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Thermodynamics and fractal dynamics of a nematic spin ice:
A doubly frustrated pyrochlore Ising magnet
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The Ising antiferromagnets on the triangular and on the pyrochlore lattices are two of the most iconic examples
of magnetic frustration, paradigmatically illustrating many exotic properties such as emergent gauge fields, frac-
tionalization, and topological order. In this paper, we show that the two instances of frustration can, remarkably,
be combined in a single system, where they coexist without inducing conventional long-range ordering. Our
results indicate that the system undergoes a first-order phase transition upon lowering the temperature, into a yet
different frustrated phase that we characterize to exhibit nematic order. We argue that an extensive degeneracy
survives down to zero temperature, at odds with a customary Pauling estimate. Dynamically, we find evidence
of anomalous noise in the power spectral density, arising from an effectively fractal anisotropic motion of
monopoles at low temperature.
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I. INTRODUCTION

Frustration in materials—occurring when competing inter-
actions and lattice geometry lead to an exceptional abundance
of states with similar energy and a suppression of conventional
ordering—has established itself as a rich context in which to
study intriguing phenomena like topological order, fractional-
ized excitations, and unusual (typically slow) dynamics [1].

In this paper we merge two of the most famous examples
of frustrated magnetic systems: the venerable triangular lattice
Ising antiferromagnet [2,3] and spin ice [4], arguably the best-
established example of a Coulomb phase [5–8], topological
order, and fractionalization [9], with its characteristic emer-
gent magnetic monopole excitations [10].

We focus on nearest-neighbor spin ice, defined on the
pyrochlore lattice. The extensive set of its ground states is de-
fined by configurations having two spins pointing into and two
spins pointing out of each tetrahedron (see Fig. 1). Flipping a
single spin in this state generates a monopole-antimonopole
pair (3-out-1-in and 1-out-3-in tetrahedra). Creating the pair
costs energy, but once created the monopoles can separate and
move independently through further spin flips at zero energy
cost.

The very same set of spins on a pyrochlore lattice (which
is tetrapartite) can be seen as four interpenetrating sets of
2D triangular layers, one set per sublattice. Nearest-neighbor
interactions within each plane are one and the same as the so-
called J ′

3 third-neighbor interaction in spin ice [11]. Therefore,
the physics of a spin system on the pyrochlore lattice endowed
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with only antiferromagnetic J ′
3 interactions is akin to that of

decoupled 2D triangular Ising antiferromagnetic layers, with
their extensive degeneracy and characteristic “free spins” at
the centres of minimal hexagonal loops with vanishing mag-
netization [2].

Here we bring together both elements by studying nearest-
neighbor spin ice (J1 � 0) in presence of third-neighbor
antiferromagnetic interactions (J ′

3 � 0) [12],

H = J1

∑
〈i, j〉

σiσ j + J ′
3

∑
〈i, j〉3′

σiσ j . (1)

Surprisingly, we show that both energy terms can be concur-
rently minimized by extensively many ground states, leading
to finite zero-point entropy, at odds with a naïve Pauling
estimate predicting “negative entropy” and therefore conven-
tional order (see Appendix A). We study the thermodynamic
properties and correlations in this system, to trace out its phase
diagram and uncover the existence of a phase transition. To
the best of our numerical understanding, the phase transition
appears to be first order, separating a paramagnetic (spin ice)
phase at high temperature from a low-temperature nematic
(spin ice) phase. Our results further confirm that the nematic
phase remains extensively degenerate with a finite entropy
down to zero temperature.

At low temperatures, the response and equilibration prop-
erties of spin ice rely on the free motion of thermally activated
defects [14], the magnetic monopoles [10,15], which act as fa-
cilitators of magnetization dynamics. Similarly, the free spins
play a key role in the magnetization dynamics of the triangular
Ising antiferromagnet at low temperatures. Our model com-
bines the two features and we find a rich dynamical interplay,
with spin ice monopoles moving preferentially via flipping
spins free of J ′

3 energy cost.
In this paper, we characterize how this affects the mag-

netization dynamics in terms of anomalous behavior of the
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FIG. 1. Spin ice consists of a pyrochlore lattice with classical
Ising spins that are constrained to point directly in or out of a
tetrahedron [σi = ±1 in Eq. (1), with opposite convention on each of
the two tetrahedral sublattices]. The ferromagnetic nearest-neighbor
interactions generate an extensive number of ground states with two
spins pointing in and two spins pointing out of every tetrahedron.
These “2-in 2-out” requirements are known as the ice rules. In
our model, Eq. (1), antiferromagnetic interactions between third-
neighbor spins are also included in the direction perpendicular to
the spin axis (conventionally referred to as J ′

3 coupling). Examples
of these interactions are illustrated by the thick green lines, which
also illustrate how these interactions form triangular planes cutting
through the pyrochlore lattice. To avoid cluttering, these interactions
are only displayed for one of the four spin sublattices—the others
lie in the three symmetry-equivalent {111} planes. The black box
indicates the size of a system with L = 1 (i.e., the conventional
16-spin cubic unit cell of the pyrochlore lattice).

corresponding magnetic noise. In particular, we identify
anisotropic fractal structures on which monopoles move at
low temperatures, which we show to be responsible for the
observed anomalous exponents. This is notably similar, albeit
of a remarkably different origin, to the behavior recently ob-
served in Ref. [16].

While we are able in the end to paint a reasonably complete
picture of the thermodynamics and dynamic properties of
this model, some intriguing open questions remain for future
work—from the exact counting of the nematic ground states,
to the fate of the first-order transition in the limit of J ′

3 � J1.
In Sec. II we describe the extensive set of exact ground

states for H, and explain how these break rotational symmetry.
Following this, we turn to the thermodynamic behavior of the
model in Sec. III, where we use Monte Carlo simulations to
characterize the nematic order further and to study the nature
of the phase transition between conventional and nematic spin
ice. In Sec. IV magnetic noise measurements from Monte
Carlo simulations are presented, displaying decay with an
anomalous exponent when the system is in the nematic phase.

The anomalous exponent is explained in Sec. V, where we
show that the clusters of free spins—on which the monopoles
are biased to move—are fractal on the relevant length scales.
We conclude by commenting on the importance of these re-
sults, and by highlighting a number of questions that remain
open for further work. In the conclusions we also comment on
the relevance of our results to recent experiments on anoma-
lous noise and farther-range exchange terms in realistic spin
ice Hamiltonians.

The paper includes a number of appendices where se-
lected details are conveniently presented in a way that does
not interrupt the flow of the main narrative: Pauling’s esti-
mate (Appendix A); lattice commensurability (Appendix B);
numerical methods (Appendix C); ground-state construction
(Appendix D) and local correlators (Appendix E); supercool-
ing limits (Appendix F).

II. NEMATIC SPIN ICE STATES

The third-neighbor interactions form triangular lattice
planes, cutting through the pyrochlore lattice with four differ-
ent {111} orientations. The surprising discovery here is that
an extensive number of spin ice states are also ground states of
all the triangular planes. These states break rotational symme-
try without the appearance of long-range translational order,
hence the name nematic spin ice. The nematic order resembles
that observed in Ref. [17] for a model of Heisenberg spins on
the pyrochlore lattice. There are, however, several important
differences, including the fact that the nematic order in our
model appears to persist to zero temperature. The rotational
symmetry breaking is most clearly demonstrated by the be-
havior of the spin-spin correlations and the order parameter �

(see Sec. III).
The nematic spin ice phase is characterized by the selection

of one pair of β chains in spin ice (see Fig. 2), along which
spins preferably align head to tail. There are three different
possible choices of chain pairs (normal to the three global
crystallographic axes), corresponding to the three possible
ways of combining the four sublattices. Throughout this paper
we choose our coordinate system such that the selected chain
pair is β12-β34 in all realizations.

