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Resonance phenomena in a nanomagnet coupled to a Josephson junction
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We investigate resonance phenomena in a system consisting of a nanomagnet coupled to a Josephson junction
under external periodic drive. The coupling in the system leads to the appearance of additional resonance peaks
whose properties depend on the periodic signal and Josephson junction dynamics. In the linear regime, we derive
an analytical description of the resonance phenomena which are then confirmed by numerical simulations. This
analytical method is universal and can also be applied to Josephson junctions with an anomalous phase shift in
the current phase relation. This work provides a method for controlling the resonances of hybrid structures that
might be interesting for applications.
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I. INTRODUCTION

One of the most interesting recent developments in mag-
netism is the ability to fabricate nanometer-scale magnets
[1–8]. These nanomagnets possess magnetic properties which
are different from those of bulk materials and can provide ad-
vanced replacements for hard disk media [9,10] and computer
memory chips [11]. Recently, molecular nanomagnets have
also been studied as potential candidates for qubit realization
[12]. Such a realization is expected to play a crucial role in
quantum information processing [13] and spintronics [14,15].

The dynamics of the magnetization of molecular nanomag-
nets can be described by the Landau-Lifshitz-Gilbert (LLG)
equation [16,17]. It is well known that if a material is magne-
tized by an external magnetic field, the magnetization vector
M becomes parallel to the external magnetic field. When the
external magnetic field frequency coincides with the eigen-
mode of the precession of magnetic moments of the electronic
system of the ferromagnet, a ferromagnetic resonance (FMR)
is achieved [16,18,19]. In this case, spin waves are excited
in the ferromagnet and can be viewed as both spatial and
time dependent variations in the magnetization [16,17]. Ex-
perimentally, FMR was observed by Griffiths [20], who found
that FMR does not occur exactly at the resonance frequency
�r = γ H , (where γ is the electron gyromagnetic ratio and
H is the internal magnetizing field). Furthermore, Kittel pro-
posed that the ferromagnetic resonance condition should be
modified from the original Landau-Lifshitz theory by taking
into account the shape and the crystalline anisotropy through
the demagnetizing fields [21]. The FMR technique can pro-
vide information on the magnetization, magnetic anisotropy,
dynamic exchange/dipolar energies, and relaxation times,
as well as the damping in the magnetization dynamics
[19]. In Ref. [22], dynamic fluctuations of nanoparticles and

their anisotropic behavior were recorded by the FMR sig-
nal. The FMR modes for Fe70Co30 magnetic nanodots in a
monodomain state under different in-plane and out-of-plane
magnetic fields were studied in Ref. [23]. The FMR technique
can be applied to several systems, like monolayers [24], multi-
layers, ultrathin films [25–27], and nanosystems [28–31]. The
direct coupling between the magnetic moment and Josephson
oscillations realized in a Josephson junction (JJ) coupled to a
ferromagnet manifests the unique properties of the ferromag-
netic resonance such as the appearance of Shapiro-like steps
in the IV-characteristics, different stable magnetic trajectories,
Duffing oscillator features, etc., [16,32–35].

Recently, a dramatic increase in the FMR frequency in the
presence of electronic interaction between superconducting
and ferromagnetic layers, which was due to the coupling of
the magnetization dynamics and superconducting imaginary
conductance at S-F interfaces, was proposed theoretically in
Ref. [36]. This was confirmed experimentally in Ref. [37],
where the authors considered superconductor-ferromagnet-
superconductor thin film structures and observed a broad-band
ferromagnetic resonance for a large set of samples with varied
thickness of both superconducting and ferromagnetic layers in
wide frequency and temperature ranges.

A system formed of a nanomagnet coupled to a JJ was
analyzed in [38]. The magnetic field of the nanomagnet in-
fluences the superconducting current in the JJ, and vice versa,
the electromagnetic field created by the JJ acts upon the nano-
magnet. Several features are predicted to appear as a result of
this mutual interaction, like, for example, a spin flip produced
by a specific time variation of the external voltage.

The superconducting current of a JJ coupled to an external
nanomagnet driven by a time-dependent magnetic field both
without and in the presence of an external ac drive was studied
in Ref. [39]. The authors showed the existence of Shapiro-type
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FIG. 1. Schematic diagram of the considered system with system
geometry.

steps in the IV characteristics of the JJ subjected to a voltage
bias for a constant or periodically varying magnetic field and
explored the effect of rotation of the magnetic field and the
presence of an external ac drive on these steps [39]. Further-
more, a uniform precession mode (spin wave) could be excited
by a microwave magnetic field, at ferromagnetic resonance
(FMR), when all the elementary spins precess perfectly in
phase [40].

An analogy between the Kapitsa pendulum and the
JJ-nanomagnet system was introduced in Ref. [41], and it
was shown that the magnetic moment of the nanomagnet
can be reoriented. In this case, the Josephson to magnetic
energy ratio G corresponds to the amplitude of the variable
force of the Kapitsa pendulum, the Josephson frequency �J

corresponds to the oscillation frequency of the suspension
point, and the averaged magnetic moment components specify
a stable position. In our recent work [42] an analytical de-
scription of the magnetic moment reorientation features under
ac voltage drive and manifestations of the Kaptiza pendulum
phenomenon was reported.

