitions to a paramagnetic phase at fi-
nite temperatures. The magnetic BKT transition temperatures
approach zero as |J2| decreases. Additionally, the chiral tran-
sition temperatures also exhibit J2 dependencies similar to
the magnetic BKT transition temperatures. In the case of the
triangular lattice, there is a slight differentiation between the
transition temperatures for the chiral transition and the antifer-
romagnetic BKT transition [10–12]. However, this particular
aspect remains unexplored for the kagome lattice. Intriguing
questions also arise regarding how these chiral orders dis-
solve at finite temperatures and the nature of the relationship
between the chiral transitions and the BKT transitions of
magnetic orders.

For the kagome lattice, both previous phenomenological
[13] and numerical studies [8] have proposed schematic phase
diagrams for J2 �= 0. Additionally, for J2 < 0, these studies
proposed the emergence of a nontrivial first-order transition.
Interestingly, a similar first-order transition was reported in
MC simulations for the classical J1-J2 Heisenberg antiferro-
magnet [14]. However, due to the numerical challenges arising
from the ground-state degeneracy and low-temperature phase
transitions, the outcomes of classical MC simulations and
computed phase diagrams for the classical J1-J2 XY kagome
antiferromagnet have not been reported yet.

The objective of this study is to quantitatively elucidate the
cooperative effect of T and J2 on the macroscopic degeneracy

FIG. 2. Computed J2-T phase diagram. The insets denote the
ground-state spin configurations for J2 �= 0. The left one repre-
sents the ferrochiral and q = 0 magnetic order [Fig. 1(c)], while
the right one represents the antiferrochiral and

√
3×√

3 magnetic
order [Fig. 1(d)]. The thick blue line represents a first-order phase
transition. There remain unresolved issues near the terminal point on
the right side of the first-order transition line. For details, please refer
to Fig. 7 and discussions in the main text.

of this model’s ground state. To this end, we map out a J2-T
phase diagram (see Fig. 2) by large-scale classical MC sim-
ulations applying both equilibrium MC and nonequilibrium
relaxation (NER) methods [12]. We also reveal the existence
of a nontrivial first-order transition when J2 < 0.

This paper is structured as follows: Section II provides a
more detailed explanation of the magnetic and chiral orders.
Section III describes the MC methods used in our study. In
Sec. IV, we present the computed phase diagram, as well as
the MC data for the phase diagram. Section V is dedicated to
a discussion of the nature of the first-order transition. Finally,
in Sec. VI, we summarize the main results of this study.

II. MAGNETIC AND CHIRAL ORDERS

In this section, we summarize definitions of the lattice
structure, magnetic, and chiral orders.

A. Unit cell

As illustrated in Fig. 1(a), we use the primitive vectors
given by

�a1 = (a, 0), (4)

�a2 = (a/2,
√

3a/2), (5)

where a (= 1) represents the lattice constant. Each unit cell
contains one upward-facing triangle, which consists of three
sites [see the unit cell in Fig. 1(a)]. In the following numerical
simulations, we consider periodic systems of square geometry
with L2 unit cells, including 3L2 spins.

B. Local 120◦ structure

This subsection is dedicated to explaining the local 120◦
structure, a building block for the magnetic orders. As illus-
trated in Fig. 1(b), three spins on each triangle are apart from
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each other by 120◦. The three colors indicate the three spins
pointing in different directions. This configuration is called
the local 120◦ structure. Only this local 120◦ structure satisfies
the sum rule �S1 + �S2 + �S3 = 0 up to a global rotation.

All states with local 120◦ structures on every triangle
minimize the Hamiltonian for J2 = 0. This can be seen by
rewriting the Hamiltonian as follows:

H =
∑

triangle

(�S1 + �S2 + �S3)2 + const, (6)

where the sum runs over all upward-facing and downward-
facing triangles. The number of such ground states grows
exponentially with the number of sites, resulting in magnetic
disorder [3,6].

As illustrated in Fig. 1(b), a local 120◦ state can have
either κz = 1 or −1. Therefore, the (anti)ferrochiral order is
expected to be realized when finite J2 induces a periodic order
of the local 120◦ structures, such as the q = 0 magnetic order
and the

√
3×√

3 magnetic order.
In the 120◦ state, a “loop” can be formed by spins alter-

nating two out of three colors, as shown in Fig. 1(b). The two
types of spins on such a loop can be interchanged without
any energy change since this does not violate the sum rule.
From now on, we define the length of a loop as the number of
sites it contains. At finite T , a loop becomes not well-defined
since spins deviate from perfect local 120◦ structures due to
thermal fluctuations. In the present study, for the loop update
described in Sec. III and the discussion about the nature of
the first-order transition in Sec. V, we define a loop at finite T
using the algorithm proposed in Ref. [15].