Every spin in a tetrahedron belongs to a different triangular
plane, and for an L×L×L system with a 16 spin unit cell
and periodic boundary conditions there are 4L such planes.
In order for the tripartite sublattice structure of the triangular
lattice planes to be well defined in a system with periodic
boundary conditions, L must be an integer multiple of three
(see Appendix B). Antiferromagneticically interacting Ising
spins on a triangular lattice was one of the earliest frustrated
models to be studied [2,3], and it supports an extensive num-
ber of degenerate ground states. In these ground states, with
energy −J ′

3 per spin, every triangle has either two spins up and
one down or one spin up and two down. Excitations take the
form of three-up or three-down triangles, and each of these
cost 4J ′

3 to create.
In Appendix D, we show how a subextensive number of

ground states for H in Eq. (1) can be constructed exactly,
with all spins aligned along the selected chains. Importantly,
ground states of the triangular lattice Ising antiferromagnet
typically have large numbers of spins, which are free to flip
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FIG. 2. Illustration of the β12 (orange) and and β34 (cyan) spin
chains, pointing along the [110] and [–110] directions, respectively.
The numbers in black indicate the four spin sublattices. The black
box indicates the size of a system with L = 1 (i.e., the conventional
16-spin cubic unit cell of the pyrochlore lattice). Every spin belongs
to one of these β chains, and any state where all spins along each
chain are aligned satisfies the ice rules. In addition, if the direction
of these chains of aligned spins is chosen correctly (see main text),
the energy of the third-neighbor interactions will also be minimized,
generating a ground state of H. Two alternative pairs of β chains can
be defined in the same way, β13 and β24 or β14 and β23.

without energy cost (namely, spins that sit at the center of
minimal hexagonal rings on the lattice with vanishing mag-
netization). These free spins form channels through which
magnetic monopoles can move without incurring any energy
cost. By creating a pair of monopoles, moving them in a
closed loop consisting of free spins, and then annihilating
them, it is possible to move between different ground states of
the system. These loops bring us from the subextensive degen-
eracy of the fully aligned chain states described above to the
extensive degeneracy of the full set of ground states. Heuris-
tically, we observe that such free loops exist in a general
ground state found through simulated annealing from high
temperature. In Appendix D a rigorous argument is presented,
showing that there must be a finite density of local, free loops
[18].

III. THERMODYNAMIC BEHAVIOR

In this section we discuss the thermodynamic equilibrium
behavior of H, analyzing the four regimes noted in the phase
diagram in Fig. 3, and characterizing the transition between
them.

That the nematic state corresponds to the alignment
of spins along one spontaneously selected pair of β

chains can be observed by considering the spin correlators
(−1)m〈σ (0)σ (r)〉 along the chains, where m is an integer

FIG. 3. Illustrative phase diagram of the Hamiltonian in Eq. (1).
Both the high-temperature (cooperative) paramagnetic phase, shown
in blue, and the low-temperature spin nematic phase, shown in red,
have a spin ice regime at low temperature. The phases are separated
by a phase transition at Tc/J1 ≈ 2.1(J ′

3/J1)0.8, with the critical tem-
perature determined in Figs. 5 and 6.

equal to the number of steps between 0 and r. [Alignment
of the vector spins along a chain corresponds to Ising vari-
ables that follow the pattern +,−,+,−, · · · – the factor of
(−1)m is included to account for this.] Above the transition
temperature, the correlations are short ranged and there is
no difference between the different chain directions. Below
the phase transition, long-range correlations appear along the
chains and one set of directions is chosen along which spins
preferentially align head-to-tail (see Fig. 4 and the further
discussion in Appendix E).

FIG. 4. Spin correlations along the three chain directions β12

(circles), β13 (squares), and β14 (triangles) for J ′
3/J1 = 0.2 at temper-

atures T/J1 = 0.2 < Tc/J1 (green) and T/J1 = 0.9 > Tc/J1 (pink).
The three directions correspond to r = (m, m, 0), r = (m, 0, m), and
r = (0, m, m) respectively, with integer m. Below Tc one chain direc-
tion (β12 in this case) is chosen along which spins tend to align head
to tail, resulting in large spin correlation along this direction. The
staggered behavior of the spin correlations in the other directions,
with nonzero correlations for even m, is a result of the antiferromag-
netic interactions between chains of the same type (see Appendix E
for details).
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To analyze the nematic order, we define a Potts variable γt

on each tetrahedron in the system

γt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ei π
3 if σt,1 = σt,3 = −σt,2 = −σt,4

−1 if σt,1 = σt,2 = −σt,3 = −σt,4

e−i π
3 if σt,1 = σt,4 = −σt,2 = −σt,3

0 otherwise

(2)

where σt,a is the a sublattice spin (a = 1, 2, 3, 4; see Fig. 2)
in the tetrahedron indexed by t . γt is zero if the spins on the
tetrahedron do not obey the ice rules. We define � as the
average of γt over all the Nt tetrahedra in the system

� = 1

Nt

Nt∑
t=1

γt . (3)

In a typical configuration of normal spin ice the three nonzero
values of γt are equally distributed, and therefore 〈�〉 = 0
(where 〈...〉 indicates a thermodynamic average). However,
in the nematic phase one pair of β chains is spontaneously
selected along which spins tend to align. The result is that two
of the three nonzero values of γt are favored as compared to
the third one in the nematic phase, and 〈�〉 becomes nonzero
with complex phase 0 if the selected chain pair is β12-β34,
−2π/3 for β13-β24, and +2π/3 for β14-β23. Note that spins
can align in two directions along the chains and two chains of
the selected types cut through each tetrahedron. Consider, for
example, a ground state formed by all spins aligned along the
β12-β34 chains, such as the one shown in Fig. 2. From Eq. (2)
it follows that a given tetrahedron in such a state will have
γt = e−i π

3 or γt = e+i π
3 with equal probability.

The strength and type of nematic order is captured by the
magnitude and phase of 〈�〉, and it thus acts as an order
parameter [19]. Figure 5 shows the behavior of the magnitude
of 〈�〉 as the system is cooled into the nematic spin ice phase.
We observe a sudden increase in |〈�〉| consistent with a phase
transition occurring at some temperature Tc that depends on
the parameters of the system. Specifically, Tc increases with
increasing J ′

3 and it appears to diverge in the J ′
3 → ∞ limit.

Further information about the nematic phase is provided by
considering correlators of the type 〈γtγt ′ 〉, as described in
Appendix E.

In the thermodynamic limit, the critical temperature Tc(J ′
3)

is the point where 〈�〉 becomes nonzero. For a finite-size
system with L = 9, |〈�〉| fluctuates with fluctuations of typical
size ∼10−3 in the spin ice phase (J ′

3 = 0) (see Fig. 5), and
we pragmatically define Tc as the largest temperature where
|〈�〉| > 10−2 for a given J ′

3. Using this definition, we find that
the behavior of the critical temperature is well reproduced by
Tc/J1 ∝ (J ′

3/J1)0.8 (see inset of Fig. 5). The exponent 0.8 is
determined from a fit, and at this point in time does not have
an analytical explanation. We observe the same dependence
on J ′

3 if we instead extract Tc from the position of the peak in
the specific heat (see Fig. 6). We have no indication that this
behavior does not persist for J ′

3 → ∞, and simulations with
effectively infinite J ′

3 (i.e., when the nearest-neighbor interac-
tion J1 is introduced in the extensively degenerate ensemble
of configurations that are ground states of the triangular Ising
antiferromagnet) have shown that the nematic phase persists
up to at least T/J1 = 103.