In the present paper, we investigate the resonance phe-
nomena and develop a general analytical description of the
resonance features which is applicable to several types of
superconducting and magnetic hybrid heterostructures. The
mechanical analogy for this system is two coupled oscillators
with an external periodic force applied to one of them. We
show that such a system has rich resonance physics.

The structure of the paper is as follows. In Sec. II, we in-
troduce the model. The analytical description of the resonance
properties of the system is provided in Sec. III. A comparison
of analytical and numerical results, and a discussion of some
special cases are presented in Sec. IV. The conclusions are
presented in Sec. V.

II. MODEL AND METHODS

A voltage biased JJ of length l coupled to a nanomagnet
of magnetic moment M = (Mx, My, Mz ) is located at a
distance rM = aex from the center of the junction, as shown
in Fig. 1(a). The anisotropy energy of the nanomagnet is
given by

EM = −Kv

2

(
My

M0

)2

, (1)

where K is the anisotropy constant, v is the volume of the
nanomagnet, My is magnetization in the y direction (easy
axis), and M0 =| M | is the modulus of the magnetization

vector. The dc and ac voltages applied to the JJ generate
the magnetic field acting on the nanomagnet. Therefore, the
effective field is given by [38,39,41]

Heff = − dE

dM
= −dEM

dM
+ d

dM
I
∫

drA(r, τ ), (2)

where E is the total energy of the system, and A = μ0

4π
M×r

r3

is the vector potential created at a distance r from the
nanomagnet, which is assumed to be much smaller than
all other dimensions of the problem. The last term is the
magnetic field HJ created by the total current I through the
Josephson junction [41].

The dynamics of the nanomagnet’s magnetic moment can
be described by the Landau-Lifshiz-Gilbert (LLG) equation

dM
dτ

= γ Heff × M + α

M0

(
M × dM

dτ

)
, (3)

where α is the Gilbert damping parameter and γ is the gy-
romagnetic ratio. In dimensionless quantities the magnetic
moment components in the LLG equation are given by

dmx

dt
= �F

(1 + α2)

[
hy

(
mz − αmxmy

)
−hz

(
αmxmz + my

) + αhx
(
m2

y + m2
z

)]
, (4a)

dmy

dt
= �F

(1 + α2)

[ − hx
(
αmxmy + mz

)
+hz

(
mx − αmymz

) + αhy
(
m2

x + m2
z

)]
, (4b)

dmz

dt
= �F

(1 + α2)D

[
αh̃z

(
m2

x + m2
y

)
−hy

(
mx + αmymz

) + hx
(
my − αmxmz

)]
, (4c)

where mi = Mi/M0 (i = x, y, z) are the normalized compo-
nents of the magnetic moment, hi are the effective field
components normalized to HF = ωF /γ , �F = ωF /ωc is
the normalized frequency of the ferromagnetic resonance,
ωc=2eRIc/h̄ is the characteristic Josephson frequency, Ic is
the critical current of the JJ, R is the resistance of the JJ,
t = τωc is the normalized time, D = 1 + �F αεk

1+α2 (m2
x + m2

y ),
ε = Gk, G = εJ/Kv is the Josephson to magnetic energy
ratio, εJ = 	0Ic/2π is the Josephson energy, 	0 is the flux
quantum, and k = (1/2	0)μ0vM0l/a

√
l2 + a2 is the cou-

pling constant between the JJ and the nanomagnet.
The components of the total effective field can be obtained

by using the Biot-Savart law to calculate the magnetic field
acting on the nanomagnet generated by the Josephson junc-
tion, so they are given by

hx = 0,

hy = my,

hz = h̃z − εkṁz,

h̃z = ε

[
sin

(
V t − kmz + A

ωR
sin(ωRt )

)
+ V + A cos(ωRt )

]
,

(5)

where V is the dc voltage bias normalized to Vc = h̄ωc/2e,
A = Vac/Vc is the amplitude of the external drive, and ωR is
the frequency of the external drive normalized to ωc. Notice
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also that in our normalization the dc voltage bias V is equal to
the Josephson frequency ωJ .

III. ANALYTICAL DESCRIPTION

We consider that both DC and AC voltages are applied to
the JJ, so the nanomagnet is subjected to two periodic drives.
The first one is due to the oscillating magnetic field generated
by Josephson oscillations of the DC voltage biased JJ. This
magnetic field excites the precession of the magnetic moment
of the nanomagnet and leads to a ferromagnetic resonance
when the precession frequency equals the eigenfrequency ωF

of the magnetic system. The second drive, due to the ac
voltage applied to the JJ, leads to the “Kittel” ferromagnetic
resonance when the ac frequency equals the eigenfrequency
ωF of the magnetic system. For experimental realization of
such a system, we estimate the model parameters according to
Ref. [44], based on Refs. [45–48]. We consider a nanomagnet

with an anisotropy constant of 20 KJm−3, saturation magneti-
zation of 1950 KAm−1, and volume 2 × 10−22 m3, while the
Gilbert damping parameter is α ∼ 0.0001 − 0.1. On the other
hand, for typical Josephson junctions the Josephson energy is
εJ ∼ 1.97 × 10−18 J, the critical current is Ic ∼ mA, and the
normal state resistance of the junction is ∼ m�. Thus, the
voltage is of the order of μV, the Josephson frequency is of
the order of GHz, and the ferromagnetic resonance frequency
of the nanomagnets is of the order of ∼ GHz [49,50]. In
this section, we present an analytical description of the com-
bined effect of these two drives, which predicts rich resonance
physics.