C. Octupole order (J2 = 0)

In this subsection, we explain the octupole order at J2 = 0
and T = 0. As mentioned above, at J2 = 0, all spin states
consisting of the local 120◦ structures have the same energy
[a typical spin state is shown in Fig. 1(b)]. Consequently,
these states have neither magnetic nor chiral LRO. However,
composite degrees of spins, termed octupole, can exhibit LRO
at T = 0.

Additionally, in the context of loops, an octupole order
does not exhibit any periodicity similar to those observed for
the q = 0 [Fig. 1(c)] and the

√
3×√

3 order [Fig. 1(d)].
The octupole order parameter is defined as follows [7]:

m2
oct ≡ 1

N2

⎡
⎣

(∑
i

cos 3θi

)2

+
(∑

i

sin 3θi

)2
⎤
⎦, (7)

where θi represents the angle of ith spin measured from the x
axis, and N is the number of spins.

D. q = 0 and ferrochiral order (J2 < 0)

The q = 0 and ferrochiral orders at T = 0 for J2 < 0 are
illustrated in Fig. 1(c). The spin configuration is translation-
ally invariant; thus, κz has the same sign on all the triangles.
This indicates that the q = 0 magnetic order coexists with
the ferrochiral order at T = 0. At T �= 0, the ferrochiral LRO
can survive because it is a spontaneous symmetry breaking of

discrete degrees of freedom, while the q = 0 magnetic order
becomes QLRO.

As shown in Fig. 1(c), the spin configuration has a one-
dimensional “loop,” whose length is of the order of the system
size L. Such a loop is longer than that of the octupole-ordered
states.

We define the magnetic and chiral order parameters as
follows:

m2
q=0 = 1

3N2
�

3∑
l=1

(
N�∑
i=1

�Si
l

)2

, (8)

κ2
Ferro =

(
1

N�

∑
all�

κ� + 1

N∇

∑
all∇

κ∇

)2

, (9)

where the index i represents an ith upward-facing triangle, and
l denotes the lth site on each triangle. Furthermore, N� and N∇
denote the number of upward- and downward-facing triangles,
respectively.

E.
√

3×√
3 and antiferrochiral order (J2 > 0)

Figure 1(d) illustrates the
√

3×√
3 order at T = 0 for J2 >

0, whose unit cell is larger than that of the q = 0 order. In
this spin configuration, κz has different signs in upward- and
downward-facing triangles. The

√
3×√

3 order coexists with
the antiferrochiral order at T = 0.

As shown in Fig. 1(d), each unit cell contains a loop con-
sisting of spins with two alternating colors (green and blue in
the figure). The length of the loop is 6, which is the shortest
possible length of a closed loop.

We define the magnetic and chiral order parameters as
follows:

m2√
3×√

3
= 1

3N2
�

3∑
l=1

[
N�∑
i=1

�Si
l exp

(
2π i

3

(
xi

l + yi
l

))]2

, (10)

κ2
AF =

(
1

N�

∑
all�

κ� − 1

N∇

∑
all∇

κ∇

)2

. (11)

Here, xi
l and yi

l are defined as �ri
l = xi

l �a1 + yi
l �a2, where �ri

l
denotes the real-space position of the lth site in the ith
upward-facing triangle.

III. METHOD

In this section, we explain the classical MC methods
used in this study for numerical calculations. To reveal
the thermodynamic properties of the model, we employed
two complementary methods: The standard equilibrium MC
method (for studying the long-time limit of small systems)
and the NER method (for studying the short-time relaxation
process of large systems). In the following subsections, we
explain these methods in detail.

A. MC simulations of equilibrium systems

To simulate equilibrium states and avoid the freezing of
MC dynamics, we used several update methods: the random-
flip update [16], the over-relaxation update [17,18], the
Gaussian-move update [19,20], and the nonlocal loop update
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[15]. We further employed the replica exchange Monte Carlo
method for efficient multiple-temperature simulations [21].