FIG. 5. Behavior of the magnitude of 〈�〉, defined in Eq. (3).
Going from left to right, the value of J ′

3 increases by factors of 4 be-
tween J ′

3/J1 = 0.05 (orange) and J ′
3/J1 = 51.2 (pink). The blue line

corresponds to J ′
3 = 0 (i.e., conventional nearest-neighbor spin ice,

where � vanishes at all temperatures). The black line corresponds
to infinite J ′

3. 〈�〉 acts as an order parameter, remaining zero up to
the point where the system enters the nematic spin ice phase below
the J ′

3-dependent critical temperature Tc. We define pragmatically Tc

as the highest temperature where |〈�〉| > 10−2, and we plot it as a
function of J ′

3 in the inset (notice the logarithmic scale on both axes).
The dotted black line Tc/J1 = 2.1(J ′

3/J1)0.8 is a fit to the data.

The phase transition related to rotational symmetry break-
ing appears to persist up to infinite J ′

3, but the transition
becomes progressively softer (see Fig. 5). For larger J ′

3 the
transition occurs at higher temperatures, where the ice rules
are less satisfied (see Fig. 10 below) and the transition is
essentially between a paramagnetic state, with � = 0, and
a nematic paramagnetic state below Tc, with a small but
nonzero �. For smaller J ′

3 the transition occurs instead at
lower temperature, where the nearest-neighbor interactions
play a more significant role, forcing the system closer to a
state that satisfies the ice rules. This has the effect of increas-
ing the magnitude of �. The phase transition then takes place
between a generic spin ice state and a nematic spin ice state,
and becomes sharper.

A. Nature of the phase transition

The behavior of the order parameter at the transition is
abrupt, as one can see clearly in Fig. 5, and it is suggestive
of first-order behavior.
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FIG. 6. Specific heat per spin for H with different values of J ′
3/J1

(shown in the legend), computed for different system sizes: L = 3
(dotted lines), L = 6 (dashed lines), L = 9 (dash-dotted lines), and
L = 12 (solid lines). The phase transition manifests itself as a peak
in the specific heat, and the peak position depends only weakly on
system size. The inset shows the critical temperature Tc, defined
by the position of the specific heat peak for L = 12, for each of
the J ′

3 values. The black dotted line shows Tc/J1 = 2.1(J ′
3/J1)0.8,

demonstrating the good agreement with the behavior inferred from
the order parameter in Fig. 5.

To investigate the nature of the phase transition in greater
detail, we considered histograms of the system energy near
Tc (Fig. 7). For J ′

3/J1 � 0.8, where the onset of the order
parameter appears to be most sudden (Fig. 5), we observe two
characteristic peaks in the probability distribution function;
as the temperate decreases across the transition the peak at
higher energy decreases in intensity while the peak at lower
energy grows. This is consistent with a first-order transition.
For smaller values of J ′

3/J1, the behavior becomes less pro-
nounced, although it remains vaguely recognisable. For larger
values of J ′

3/J1, we are actually unable to see a two-peak struc-
ture (at least within the resolution afforded by our finite-size
numerical simulations), and we observe instead a single peak,
which shifts smoothly to lower energy as the temperature is
decreased. Examples are shown in Fig. 7.

We also looked at the behavior of the Binder cumulants
[20] for the real and imaginary parts (denoted �′ and �′′,
respectively) of the order parameter � in Eq. (3), defined
as [21]

V� = 1 − 〈(�′)4〉
3〈(�′)2〉2

, (4)

and equivalently for the imaginary part. (The real and imag-
inary parts of � are statistically equivalent.) Examples of
V� computed for system sizes L = 6, 9, 12 are shown in
Fig. 8. In the low-temperature nematic phase V� is constant
at 1/2, whereas it fluctuates around zero for temperatures
above Tc. At or just above the transition there are indications
that V� becomes negative, similar to the behavior previ-
ously observed for other first-order phase transitions in Ising
systems [22]. There are no indications that the V� curves com-
puted for different system sizes cross at a well-defined point,

as would be the expectation if the transition were second
order.

We already noted that the two-peak structure in the energy
histograms is most pronounced for J ′

3/J1 = 0.8 (out of the
values we considered). We also note that the jump in the
order parameter and the Binder cumulant V� is sharper at
J ′

3/J1 = 0.8 than at other values (see Figs. 5 and 8), and the
peak in the specific heat capacity is more pronounced (Fig. 6).
One can speculate that the phase transition is sharper when
monopoles and triangular lattice excitations have a similar en-
ergy, which occurs indeed when J ′

3/J1 � 0.5. A more in-depth
understanding of this behavior is left for future studies.

The extent to which we can perform a finite-size scaling
analysis of the phase transition is severely limited by the fact
that the only system sizes, which are numerically accessible
to us are L = 3, 6, 9, and 12. Within these systems sizes one
distinct possibility is of course that the first-order two-peak
structure of the probability distribution function of the system
energy is always present, but for J ′

3/J1 > 1 the peaks are too
broad to resolve it. Another, more exotic, possibility could be
the presence of multicritical behavior, as in Ref. [23].

B. Nematic phase and entropy

As discussed in Sec. II and in Appendix D, we were able
to explicitly find a subextensive set of ground states of H in
Eq. (1), and moreover we provided an argument to construct
an extensive number of further ground states from those.
Therefore, the Hamiltonian alone is unable to select a zero-
entropy state at the lowest energy. This argument, however,
does not rule out other selection methods, such as the presence
of order by disorder.

To better understand the nature of the low-temperature
nematic phase, we numerically computed the integral of the
specific heat divided by temperature, to obtain the change
in entropy of the system from the known high temperature
limit, kB ln(2). (We also looked at the behavior of various local
correlators, which, however, proved somewhat less insightful
and are relegated for convenience to Appendix E.)

The temperature dependence of the entropy of the system
is shown in Fig. 9, for a range of values of J ′

3/J1. Different
regimes show the expected plateaux, corresponding to the
known spin ice entropy as well as the nonzero entropy of the
triangular Ising antiferromagnet. More importantly, we find
that the entropy does not drop to zero in the nematic phase,
but rather exhibits a robust plateau at the approximate value
kB/20. Within the extent of our numerics, this provides evi-
dence that the low-temperature phase of our system is indeed
extensively degenerate.

C. Monopole and triangular defect density

Figure 10 shows the density of magnetic monopoles and
J ′

3 excitations. Both densities drop when the system enters the
nematic phase. However, whereas the monopole density tends
to zero at low temperature for all values of J ′

3, the triangular
excitation density does not approach zero for small J ′

3. There
is a simple explanation for this: In a state with zero triangu-
lar excitations, monopoles can move along channels of free
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FIG. 7. Histograms of the system energy at temperatures around the phase transition, for J ′
3/J1 = 0.2 (left), J ′

3/J1 = 0.8 (centre), and
J ′

3/J1 = 3.2 (right). The data were collected from 1000 independent simulations with L = 9. From bottom to top (the curves are shifted for
visualization purposes), the temperature is varied from 0.506 J1 to 0.538 J1 for J ′

3/J1 = 0.2, from 1.650J1 to 1.698J1 for J ′
3/J1 = 0.8, and from

4.578 J1 to 4.994J1 for J ′
3/J1 = 3.2. The temperature ranges were chosen to encompass the specific heat peak in each case, and the sample

temperatures are distributed evenly in log T within each range.

spins [25]; however, no corresponding channels exist for the
triangular excitations in a zero-monopole state. In a sense, the
annihilation of triangular excitations requires the involvement
of monopoles—explaining why the system becomes easily su-
percooled (akin to a fragile glass [26]) if the monopole density
goes to zero faster than the triangular excitation density (see
Appendix F for additional analysis).

D. Summary of the phase diagram

Considering the behavior of 〈�〉, the specific heat, and
the excitation densities, we arrive at the full phase diagram

of the model in Fig. 3. Because it is not separated from the
paramagnetic phase by any phase transition, it is not strictly
correct to speak of a “spin ice phase”. What we normally
refer to when speaking about spin ice is the regime where
the ice rules are satisfied on a majority of the tetrahedra, and
the crossover from the high-temperature paramagnet to this
low-temperature regime is indicated by a color gradient.