In particular, the nonlocal loop update [15] takes advantage
of the fact that, at T = 0 and J2 = 0, one can interchange
the types of spins on a loop consisting of two alternating
colors without any energy change. This enables us to si-
multaneously update spins on a loop, resulting in transitions
between degenerate ground states, even at low temperatures
where other local updates are frozen. However, at finite T ,
a loop is not well-defined since spins deviate from perfect
local 120◦ structures due to thermal fluctuations. In actual
calculations, we construct a loop as follows: At first, we
randomly select two nearest-neighboring spins denoted as �Sl1

and �Sl2 , which represent the first and second spins on a loop.
Next, we calculate the inner product between �Sl1 and each of
the nearest-neighboring spins of �Sl2 excluding �Sl1 . The spin
with the largest inner product is chosen as �Sl3 so that �Sl1 and
�Sl3 are oriented in approximately the same direction. This
procedure is repeated until the loop is closed (see Ref. [15]
for more details). Each attempt of a loop update is accepted
with the probability depending on the total energy change by
the standard Metropolis algorithm.

One MC step involves one sweep through the system
with local updates and the nonlocal loop update, followed by
attempts of replica exchanges between neighboring tempera-
tures. After thermalization, we evaluate the physical quantities
defined in Sec. II. We typically take 106 MC steps for the ther-
malization and 9×106 MC measurement steps. The physical
quantities are measured every 10 MC steps.

B. NER method

In the NER analyses, we study the relaxation processes
of a large system from an initially ordered state using only
the single-spin updates (both the loop update and the replica
exchange are disabled). In this study, time t is measured in
units of MC steps.

First, as an initial state (t = 0), we choose a specific or-
dered state whose transition temperature we want to estimate.
In the relaxation process, we evaluate the dynamical correla-
tion function defined as follows:

GO(t ) ≡ 〈O(0)O(t )〉 (12)

for the order parameter O of interest (i.e., corresponding to
the ordering). Here, O(t ) is the value of the order parameter
at t . The symbol 〈· · ·〉 denotes the sample average over MC
results with different random number seeds, which is taken to
suppress statistical fluctuations due to finite system sizes.

For T > TBKT, G(t ) is expected to decay exponentially as
follows:

G(t ) = a e−t/τ . (13)

Here, τ denotes a temperature-dependent relaxation time. In-
stead of estimating τ at each T using the least-squares method
with this equation, we employ the scaling analysis [12] de-
tailed in Appendix because G(t ) does not decay exponentially
at short times. The scaling analysis allows us to determine the
T dependence of τ simultaneously. Once the T dependence
of τ is determined, we estimate the transition temperature by

assuming [5,22]

τ = b exp

[
c√

T − TBKT

]
. (14)

By taking the logarithm of this equation, we get

ln τ = ln b + c√
T − TBKT

, (15)

which can be used to estimate TBKT by the least-squares
method.

Since the chiral degrees of freedom can show long-range
order, the temperature dependence of τ around the chiral
transition is anticipated to show the following power-law be-
havior, which is defined as

τ = b (T − Tc)−zν, (16)

where z is the dynamical critical exponent and ν is the critical
exponent of the correlation length [23].

Using the standard Metropolis single-spin update, we typi-
cally perform the relaxation up to 105 MC steps for the system
size 3L2 up to L = 1800 (one sample/MC run). This process
takes over 24 h with one core of AMD EPYC 7702P. The
relaxation time τ is determined at up to 11 different temper-
atures. The sample averages are computed from as many as
300 independent MC runs for each temperature. For our initial
state, we use the q = 0 state for J2 < 0 and the

√
3×√

3 state
for J2 > 0, both of which are perfectly ordered.

We use the
√

3×√
3 initial state for J2 = 0 because the

instability toward the
√

3×√
3 ordering is dominant in the

classical nearest-neighbor XY antiferromagnet on the kagome
lattice [24]. We confirmed that the finite-size effect is negligi-
bly small in all the calculations shown in this paper.

IV. RESULTS

We start our discussion by providing an overview of the
computed J2-T phase diagram in Sec. IV A. In the three sub-
sequent subsections, we discuss MC results for three different
regions of J2.

A. Overview of the J2-T phase diagram

Figure 2 shows the J2-T phase diagram. The overall struc-
ture at low temperatures is consistent with previous studies
[8,13]. Specifically, for J2 < 0, a phase exists where the fer-
rochiral LRO and the q = 0 magnetic QLRO coexist (the blue
region in the figure). For J2 > 0, a phase exists where the
antiferrochiral LRO and the

√
3×√

3 magnetic QLRO coexist
(the green region in the figure). Between these two phases,
there exists a phase with the octupole QLRO (the red region
in the figure).

Next, we discuss temperature-driven phase transitions.
Near J2 = 0, there is a BKT transition between the octupole
QLRO and the paramagnetic phases. For J2 > 0, an antifer-
rochiral transition and a

√
3×√

3 BKT transition seem to
occur nearly at the same temperature. These two transition
temperatures are indeed slightly separated, as we will discuss
in greater detail.

For J2 < 0, there are even richer structures. In particular,
there is a first-order transition between the ferrochiral LRO
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FIG. 3. Temperature dependence of the specific heat (a) and the order parameters κ2
Ferro (b), m2

q=0 (c), and m2
oct (d) computed at J2 =−0.07,

−0.02, −0.0075 in Region I. The system sizes were L = 9, 18, and 36. The vertical lines denote the first-order transition temperature at the
bulk limit estimated by the finite-size scaling analyses [25] (see Fig. 4).

and paramagnetic phases, which is a remarkable finding in
this study. The first-order transition line seems to terminate
near the intersection where the octupole BKT transition line
reaches the ferrochiral LRO phase.

In the following subsections, we show numerical data for
the three distinct regions of J2: Region I (J2 � −7.5×10−3)
involving the first-order transition, Region II with the oc-
tupole phase (−7.5×10−3 < J2 < 4×10−2), and Region III
with the coexisting ferrochiral LRO and

√
3×√

3 QLRO
(J2 > 4×10−2).

B. Region I (J2/J1 � −7.5×10−3)

In this subsection, we delve into the equilibrium MC results
for Region I, where the first-order transition exists between the
ferrochiral LRO and paramagnetic phases. According to the

ground-state phase diagram for J2 < 0, the following three or-
der parameters are expected to be relevant in this region: m2

q=0

[Eq. (8)], κ2
Ferro [Eq. (9)], and m2

oct [Eq. (7)]. The Mermin-
Wagner theorem indicates that the order parameters m2

q=0 and
m2

oct vanish at the bulk limit L → ∞. Nevertheless, the size
dependence of m2

q=0 and m2
oct can give us essential insights

into the nature of the QLRO.
Figure 3 shows the temperature dependence of the specific

heat and the order parameters computed for L = 9, 18, and 36.
Let us first discuss the specific heat as shown in Fig. 3(a). At
all three values of J2 = −0.0075, −0.02, and −0.07, the tem-
perature dependence of the specific heat displays a singular
peak, which becomes sharper as L increases. This result indi-
cates the existence of a single first-order phase transition from
the paramagnetic phase to the low-T phase with the coexisting
ferrochiral LRO and q = 0 magnetic QLRO. The transition
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FIG. 4. The size dependence of Tc(L) defined as the temperature
exhibiting the specific-heat peak for each L. They are computed at
J2 = −0.0075, −0.02, and −0.07.

temperature of the first-order phase transition increases when
J2 changes from −0.0075 to −0.07. We note that the interme-
diate ferrochiral LRO phase without the magnetic QLRO may
appear in the case of J2 < 0, but it is difficult to discuss the
existence of the intermediate phase within the accuracy of the
current calculations.

To further examine the existence of the first-order phase
transition, we performed the finite-size scaling analyses of
Tc(L) at which the specific heat exhibits its maximum. For a
first-order transition, Tc(L) is anticipated to be proportional to
L−2 [25]. As shown in Fig. 4, for all J2 values, the scaling of
Tc(L) seems to agree well with anticipated L−2 behavior. This
result suggests the existence of the first-order phase transition.

We also examine the energy histogram at Tc. As shown
in Figs. 5(a) and 5(b), the energy histogram shows the
double-peak structure, and it becomes more pronounced as
L increases. These observations indicate the first-order nature
of the transition at J2 = −0.0075 and −0.02. In contrast, at
J2 = −0.07 [Fig. 5(c)], the histogram exhibits only a single
broad peak with a small shoulder structure even for the largest
system (L = 36). This indicates that the transition may be
continuous.

To better understand the nature of the low-T phase, we
analyze the MC data for the order parameters. As shown in
Fig. 3(b), it is evident that the low-T phase has ferrochi-
ral LRO. The jumplike behavior in κ2

Ferro around Tc at J2 =
−0.02 further supports the first-order nature of the transition.
Figure 3(c) shows the temperature dependence of m2

q=0, which
appears similar to that of κ2

Ferro. Consistent with analyses of the
specific heat and the energy histograms, the jumps in the phys-
ical quantities become small by changing from J2 = −0.02 to
J2 = −0.07. The steep changes in m2

q=0 and κ2
Ferro around Tc at

J2 = −0.0075 are consistent with the weak first-order phase
transition.

Finally, we discuss the temperature dependence of m2
oct

shown in Fig. 3(d). As previously mentioned, m2
oct becomes

finite in the presence of the ferrochiral LRO. As T increases,
both m2

oct and κ2
Ferro seem to disappear at the same temperature

within the accuracy of the current simulations. This observa-
tion indicates that the nonzero value of m2

oct originates from
the primary q = 0 QLRO.