Within the extent of our numerics it appears that a first-
order transition is present for all values of J ′

3/J1 and softens
potentially to a critical end point when this ratio diverges.
However, we cannot rule out the possibility of a change in
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FIG. 8. Binder cumulants for the real (filled circles and solid
lines) and imaginary (unfilled circles and dashed lines) parts of the
order parameter �. The results are shown, from top to bottom, for
J ′

3/J1 = 0.2, J ′
3/J1 = 0.8, and J ′

3/J1 = 3.2, for temperatures around
the phase transition. The Binder cumulants were computed from 100
independent simulations, for each of the three system sizes indicated
in the legends.

nature of the transition, from first order to continuous, at some
finite J ′

3/J1, or other more exotic scenarios. This shall remain
an open question for future studies.

FIG. 9. The entropy computed by integrating the specific heat
for a system of size L = 9. The patterned black lines indicate
entropy estimates of different models: the infinite temperature en-
tropy per spin, kB ln(2), is shown as a dashed line; the dash-dotted
line indicates Wannier’s estimate of the entropy of the triangular
lattice Ising antiferromagnet [2], 0.323066; and the dotted line indi-
cates the Pauling entropy of conventional spin ice [24], kB ln(3/2)/2.
For the system size shown here, L = 9, we observe a finite residual
entropy at the lowest temperature of about kB/20 per spin, for any
J ′

3/J1 > 0. This value is significantly higher than the (subextensive)
entropy of the fully aligned ground states of H, which tends to zero
as L−1 and is indicated by the grey line in the figure. These results
are in agreement with a phase transition into an extensive subset of
the ice states at low temperature.

IV. ANOMALOUS MAGNETIC NOISE
AND MONOPOLE DIFFUSION

The magnetic noise is computed by measuring the mag-
netization of the entire system along some axis and using
Welch’s method [27] to compute the power spectral density
(PSD), defined as

PSD(ω) = 1

Ns
〈|M̃(ω)|2〉, (5)

where M̃(ω) is the Fourier transform of the temporal trace of
the magnetization, and Ns is the number of spins in the system.
The system dynamics is simulated by Metropolis type Monte
Carlo simulations with single spin-flip updates and a single,
temperature-independent attempt rate, following the standard
model of spin ice dynamics [15,28].

An exponent α is extracted by fitting the PSD to the
function

f = A τ

1 + (ωτ )α
. (6)

The noise is said to be anomalous if α < 2, where α = 2
corresponds to the Lorentzian noise of a paramagnet. In ex-
periments on the spin ice compound Dy2Ti2O7, an anomalous
exponent α ≈ 1.5 was observed in the low-temperature spin
ice regime [29,30]. We have since proposed that the un-
usual dynamical properties of Dy2Ti2O7 are best explained
by the existence of dynamical fractals on which monopoles
are constrained to move [16]. These fractal structures arise
from the specific combination of dynamical and energetic
rules that govern monopole motion. However, in Ref. [30]
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FIG. 10. The number density of magnetic monopoles (top) and
of triangular lattice excitations (bottom) vs temperature for a range
of J ′

3/J1 values in a system of size L = 9. Solid lines indicate
simulations where the system was cooled from high temperature,
whereas dashed lines indicate simulations begun from a randomly
chosen ground state and then heated up. Vertical dotted lines of the
corresponding color indicate the values of Tc obtained from the order
parameter (equiv., from the specific heat data).

we also established that a Hamiltonian with a relatively large
antiferromagnetic third-neighbor interaction, approximately
equivalent to H in Eq. (1) with J ′

3 � 0.2J1, generates anoma-
lous magnetic noise and relaxation times consistent with the
experimental observations. Here, we connect this observation
to the presence of the nematic spin ice phase.

We focus on temperatures where there is a small but
nonzero monopole density in the finite size systems consid-
ered in our paper, namely the regime where the PSD measured
in simulations is most clearly anomalous. This constrains us
in the choice of temperatures we look at. For simplicity, we
take T/J1 = 0.4 and tune between the phases by considering
different values of J ′

3. At this temperature the phase transition
occurs at J ′

3/J1 ≈ 0.13.
We observe noise with an anomalous exponent in and near

the nematic phase (see Fig. 11). Notice that there is no sharp
feature in the thermodynamic properties of the system when
the noise switches from Lorentzian (α = 2; well understood
for spin ice [14,30]) to anomalous. The exponent α drops
notably below 2 already in the spin ice phase as the phase
transition is approached from above, and it then changes con-
tinuously across the phase transition, continuing to decrease

FIG. 11. PSD measured along the x direction (top) and the z
direction (bottom) at the same temperature T/J1 = 0.4, spanning
different values of J ′

3. The system is in the nematic spin ice phase for
J ′

3/J1 > 0.13. Note that for J ′
3/J1 � 0.4 there appears to be no further

change in the power-law behavior of the noise with variations in J ′
3.

That the noise is already anomalous for J ′
3/J1 = 0.1 suggests that

the anomalous behavior appears already above the phase transition
when J ′

3/T ∼ 1 and the J ′
3 interactions begin to influence monopole

motion. The noise continuously becomes more anomalous across the
phase transition; once nematic correlations fully onset, the anoma-
lous behavior remains unchanged irrespective of how deep one takes
the system into the nematic phase by tuning J ′

3.

inside the nematic spin ice phase before hitting a minimum at
α ≈ 1.5 deep inside the phase.

In the nematic phase, monopole transport is reduced in one
of the three directions, as evidenced by the low frequency
plateau present in the lower panel of Fig. 11. (Without loss
of generality, we take the direction of reduced transport to be
the z direction, consistent with choosing a coordinate system
for which the spontaneously selected chain pair is β12-β34.)
This is because the paths of free spins are more likely to align
with the [110] or [1–10] directions corresponding to the β12

and β34 chains. This only occurs below the phase transition.
Deep in the nematic phase the PSD no longer depends on

the value of J ′
3 (although it still changes with temperature, as

this governs the monopole density). It is therefore reasonable
to conclude that the anomalous scaling in this regime is caused
by the constraints posed on the magnetic monopole motion
by the J ′

3 interactions and by their resulting spin correla-
tions. That the noise does not change when J ′

3 is increased
(above some ratio J ′

3/T ≈ 1) indicates that the monopoles
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predominantly move along paths of free spins. In the next
section we analyze these free paths and the clusters they form.

From measurements of the spin and γ correlations (see
Fig. 4 and Appendix E), there are no indications of thermo-
dynamic correlations appearing above the phase transition.
In the regime above but near the phase transition the energy
barriers imposed on the monopoles by the third-neighbor in-
teractions are of similar order as the temperature. These thus
still influence the monopole motion, although no long-range
correlations have formed. The anomalous exponent observed
above the phase transition is most likely a sign of these energy
barriers biasing the monopoles to move along “energetically
flat” paths.

V. FREE PATHS AND CLUSTERS

Following the methods developed in Ref. [16] we can map
out which sites a monopole can visit within a certain num-
ber of steps, see Fig. 12. The minimum number of steps a
monopole needs to take to reach a site defines the chemical
distance n to that site. For every monopole one can then define
an “accessible cluster” of sites that the monopole can reach
within chemical distance n. We classify a site as accessible if
the monopole can move there without at any point creating a
double monopole (i.e., a 4-in or 4-out tetrahedron).