C. Region II (−7.5×10−3 < J2/J1 < 4×10−2)

This subsection is dedicated to discussing the equilibrium
MC results and the NER results for Region II.

FIG. 5. Energy histogram measured at J2 = −0.0075 (a), −0.02
(b), and −0.07 (c). For J2 = −0.0075, the histograms are measured
at T = 0.092, 0.083, and 0.079 for L = 9, 18, and 36, respectively.
For J2 = −0.02 (−0.07), the histograms are measured at T = 0.13
(T = 0.22) for all L.

1. Results of equilibrium MC

Figure 6 shows the specific heat and various order param-
eters computed at J2 = −0.005, 0, 0.02. We first discuss the
results for a small but negative J2 (J2 = −0.005), where the
ground state is expected to be in the q = 0 ordered phase. The
left columns of Fig. 6 illustrate the temperature dependence
of several physical quantities for J2 = −0.005. Figure 6(a)
depicts the specific heat, showing two peaks: the broad high-T
peak and the sharp low-T peak. As L increases, the high-T
peak decreases in height, while the low-T peak becomes more
pronounced and sharpens. As shown in Fig. 6(f), the position
of the high-T peak is near the onset of m2

oct, indicating that the
high-T peak in the specific heat corresponds to the transition
from the paramagnetic phase to the octupole QLRO phase.

Below the low-T peak, as shown in Figs. 6(b) and 6(c),
κ2

Ferro and m2
q=0 increase for L = 9. However, for L = 12 and

18, κ2
Ferro and m2

q=0 remain approximately zero below the
low-T peak down to T = 0.05. As illustrated in a concep-
tual phase diagram in Fig. 7, this result indicates that the
phase transitions of both the ferrochiral LRO and the q = 0
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FIG. 6. Temperature dependence of the specific heat (a) and the order parameters κ2
Ferro (b), m2

q=0 (c), κ2
AF (d), m2√

3×√
3

(e), and m2
oct (f)

computed at J2 = −0.005, 0, 0.02 in Region II. The system sizes were L = 9, 12, and 18.

magnetic QLRO may be separated from the first-order phase
transition. Based on the expectation, the ferrochiral LRO and
the q = 0 magnetic QLRO should appear for T < 0.05. To
confirm the existence of these orders at low temperatures, we
conducted equilibrium MC simulations and NER analyses.
However, due to the system-size limitation in the equilibrium
MC simulations and the excessively long relaxation time in
NER processes, we were unable to identify these orders. A
more detailed analysis to examine the validity of the expected
phase diagram will be a subject for future study.

We next discuss the results for J2 = 0. As shown in
Fig. 6(a), the specific heat exhibits only a single broad peak.
This peak seems to coincide with the onset of m2

oct [Fig. 6(d)].
This result indicates that the octupole QLRO occurs at J2 = 0.

As we will show later, using the NER, we estimate the oc-
tupole BKT transition temperature as Toct = 0.071 ± 0.005.
This estimate is consistent with the previous results that
there is only an octupole BKT transition at T = 0.070–0.076
[7,8,13,26]. Additionally, as shown in Fig. 6(e), m2√

3×√
3

has
small but nonzero values below the BKT transition temper-
ature. This result is consistent with the proposal that the√

3×√
3 pattern is selected in the T → 0 limit for the clas-

sical XY antiferromagnet on the kagome lattice [24]. Lastly,
we discuss the results for J2 = 0.02, where the ground state
is expected to be the

√
3×√

3 ordered phase. As shown in
Fig. 6(a), the specific heat exhibits a single broad peak sim-
ilarly at J2 = 0 indicating the octupole QLRO. In contrast,
the low-T behavior of the order parameters [Figs. 6(d)–6(f)]
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FIG. 7. Proposed conceptual J2-T phase diagram near J2 = 0.
The blue solid line indicates the first-order transition induced by a
change in loop length from O(L) to O(1). The red solid line denotes
the ferrochiral transition. The green solid line represents the q = 0
magnetic BKT transition. TLP(� 0.06) represents the temperature at
which the specific heat exhibits a low-T peak for L = 18, as shown
in the left panel in Fig. 3(a).

is distinctly different from J2 = 0. In particular, both κ2
AF

and m2√
3×√

3
become enhanced at low T , suggesting the co-

existence of the antiferrochiral LRO and
√

3×√
3 magnetic

QLRO. Since it is difficult to accurately estimate the transition
temperatures of the octupole QLRO and the magnetic QLRO
by the equilibrium MC method, we perform the NER analysis
for larger system sizes. As we will discuss later, the transition
temperatures of the octupole QLRO and magnetic QLRO are
close to each other but are separated.

2. Results of NER

Here, we present the results obtained by the NER method.
Figures 8 and 9 illustrate the results of J2 = −0.0025, 0, 0.02.
Each figure contains the dynamical correlation function, scal-
ing plot, and estimated temperature-dependent relaxation time
τ for the order parameter of interest. The system size used in
the NER analyses was L = 1800, and we confirmed that the
system-size dependence is negligibly small.

First, we examine the results computed for L = 1800 at
J2 = −0.0025, which is away from the first-order transition
line. The results were averaged over 210 samples for dif-
ferent random seeds to mitigate the statistical fluctuations.
We discuss the results only for the octuple BKT transition
because the transition temperatures of the magnetic BKT
transitions and chiral transitions are too low. In Fig. 8(a1),
the time dependence of the dynamical correlation function
becomes critical and decays algebraically below T = 0.078.
To determine the critical temperature accurately, we executed
scaling analyses using Eq. (A1). The results are presented in
Figs. 8(b1) and 8(c1). The transition temperature was esti-
mated as

Toct = 0.053 ± 0.010, (17)

where the error bar was estimated by dividing the 210 random
samples into seven subgroups and computing the standard
deviation of the results obtained for each subgroup.

We now turn to the results for J2 = 0 computed with L =
1800. Figures 8(a2), 8(b2), and 8(c2) present results for m2

oct
derived from 240 random samples. The time dependence of
the dynamical correlation function was found to be similar
to that for J2 = −0.0025. Following the same procedure as
before, we estimated the transition temperature to be

Toct = 0.071 ± 0.005, (18)

where we utilized six subgroups for estimating the error bar.
This result is consistent with the result of the previous study,
Toct = 0.070–0.076 [7,8,13,26], within the error bar.

Finally, we examine the results for J2 = 0.02 and L = 1800
displayed in Fig. 9. We found that 50 samples were enough
for robust statistics because J2 = 0.02 is away from the first-
order transition. The transition temperatures were estimated
as follows:

T√
3×√

3 = 0.072 ± 0.005, (19)

Tafchical = 0.0701 ± 0.0005, (20)

Toct = 0.096 ± 0.003, (21)

where we utilized five subgroups for estimating the error bars.
A noteworthy observation is that the transition temperature
of the octupole QLRO, Toct, is well higher than T√

3×√
3 and

Tafchical. It is also noted that T√
3×√

3 and Tafchical match within
the error bars. Furthermore, our estimation of the critical
exponent yields zν � 6.3, deviating from the expected value
of zν � 2 (ν = 1 and z ∼ 2 for the two-dimensional Ising
criticality [23,27]). This discrepancy may be attributed to the
proximity effects of the antiferrochiral LRO and the

√
3×√

3
magnetic QLRO transitions.

D. Region III (J2 � 4×10−2)

This subsection presents the equilibrium MC results and
the NER results for Region III.

1. Results of equilibrium MC

Figure 10 displays the temperature dependence of the
specific heat and the order parameters calculated for L =
9, 18, 36 at various values of J2. Figure 10(a) presents the
temperature dependence of the specific heat at J2 = 0.04 and
0.06. For all the values of J2, the specific heat exhibits a single
peak. For both J2 = 0.04 and 0.06, there is a slight increase in
peak height with increasing L. Further analyses of the energy
histogram support the continuous nature of the transition (not
shown).

As depicted in Fig. 10(b), the system exhibits antiferrochi-
ral LRO at low T . The order parameters vanish continuously
as T increases, signifying the continuous nature of the tran-
sition. The transition temperature appears to increase by
increasing J2. As illustrated in Fig. 10(c), m2√

3×√
3

disappears
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FIG. 8. NER results for J2 = −0.0025 (shown in the left panel) and J2 = 0 (shown in the right panel). The system sizes are L = 1800.
The dynamical correlation functions G(t ) are computed solely for the octupole order parameter m2

oct . (a) G(t ) as a function of the MC step t .
(b) Scaling plot for G(t ). (c) The relaxation time τ as a function of temperature T in an arbitrary unit. The curve presents a fit by BKT scaling
τ = b exp(c/

√
T − TBKT).

similarly to κ2
AF. We will show that these two transition

temperatures are close but separated by NER analyses.
Figure 10(d) plots the temperature dependence of m2

oct. As
previously mentioned, m2

oct becomes finite in the presence of
the antiferrochiral LRO. As T increases, both m2

oct and κ2
AF

seem to disappear at the same temperature within the accuracy
of the current simulations. This observation indicates that the

nonzero value of m2
oct originates from the primary

√
3×√

3
QLRO.

2. Results of NER

We now determine the transition temperatures using the
NER method for L = 1800. Figures 11 and 12 show the
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FIG. 9. NER results for J2 = 0.02, L = 1800. The dynamical correlation function G(t ) is computed for the
√