We assume that all flips are attempted with the same rate
without dynamical constraints. However, the presence of J ′

3
interactions has two effects: (i) it introduces energy barriers
associated with the monopole moves; and (ii) it alters the spin
correlations, thereby altering the spatial distribution of spins
across which a monopole cannot hop (so-called “blocked
spins” in SM dynamics [16], which incur an energy cost of
order J1). There remain a significant number of spins that can
flip without any J ′

3 energy cost, and in the nematic phase these
form clusters on which the monopoles predominantly move
(for J ′

3 � T ). Examples of such clusters are shown in Fig. 12.
By averaging over a large number of different nematic

spin ice configurations with monopoles, we can look at how
these clusters grow with increasing n. The size of the clus-
ters formed by moving only through free spins appears to
grow with a fractal exponent. This is likely the explanation
for the observed anomalous magnetization noise. Intriguingly,
for n � 20 the scaling of the cluster size, shown in Fig. 12,
closely follows that of the percolating cluster at the critical
filling fraction in the bond percolation model on the diamond
lattice (i.e., at concentration p ≈ 0.39 of bonds, as noted in
Fig. 12). For length scales greater than n ∼ 20 the system
crosses over to the conventional three-dimensional behavior
of a regular lattice, indicating that the energetic constraints
on monopole motion effectively place the clusters they move
on slightly above the critical percolation threshold [31]. It is
the distance to the critical percolation threshold that fixes the
length and time scale on which monopoles exhibit anomalous
motion. These clusters in nematic spin ice behave similarly to
the fractal clusters formed by the combination of dynamical
and energetic constraints in the so-called “beyond the standard
model” (bSM) dynamics of spin ice [16]. The clusters formed
by free spins in the nematic spin ice model are, however,
not isotropic; they grow more slowly with increasing n in

FIG. 12. (Top) Average number of accessible sites for a
monopole within chemical distance n, computed from 2000 inde-
pendent configurations. The round markers show the behavior in the
nematic phase when the monopole either makes all moves allowed by
the ice rules (orange) or only moves that do not increase the energy
(green). The clusters for bSM spin ice [16] (no J ′

3 interaction) and
the critical percolation cluster on the diamond lattice are shown for
comparison (dark blue squares and light blue crosses, respectively),
see main text for details. The agreement between green round mark-
ers and light blue crosses suggests that monopoles appear to move
on a fractal percolation cluster up to n ∼ 20. (Bottom) Examples of
monopole clusters in nematic spin ice when the monopole is either
moving without accounting for the J ′

3 interactions (top row) or when
it is only allowed to make moves that do not increase the energy
(bottom row).

the direction normal to the selected chain pairs in the given
nematic order.

The nonisotropic clusters explain why the noise is reduced
along the z axis: there are generally fewer opportunities for
monopoles to travel in the z direction and the extension of the
clusters is correspondingly smaller, creating a low-frequency
plateau, which does not appear in the x and y components (see
Fig. 11). The fractal nature of the clusters explains why the
noise is anomalous: Particles performing a random walk on a
fractal graph spread subdiffusively, with a mean-squared dis-
placement 〈R2(t )〉 ∼ tσ and σ < 1 [32–34]. The fluctuations
of the system magnetization is directly proportional to the ran-
dom displacement of the monopoles, and the PSD of a random
walker on a fractal cluster is PSD ∼ ω−(1+σ ) [16]. That the
monopole motion is indeed subdiffusive, on times t � 103τ0,
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FIG. 13. Mean-squared displacement of individual monopoles
for a range of values of J ′

3. The incipient plateau appearing at long
times is a finite-size effect (this is a system with L = 15). 〈Y 2(t )〉
behaves like 〈X 2(t )〉, whereas 〈Z2(t )〉 clearly grows more slowly, as
one would expect from the behavior of the PSD. In these simulations
a single monopole pair is created in each realization, and only one of
the two monopoles is allowed to move (see Appendix C).

can be seen from measurements of the mean-squared displace-
ment for individual monopoles (see Fig. 13). On longer time
scales we observe a crossover to normal diffusion, consistent
with a system that only exhibits fractal scale invariance on
sufficiently short length scales.

VI. CONCLUSION

That the introduction of specific farther-neighbor interac-
tions, on top of the nearest-neighbor spin ice Hamiltonian,
does not lead to long-range magnetic order at zero temper-
ature, but instead selects an extensive subset of the spin ice
states, was a priori highly unexpected. In this respect, the
nematic spin ice phase discussed here is crucially different
from the nematic states argued in quantum spin ice models
[35].

Although the choice of the two exchange interaction paths
is fairly specific, the relative strength of the two types of
interactions does not need to be fine tuned. The nematic spin
ice phase appears below some Tc for any choice of J1 > 0 and
J ′

3 > 0. The exact characterization and counting of the exten-
sively many ground states of H remains a possible avenue for
further work. And so is the fate of the first-order transition in
the limit J ′

3 � J1.

The most detailed characterization of the Dy2Ti2O7

spin Hamiltonian predicts that the third-neighbor exchange
interaction across the hexagons is indeed the dominant farther-
neighbor exchange term, with an effective J ′

3/J1 on the order
of 0.1 [11]. However, Dy2Ti2O7 freezes below approximately
0.55 K [36] and temperatures where any nematic spin ice
physics may manifest itself are not experimentally accessible.
It is not out of the question, however, that other spin ice
materials could be devised, e.g., by chemical substitution, that
approximately realize H and enter a nematic spin ice phase.
An alternative avenue for realising this phase are artificial spin
ice systems, where the geometry and interaction strengths may
be more easily tailored to realize our model.

We note in passing that the study of pyrochlore magnets
with further-range interactions has a long history, reaching at
least as far back as the mean-field analysis of Reimers, Berlin-
sky, and Shi [37]. Many interesting phenomena have been
unearthed along the way, such as the appearance of correla-
tions mimicking hexagonal cluster arrangements [38,39], or
very recently, the appearance of sublattice-paired spirals [40].
Further studies of such models continue to appear promising.

More broadly, the discovery of the nematic spin ice
model—driven, as it was, by the search for anomalous dy-
namical behavior—provides yet another example of how the
frequency dependence of fluctuations can contain information
about the spatial correlations in a system. In nematic spin
ice the magnetic monopole quasiparticles are subdiffusive
due to correlated energetic constraints on their motion, effec-
tively biasing the monopoles to move on clusters with fractal
properties. Although their origin is different, these “energetic
fractals” are similar to the dynamical fractals believed to cause
anomalous magnetic noise in Dy2Ti2O7 [16]—explaining
why simulations with H in Eq. (1) closely resemble the ex-
perimentally observed magnetic noise. The combination of
the two effects is a promising direction for further work, as
is the further characterization of the anisotropic free clus-
ters and their potential connection to anisotropic percolation
models [41].

All numerical data presented in this paper are available
online [42].
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APPENDIX A: PAULING ESTIMATE OF THE GROUND
STATE ENTROPY

The ground-state entropy of conventional spin ice can be
estimated using simple arguments developed by Linus Pauling
for H2O ice [24]. The argument runs as follows: Every tetrahe-
dron has 24 = 16 possible spin configurations of which six are
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2-in 2-out configurations that minimise the energy locally. In a
spin ice system with Ns spins there are 2Ns spin configurations.
Assuming that the constraints from the Nt = Ns/2 tetrahedra
can be treated independently, the number of ground states can
be estimated as


 = 2Ns

(
6

16

)Ns/2

=
(

3

2

)Ns/2

. (A1)

The corresponding ground-state entropy is S = kB ln 
 =
kBNs

2 ln 3
2 , and it is a lower bound for the entropy of the en-

semble of 2-in 2-out states.
Extending the Pauling estimate to our model, Eq. (1),

we similarly treat all of the up triangles formed by the
third-neighbor interactions as independent constraints on the
ground state. There are Ns such triangles, each with 23 = 8
spin configurations of which six minimize the energy on the
triangle. The total number of ground states is then estimated
as


 = 2Ns

(
6

16

)Ns/2(6

8

)Ns

=
(

27

32

)Ns/2

, (A2)

resulting in a corresponding entropy

S = kBNs

2
ln

27

32
≈ −0.08 kBNs. (A3)

This naïve estimate thus fails to capture the extensive de-
generacy of the nematic spin ice ground state, as it predicts
a negative entropy consistent with a conventionally ordered
ground state.