3×√
3 order parameter

m2√
3×√

3
, the antiferrochiral order parameter κ2

AF, and the octupole order parameter m2
oct . (a) G(t ) as a function of the MC step t . (b) Scaling

plot for G(t ). (c) The relaxation time τ as a function of temperature T in an arbitrary unit. The curve presents a fit by BKT scaling τ =
b exp(c/

√
T − TBKT) in (c1) and (c3) and by the power law τ = b(T − Tc )−zν in (c2).

results for J2 = 0.04 and 0.06, respectively. We utilized 50
random samples. The transition temperatures for J2 = 0.04
were estimated as follows:

T√
3×√

3 = 0.1562 ± 0.0001, (22)

Tafchical = 0.1590 ± 0.0007, (23)

Toct = 0.151 ± 0.004. (24)

The transition temperatures for J2 = 0.06 were estimated
as follows:

T√
3×√

3 = 0.19735 ± 0.000 04, (25)

Tafchical = 0.1995 ± 0.0003, (26)

Toct = 0.195 ± 0.001. (27)

These results suggest that these three transitions nearly co-
incide, consistent with the MC results in Fig. 10. As shown
in Fig. 12(b3), the scaling collapse of the octupole ordering
is relatively poor. The fast relaxation of m2

oct may be the
origin of this poor scaling collapse. However, we can obtain
the smooth temperature dependence of τ , and the estimated
critical temperature seems to be reasonable. Additionally, for
both J2 = 0.04 and 0.06, our estimation of the critical expo-
nent yields zν � 1.6, which is closer to the expected value of
zν � 2 [23,27] than the result for J2 = 0.02.

V. NATURE OF THE FIRST-ORDER TRANSITION

In this section, we discuss the nature of the first-order
transition observed in Region I. Specifically, we focus on the
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FIG. 10. Temperature dependence of the specific heat (a) and the order parameters m2√
3×√

3
(b), κ2

AF (c), and m2
oct (d) computed at J2 =

0.04, 0.06 in Region III. The system sizes were L = 9, 18, and 36. The vertical lines denote the transition temperature at the bulk limit
estimated by NER.

statistics of loops consisting of two types of spins formed
during the loop update.

Figure 13 illustrates the average loop lengths for typi-
cal values of J2. First, we discuss the result for Region I
[Fig. 13(a)]. As highlighted in Sec. II, the loop lengths are
O(L) in the perfect q = 0 LRO phase at T = 0. As an-
ticipated, the average loop length increases approximately
linearly with L at low temperatures below the transition tem-

perature. Above the transition temperature (T � 0.13), the
average loop length diminishes as L increases. In other words,
as L escalates, the temperature dependence of the average
loop length intensifies. Such a precipitous change in the loop
length from O(L) to O(1) necessitates a global alteration in
spin configurations, leading to the appearance of a substantial
energy barrier between the low-T phase and the high-T phase.
This might be the origin of the first-order transition.
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FIG. 11. NER results for J2 = 0.04, L = 1800. The dynamical correlation function G(t ) is computed for the
√

3×√
3 order parameter

m2√
3×√

3
, the antiferrochiral order parameter κ2

AF, and the octupole order parameter m2
oct . (a) G(t ) as a function of the MC step t . (b) Scaling

plot for G(t ). (c) The relaxation time τ as a function of temperature T in an arbitrary unit. The curve represents a fit by BKT scaling
τ = b exp(c/

√
T − TBKT) in (c1) and (c3) and by the power law τ = b(T − Tc )−zν in (c2).

Next, we proceed with the discussion of the results for
J2 = 0.02 [Fig. 13(b)]. In Region II, two successive transi-
tions occur: one from the paramagnetic phase to the octupole
QLRO phase, and the other from the octupole QLRO phase
to the coexisting phase of antiferrochiral LRO and

√
3×√

3
QLRO. As elucidated in Sec. II, the perfectly ordered

√
3×√

3
structure has the shortest loops of length 6. The average loop
length decreases below T � 0.09 close to the octupole BKT
transition temperature, which aligns with this zero-T limit.
Additionally, the average loop length exhibits a broad peak
near T � 0.12 for all values of L. The height of each peak is
approximately 18 and is independent of L. The emergence of
the L-independent peak might be attributed to the existence of
short localized loops generated by thermal fluctuations in the√

3×√
3 spin configurations at low temperatures.