APPENDIX B: COMMENSURABILITY AND SYSTEM SIZE

The construction of nematic ground states described in the
main text and in Appendix D relies on the triangular planes
wrapping around the system properly (with periodic boundary
conditions), so that the sublattices of the triangular lattice are
well defined. This is true when our system size L (i.e., a cubic
system formed by L3 cubic unit cells, each containing 16
spins) is an integer multiple of three. The triangular planes are
of size 2L×2L, and the sublattice structure of the tripartite tri-
angular lattice can thus be respected by the periodic boundary
conditions.

In this paper we have chosen to only work with system
sizes compatible with the triangular sublattices. We have
found strong finite-size effects when using other system sizes.

APPENDIX C: NUMERICAL METHODS

All numerical data presented in this paper were obtained
through Monte Carlo simulations using the Metropolis algo-
rithm. We have used periodic boundary conditions in all cases.
The primary method used is simulated annealing, where the
system is initialized in a random configuration at high temper-
ature and then cooled gradually. For comparison (or in some
cases in order to avoid supercooling, see below) simulations
were initiated in randomly selected ground states and the tem-
perature was then gradually increased instead. In Appendix D
we explain how ground states can be generated directly.

In conjunction with simple single-spin flip updates, we
have made use of several different cluster updates to speed

up equilibration. Any closed loops formed by spins aligned
head-to-tail can be flipped without the creation or annihilation
of magnetic monopoles (i.e., without incurring any J1 energy
cost). Flipping such loops therefore does not change the sys-
tem energy if J ′

3 = 0, and is a standard method for simulating
spin ice systems at low temperatures [43,44]. The loops are
found by randomly selecting a starting spin and direction, and
then forming a path by randomly selecting a neighboring spin
with the correct sign at every step. When this path encounters
a previously visited site a closed loop has been identified (and
the residual dangling path is discarded). Alternatively, one can
allow the walk to continue until the path reaches the starting
site, which forms a loop containing (generally) more spins but
which also takes longer time. Both types of loop updates were
used here.

One can move monopoles over large distances by identify-
ing a path of aligned spins, which terminates when the path
encounters a monopole (of the correct sign). The paths are
generated in the same way as for the closed loop updates.
Flipping all the spins along the path effectively moves the
monopole to the starting site of the path, and this happens
at zero-energy cost if J ′

3 = 0. Both these monopole moves
and the closed loop updates are most useful to equilibrate the
system in the regime where the monopole density is relatively
low.

If J ′
3 > 0, which is the case we are primarily concerned

with here, the cluster updates described above will gener-
ally change the system energy by creating and annihilating
triangular lattice excitations. The standard spin ice updates
therefore become progressively less useful when T is lowered
below J ′

3, as flipping a path or loop selected without any
consideration for the J ′

3 interactions is likely to carry a large
energy penalty. However, a significant proportion of the spins
can flip at zero J ′

3 energy cost (as explained in the main text
and in Appendix D) and we also make use of closed loop and
monopole move updates, which only include such free spins.
Flipping a loop or path of aligned and J ′

3-free spins never
changes the system energy, and these can be found by simply
limiting the path-finding random walks to only include J ′

3-free
spins.

Finally, we used a further cluster update that focuses solely
on the triangular planes and J ′

3 interactions. For the triangular
lattice Ising antiferromagnet, one can find entire blocks of
spins that can flip together without changing the energy. This
is done by defining a dimer representation of the triangular
lattice Ising model, which lives on the dual hexagonal lattice.
The links of the latter are bisectors of the bonds between the
spins, and dimers are placed where bonds connect spins of
the same sign. Three links of the hexagonal lattice meet at the
center of every triangle, and if there is no excitation at the
triangle only one of these has a dimer. One can find closed
loops of alternating filled and empty links through a similar
random walk as those used to find loops of aligned spins in
spin ice. If one flips all of the spins inside such a dimer loop,
it does not change the number of triangular excitations. Dimer
representations can be defined for each of the 4L interpenetrat-
ing triangular lattice planes of the pyrochlore lattice, and they
can then be used to identify sets of spins that can flip without
changing the J ′

3 energy. These updates do not conserve the
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number of magnetic monopoles, and are therefore most useful
when J ′

3 > T > J1.
Only single spin flip updates were used for the dynami-

cal measurements of the magnetization noise and monopole
mean-squared displacement. (Cluster updates were used to
prepare the system in thermodynamic equilibrium at the
desired temperature before a dynamical measurement was
begun.) One Monte Carlo sweep consists of Ns attempted spin
flips, where Ns is the number of spins in the system; each spin
to be flipped is selected at random. One sweep corresponds
to the characteristic time scale τ0 [15] (τ0 = 1 in typical MC
units).

The dynamical measurements used to compute the mean-
squared displacement shown in Fig. 13 were done allowing
only a single monopole to move. These simulations are ini-
tiated from a ground state of the model, and loop updates,
which do not create monopoles, but may create triangular
excitations, are then performed to scramble the system. The
only relevant scale for these updates is J ′

3/T , and depending
on the choice of this ratio the loop updates may erase the
initial nematic correlations or not. A single monopole pair
is then created by flipping a randomly selected spin, and
annihilation of this pair is thereafter forbidden. The Monte
Carlo update now consist of randomly selecting one of the
four spins surrounding the positive monopole and flipping this
with the usual Metropolis probability min[1, exp (−�E/T )]
if the spin is a majority spin (i.e., we only allow moves that
hop the positive monopole). This is a good approximation
of “natural” monopole dynamics under the SM (the standard
model of spin ice dynamics; see main text and Refs. [15]
and [28]) for T � J1, where the monopole density is low and
creation and annihilation events are rare. Four such attempted
spin flips correspond to time τ0. Before any measurement
was begun, 10Ns updates were performed to ensure that the
positive monopole has a chance to separate from its negative
partner in the pair-creation event.

We have not been able to devise any cluster updates, which
efficiently transport triangular excitations without the creation
of magnetic monopoles. The numerical equilibration time
therefore becomes very long in the regime T < Tc if J ′

3/J1

is small. More precisely, this occurs in the regime where the
density of monopoles in the system becomes much smaller
than the density of triangular excitations, and this is the reason
why we observe supercooling for small but nonzero J ′

3/J1

(see Fig. 10 and Appendix F).

APPENDIX D: CONSTRUCTING GROUND STATES

The pyrochlore lattice can be divided into four sublattices,
with every tetrahedron containing one spin from each sub-

lattice. Spins on sublattices 1 to 4 respectively point along
their local easy-axis directions, which can be defined as 
e1 =

1√
3
(−1,−1,−1), 
e2 = 1√

3
(1, 1,−1), 
e3 = 1√

3
(1,−1, 1), and


e4 = 1√
3
(−1, 1, 1), in the global crystallographic reference

frame.
A subextensive set of long-range ordered ground states for

the Hamiltonian in Eq. (1) can be constructed as follows. Con-
sider the three possible ways of pairing the four sublattices;
for instance, let us focus without loss of generality on 12 and
34. All the sites belonging to sublattices 1 and 2 form straight
lines across the system, and so do the sites belonging to sub-
lattices 3 and 4. Alignment of spins along these chains occurs
in conventional spin ice under the influence of a magnetic
field in the [110] direction [45]. The chains are conventionally
called α or β chains, depending on their direction relative to
the applied field [46]. Here, where no external field is applied,
we refer to all chains as β chains; the β12 chains lie along the
[110] direction and the β34 chains along the [–110] direction,
and both of them are orthogonal to the z crystallographic axis
(i.e., [001]). In a system of linear size L (which has 16L3

spins) there are 2L2 chains of each type, and every spin in
the system belongs to exactly one of these. These chains are
illustrated in Fig. 2.

In addition to β12 and β34 chains, there are two other
possible pairings: β13 along [101] and β24 along [–101] or β14

along [011] and β23 along [0–11]. The three choices of chain
pairs are related by simple rotations, and we can focus on the
first choice above without loss of generality.

Any state where the spins along each chain are aligned
head to tail is a spin ice state (they minimise the nearest-
neighbor interaction energy). Since the polarization of each
chain can be chosen independently, there are 3×24L2

such
ground states (with the factor of three accounting for the three
possible choices of chain pairs).

If we now look at one set of β chains, say β12, and project
them onto the plane perpendicular to the chain direction, we
can see that they form a triangular pattern (see Fig. 14).
When projected in this way, every β12 chain can be treated
as an effective Ising spin η12 and the J ′

3 interactions, which
of course connect nearest-neighbor β12 chains, make these
effective Ising spins interact with a nearest-neighbor antiferro-
magnetic coupling of strength 4LJ ′

3, where 4L is the number
of spins on each chain. The equivalent projection to a plane
can be performed for the β34 chains, resulting in a completely
independent set of effective Ising spins η34, which also form
a triangular pattern with antiferromagnetic nearest-neighbor
interactions between the effective spins. All J ′

3 interactions
of H, Eq. (1), are exactly accounted for by the interactions
between the effective Ising spins, and, as polarized chains
automatically minimise the J1 energy, the Hamiltonian can
now be expressed as

H = J1

∑
〈i, j〉

σiσ j + J ′
3

∑
〈i, j〉3′

σiσ j = −16L3J1 + 4LJ ′
3

∑
〈k,l〉12

η
(12)
k η

(12)
l + 4LJ ′

3

∑
〈k,l〉34

η
(34)
k η

(34)
l ,
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(b)(a)(a)

FIG. 14. (a) Section of spin ice in a long-range ordered ground state of H with spins aligned along the β12 (orange) and β34 (cyan) chains.
The J ′

3 interactions are shown for spins on sublattice 1 (green lines) and sublattice 2 (purple lines). If one projects the chains onto the plane
normal to the chain direction (shown in grey for the β12 chains), one is left with a triangular pattern as shown in panel (b). (b) Combined
triangular pattern from the projection of the β12 chains. A red dot indicates that the spins along this chain point out of the plane and a blue dot
indicates that they point into the plane—one can think of each chain as a net Ising spin. Each bond on the combined pattern represents 4L J ′

3

interactions in spin ice—including both the ones between spins on sublattice 1 [green lines in (a)] and between spins on sublattice 2 [purple
lines in (a)]. Directing the chains so that each triangle on the triangular pattern has two blue and one red dots or one blue and two red dots
therefore minimises the energy of all the J ′

3 planes formed by spins on sublattice 1 and 2.

where the final two sums are over all nearest-neighbor pairs
on the triangular patterns formed by the β12 and β34 chains
respectively. Any configuration where every triangle on the
triangular patterns has two effective spins pointing up and
one down or two down and one up will have J ′

3 energy
2×4LJ ′

3×(−2L2) = −16L3J ′
3. This is the minimum possible

energy of the J ′
3 interactions, and any such configuration is

thus a ground state of our model. A subextensive set of
polarized ground states can be constructed following a simple
argument that we outline hereafter. The standard triangular
lattice has three sublattices, that we call A, B and C. Ground
states of the triangular lattice Ising antiferromagnet can, for
example, be constructed by making all spins on the A sub-
lattice point up and all spins on the B sublattice point down,
and the spins on the C sublattice can then be chosen at ran-
dom [2,3]. Similarly, we can divide the set of all β12 chains,
or equivalently the effective Ising spins η(12), into the three
triangular pattern sublattices. Let all chains on the first sub-
lattice point in the same direction, let all chains on the second
sublattice point in the opposite direction, and finally randomly
choose the direction of each chain on the third sublattice (all
this while keeping all spins in each given chain aligned head
to tail). We independently perform the same process for all the
β34 chains as well. Any resulting configuration is guaranteed
to be a ground state of the model.

The total number of such ordered ground states is given by

3×(6×22L2/3)2 = 108×24L2/3. (D1)

The first factor of 3 comes from the three possible choices of
chain pairs. The factor of 6 comes from selecting which of the
three triangular sublattices is all up and which is all down. The
factor of 22L2/3 comes from the fact that there are 2L2/3 chains
on the remaining (undetermined) sublattice, and each of these

can be independently chosen to point in a random direction.
Finally, the overall square accounts for the fact that the β12

and β34 chains are independent. This is a lower bound on the
number of chain-polarized ground states; in many of these
states there will be chains on sublattice A or B that are also
free to flip at no energy cost. These “accidentally flippable”
chains increase the number of possible states.

We have described how a subextensive set of ground states
can be generated for our Hamiltonian. These have long-range
order. However, as we argue in the main text, there is in fact
an extensive number of exact ground states for this model. To
understand how we can generate further ground states from
the perfectly ordered chain states described above, we return
to the triangular lattice Ising antiferromagnet. The spins on
the C sublattice are free to choose either of their two states
without any changes to the energy. Similarly, any of the free
chains in our ordered ground states can reverse direction at
no energy cost. However, it is not necessary to flip the entire
chain. Flipping a finite segment of the chain does not change
the J ′

3 energy, but does generate a pair of magnetic monopoles
at each end of the segment. This can be avoided if one selects
segments of freely flipping chains of both the β12 and the
β34 types such that the segments form a closed loop of spins
aligned head to tail. This loop can then be flipped at no energy
cost.

The β12 and β34 chains are perpendicular to each other and
meet at tetrahedra (see Fig. 2). As one third of the chains
of each type are free to flip, there are a large number of
crossing points between freely flippable chains in an ordered
ground state. We can consider a thin sheet, extending through
the system in the x and y directions (i.e., [100] and [010]),
and of width of one tetrahedron in the z direction. Such a
sheet contains L β12 chains and L β34 chains. At least ev-
ery third β12 chain and every third β34 chain in the sheet is
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FIG. 15. Spin correlations along the β12 chain directions (left panel), and along β13 (right panel), from Monte Carlo simulations of
systems of size L = 9 with J ′

3/J1 = 0.8 at temperatures near Tc (Tc/J1 ≈ 1.7). The coordinate system has been chosen so that the selected
chain pairs at low temperature are β12 and β34. Alignment of the vector spins along a chain corresponds to Ising variables that follow the
pattern +, −, +, −, . . .; this results in positive values of (−1)m〈σ (0)σ (r)〉 for r along the β12 or β34 directions. The staggered behavior of the
correlators along other chain directions, an example of which is given in the right panel, is caused by the effective antiferromagnetic interaction
between neighboring β12 or β34 chains.

free to flip. If the sheet contains at least one free β12 chain
polarized in each direction and at least one free β34 chain
polarized in each direction, it will be possible to form a
free loop inside the sheet. In the majority of states formed
with L � 6 there will therefore be a nonzero number of free
loops.

(For completeness, we ought to mention that for L = 3,
each of the sheets described above only contains one free
chain of each type and there are no nonwinding free loops in
the ordered ground states. However, with simulated annealing
we have nonetheless found other ground states for L = 3 that
do have nonwinding free loops.)

For any model with only short-ranged interactions, a
ground state of a system with side length L = nl (for integer
n and l) can be formed by tiling a ground state configuration
(under periodic boundary conditions) of a smaller system of
side length l , n times. If the system of side length l has a
minimum of two ground states connected by a local update,
which does not affect the boundaries, these updates can be per-
formed independently in the larger system without changing
the system energy. A system of size Ld (in d dimensions) thus
has a minimum of 2Ld /ld

ground states—and it is extensively
degenerate (the number of states grows exponentially with the
system volume). The existence of nonwinding free loops in
the ordered ground states thus proves that our model has an
extensive number of ground states.