In Region III, as depicted in Fig. 13(c), the average loop
length converges to 6, as anticipated.

VI. SUMMARY

In this study, we numerically investigated the cooperative
effects of thermal fluctuations and next-nearest-neighbor in-
teractions J2 on the macroscopically degenerate ground-state
manifold of the classical J1-J2 XY kagome antiferromagnet.
We mapped out a J2-T phase diagram by extensive classical
MC simulations using the equilibrium MC and the NER meth-
ods.

Let us summarize our findings: (i) We have discovered the
first-order transition between the paramagnetic phase and the
q = 0 magnetic QLRO in the range −0.07 < J2 < −0.0075.
We confirmed the first-order nature of the transition via an
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FIG. 12. NER results for J2 = 0.06, L = 1800. The dynamical correlation function G(t ) is computed for the
√

3×√
3 order parameter

m2√
3×√

3
, the antiferrochiral order parameter κ2

AF, and the octupole order parameter m2
oct . (a) G(t ) as a function of the MC step t . (b) Scaling

plot for G(t ). (c) The relaxation time τ as a function of temperature T in an arbitrary unit. The curve represents a fit by BKT scaling
τ = b exp(c/

√
T − TBKT) in (c1) and (c3) and by the power law τ = b(T − Tc )−zν in (c2).

analysis of energy histograms and the finite-size scaling of
the peak temperatures of the specific heat. The first-order
nature is most enhanced around J2 = −0.02 and weakens
as J2 approaches one of the end points of the transition.
(ii) We found that the octupole QLRO phase remains sta-
ble in the region −0.005 < J2 < 0.04. We determined the
J2 dependence of the transition temperature precisely by the
NER method. However, at the small negative J2 region, for
example J2 = −0.005, despite the specific heat displaying
the low-T peak at T � 0.06, our MC simulations were un-
able to confirm the existence of the ferrochiral LRO and
the q = 0 magnetic QLRO below this peak. As illustrated
in Fig. 7, these orders might emerge at lower tempera-
tures inaccessible by the current equilibrium MC or NER
simulations. (iii) For J2 � 0.04, we precisely determined a

√
3×√

3 BKT transition temperature and the antiferrochiral
transition temperature. (iv) We examined the origin of the
first-order transition in the context of the average loop lengths
for −0.07 < J2 < −0.0075.

Before concluding this paper, we discuss potential future
directions. First, a similar first-order transition was reported
in MC simulations for the classical J1-J2 Heisenberg anti-
ferromagnet with antiferromagnetic J2 [14]. An intriguing
direction for future study would be to introduce an easy-plane
anisotropy in the Heisenberg antiferromagnet, establishing a
connection between the XY and Heisenberg limits. This could
help shed light on the origin of the perplexing first-order
transition in the Heisenberg limit.

Secondly, identifying the ferrochiral LRO and the q = 0
magnetic QLRO at the small negative J2 region, along with
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FIG. 13. Average lengths of loops for J2 = −0.02 (a), 0.02 (b),
and 0.04 (c). We plot the data for L = 12, 18, and 24.

testing our proposed J2-T phase diagram (Fig. 7), remains a
challenging endeavor for future research. This could help us
better understand the low-temperature properties of the J1-J2

XY kagome antiferromagnet for small antiferromagnetic J2

as well as the nature of the first-order transition in the J1-J2

Heisenberg antiferromagnet [14].
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APPENDIX: SCALING ANALYSIS

In this Appendix, we explain the scaling analysis in detail.
For T � TBKT, we assume the following scaling law:

g(t/τ ) = τλ(T )G(t, T ), (A1)

where G(t, T ) represents the temperature-dependent dynam-
ical correlation function at time t measured in units of MC
steps, g(x) is a temperature-independent function, and λ de-
notes the dynamical critical exponent of G(t, T ). We optimize
the cost function defined as follows:

F [�τ , λ] ≡
∑M

i=1

∑NT
j=1 | ln

[
τλ(Tj )G(ti, Tj )

] − g̃(ti/τ )|2∑M
k=1 |g̃(tk/τ )|2 ,

(A2)

where �τ represents the vector of NT values of τ , and g̃(t/τ )
is defined as g̃(t/τ ) ≡ 1

NT

∑NT
i=1 ln[τλ(Ti )G(t, Ti )]. We now

introduce NT as the number of temperatures and M as the
number of sampling points of time t . To compute g̃(t/τ ), we
interpolate G(t, T ) along the t axis using linear interpolation.
We use the Nelder-Mead method [28] to optimize the cost
function (A2).
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