Finally, it is worth noting that although the free loop
flips break the long-range order along the chains, they do
not restore rotational symmetry. Ground states found through
simulated annealing from high temperature do not display
long-range order along the chains, but do display stronger cor-
relations along one pair of β-chains and thus break rotational
symmetry. (This is true for all ∼104 ground states found in
this way.) We should note that we are not able to prove that
all possible ground states of H display rotational symmetry
breaking, and there remains a possibility that we are observing
a strong order-by-disorder effect.

APPENDIX E: SPIN AND γ CORRELATORS

Further insight into the nematic spin ice phase and the
corresponding phase transition can be obtained from real-
space correlators like (−1)m〈σ (0)σ (r)〉 (discussed briefly in
the main text) and 〈γ (r)γ (r′)〉. We remind the reader that m
is an integer equal to the number of steps between 0 and r and
γ (r) is the Potts variable γt in Eq. (2) at the position of the t th

tetrahedron: r = rt .
The alignment of spins along a specific (spontaneously

selected) pair of β-chain directions appears at the phase
transition and grows rapidly upon lowering the temperature.
This is most evident in the behavior of 〈σ (0)σ (r)〉 along the
chains (see Fig. 15). For r along the chosen chain direction
(−1)m〈σ (0)σ (r)〉 becomes positive and nonzero, consistent
with a preferred alignment of spins head-to-tail along these
chains.

The behavior of (−1)m〈σ (0)σ (r)〉 for r along the other
chain directions (the four not spontaneously selected for
spin alignment), is more complex. Along these directions
(−1)m〈σ (0)σ (r)〉 is nonzero for even m. It is positive when
m is a multiple of 6, and otherwise negative (see lower panel
of Fig. 15). In this case, the spin-spin correlators are in fact
probing correlations between the spontaneously selected β

chains. Consider, for example, the case where the selected
chain pair is β12 and β34. If we start with a spin belonging
to a β12 chain (i.e., a spin on sublattice 1 or 2) and take an
odd number of steps along any of the four directions defined
by the remaining β chains, we find a spin on a β34 chain
(i.e., a spin on sublattice 3 or 4). If we instead take an even
number of steps we find a spin on a different β12 chain. In
Appendix D we have shown that chains of the same type inter-
act antiferromagnetically in the nematic phase, and that they
form triangular patterns. The spin-spin correlations observed
for r along chains not selected are in fact the correlations
expected for a triangular lattice Ising antiferromagnet [47]. In
this case that translates to positive correlation between chains
of the same type and on the same triangular pattern sublattice
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FIG. 16. Correlations of the Potts variable γ , defined in Eq. (2), along various symmetry directions. All plots are for T/J1 = 0.4 (the
temperature at which we measured the magnetic noise in Sec. IV), which is greater than Tc for J ′

3/J1 < 0.1. For J ′
3/J1 � 0.8 the data points

overlap perfectly. The states have been chosen so that the selected chain pairs at low temperature are β12 and β34, explaining why correlations
are stronger along the [110] and [1–10] directions. The numerical results show no difference between the [100], [010], and [001] directions,
which is why only the first one is shown. Similarly, the [101] and [011] directions are equivalent. This is for system size L = 9. The smaller
values when m is a multiple of 6 for certain directions is again a symptom of the antiferromagnetic interactions between chains of the same
type and the triangular pattern that they form.

(i.e., chains separated by m a multiple of 6) and negative
correlation between chains of the same type but on different
triangular pattern sublattices (i.e., other even values of m).

There is no clear indication that the spin correlation grows
as T approaches Tc from above, which is consistent with
a first-order phase transition. The correlators 〈γ (r)γ (r′)〉
provide further evidence of the long-range correlations that
appear in the nematic spin ice phase. Again, correlations are

particularly strong for r − r′ along specific symmetry direc-
tions corresponding to the directions of the selected pair of
β-chains. In Fig. 16 the magnitude of 〈γ (0)γ (r)〉 is plotted for
r along several directions. Note once again that 〈γ (0)γ (r)〉 ≈
0 for all r, r′ if T > Tc.

As previously stated, the nematic order develops in one of
three possible distinct directions. When averaging over many
independent simulations this must be taken into account, or

014438-15



HALLÉN, CASTELNOVO, AND MOESSNER PHYSICAL REVIEW B 109, 014438 (2024)

FIG. 17. The densities of magnetic monopoles (blue) and trian-
gular excitations (red) vs temperature for two values of J ′

3. Cooling
and heating runs are shown by solid and dashed lines, respectively.
In the top panel, with J ′

3 = 0.2J1, the system falls out of equilibrium
when cooled below the equilibrium transition temperature, indicated
by the dotted grey line. In the bottom panel, with J ′

3 = 0.4J1, there
is no evidence of low-temperature out-of-equilibrium behavior (al-
though some hysteresis is visible in the triangular excitation density).
The dotted horizontal lines show the 1/V limit for the two types
of excitations – below these lines there is on average less than one
excitation of the respective type in the entire finite system in our
simulations. The figure is for L = 9.

the averaging would cancel out the spontaneous rotational
symmetry breaking. We have accounted for this by choosing
the coordinate system so that the low temperature, nematically
ordered states all have preferential alignment along the β12

and β34 chains.

APPENDIX F: SUPERCOOLING
AND NUMERICAL LIMITS

In Fig. 17 we take a closer look at the excitation den-
sity curves for J ′

3 = 0.2J1, where there are approximately
0.4 monopoles per triangular excitation at the phase transi-
tion; and at J ′

3 = 0.4J1, where there are approximately 1.9
monopoles per triangular excitation at the phase transition.
For J ′

3 = 0.2J1 the triangular excitation densities measured in

FIG. 18. PSD computed from the magnetization measured along
the three different Cartesian axes. They are all at T/J1 = 0.4 and
with J ′

3/J1 = 0.1 (top), 0.2 (middle), and 0.8 (bottom). Cooling runs
are shown with solid lines and heating runs with dashed lines. The
dotted black lines show the result of a fit with Eq. (6), with the
extracted exponent shown in the legend. In the nematic spin ice
phase, monopole transport along one axis (here chosen without loss
of generality to be the z axis) is reduced, as further discussed in
Sec. V in the main text.

heating and cooling runs disagree below the phase transition,
with the density plateauing for the cooling runs, thus indicat-
ing supercooled liquid behavior. This is consistent with the
idea that a minimum monopole density is required to enable
the annihilation of triangular excitations. Based on these re-
sults we are tempted to conclude that a monopole density at
least similar in magnitude to the triangular excitation density
is required for the simulation to remain in equilibrium.

Although the system becomes supercooled for J ′
3 � 0.4J1,

the triangular excitations are not completely frozen out: their
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density continues to decrease to a fairly small value, and � in-
dicates that some nematic order is present (Fig. 5). In Sec. IV
we find that the magnetization noise becomes anomalous also
in this supercooled regime.

An important observation is that even in the regime where
the triangular excitation densities indicate that the system is
supercooled, the PSDs computed from cooling and heating
runs do not differ significantly (although some difference at
low frequency is seen in the middle panel of Fig. 18). Further-
more, the same type of anomalous noise is observed for larger
J ′

3 (see Fig. 11), where there is no indication of supercooled
behavior. This demonstrates that supercooling is not the cause
of the anomalous noise.

In the thermodynamic limit the excitation density strictly
only goes to zero for T = 0. In a finite system, however, the
number of excitations can drop to zero at nonzero tempera-
ture. This ∼1/V threshold (V being the finite size “volume”
of the system) restricts the temperature regime one can gener-
ally study in simulations. For thermodynamic quantities one
can arguably still obtain accurate results through extensive
averaging. As the excitations are the drivers of the natural
dynamics in the system, we ought to be weary of the 1/V
limit when considering dynamical properties like the noise.
Figure 17 includes the 1/V thresholds for the two excitation
types, and shows that the supercooled behavior occurs well
before either density drops close to this level.
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