It is easier to work in spherical coordinates, defining
the projections of the magnetic moment in terms of the
polar and azimuthal angles, namely, mx = sin θ cos φ, my =
sin θ sin φ, mz = cos θ , where θ ∈ [0, π ] and φ = [0, 2π ].
Then, Eqs. (4) and (5) are translated into time derivatives of
the angles, according to Appendix A of Ref. [42]:

θ̇ = − sin θ �F

1 + α2 + αεk sin2 θ �F
[αh̃z − sin φ(cos φ + α cos θ sin φ)], (6a)

φ̇ = �F

1 + α2 + αεk sin2 θ �F
[h̃z + (sin2 θ cos φεk�F − sin φ cos θ + α cos φ) sin φ], (6b)

h̃z(t ) = ε sin[V t − k cos θ + A

ωR
sin(ωRt )] + ε[V + A cos(ωRt )]. (6c)

We note that superconducting current in the JJ under the influence of dc and ac drives represents a frequency modulated signal,
where the dc Josephson frequency V ≡ ωJ is modulated by the term A cos(ωRt ). Thus, JJ in this case creates ac magnetic field
with a modulated frequency. Such a modulated signal can be represented through a superposition of harmonic signals applied to
the nanomagnet as follows:

sin

[
V t − kmz + A

ωR
sin (ωRt )

]
=

∞∑
m=−∞

signm(m)J|m|

(
A

ωR

)
sin[(V + mωR)t − k cos θ ], (7a)

cos

[
V t − kmz + A

ωR
sin (ωRt )

]
=

∞∑
m=−∞

signm(m)J|m|

(
A

ωR

)
cos[(V + mωR)t − k cos θ ], (7b)

Plugging Eq. (7) into Eq. (6) we obtain an expansion for θ̇ and φ̇:

θ̇ = −C(θ ) sin θ [F0(θ, φ) + F1(θ, t )], (8a)

φ̇ = C(θ )[Q0(θ, φ) + Q1(θ, t )], (8b)

where

C(θ ) = �F

1 + α2 + αεk sin2 θ �F
. (8c)

F0(θ, φ) = αεV − sin φ(cos φ + α cos θ sin φ), (8d)

F1(θ, t ) = αεA cos(ωRt ) + αε

∞∑
m=−∞

signm(m)J|m|

(
A

ωR

)
sin[(V + mωR)t − k cos θ ], (8e)

Q0(θ, φ) = εV + (sin2 θ cos φεk�F − sin φ cos θ + α cos φ) sin φ, (8f)

Q1(θ, t ) = εA cos(ωRt ) + ε

∞∑
m=−∞

signm(m)J|m|

(
A

ωR

)
sin[(V + mωR)t − k cos θ ]. (8g)

Notice that the terms F0(θ, φ) and Q0(θ, φ) do not depend explicitly on time. Therefore, if F1(θ, t ) = Q1(θ, t ) = 0 and the
magnetization of the nanomagnet reaches a position (θ0, φ0) where

F0(θ0, φ0) = Q0(θ0, φ0) = 0, (9)
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it remains in that position. We call (θ0, φ0) the stationary point
or stationary position. From (9) we get

φ0 = π

2
,

3π

2
, and cos θ0 =

{
εV for |εV | � 1,

sign(V ) for |εV | > 1.

(10)

Nevertheless, even in the absence of the terms F1(θ, t ) and
Q1(θ, t ), the system may or may not advance toward the
stationary point. If there is a vicinity of (θ0, φ0) in which

the system advances toward the stationary point, we say that
(θ0, φ0) is a stable point (or stable position), whereas if there is
no such vicinity, then (θ0, φ0) is an unstable stationary point.
In Appendix A, we show that for the chosen parameters the
point corresponding to φ0 = π/2 is stable, whereas the point
corresponding to φ0 = 3π/2 is unstable. Therefore, from now
on we shall discuss only the stable point (θ0, φ0 = π/2).

If the amplitude of the external perturbation is small, the
system oscillates around the stable point. Expanding F0(θ, t )
and Q0(θ, t ) in series around (θ0, φ0), keeping only the lin-
ear terms, using (7), and denoting θ̃ ≡ θ − θ0, φ̃ ≡ φ − φ0,
Eqs. (8a) and (8b) become

˙̃θ ≈ −C(θ0) sin(θ0)

{
α sin(θ0)θ̃ + φ̃ + αεA cos(ωRt ) + αε

∞∑
m=−∞

signm(m)J|m|

(
A

ωR

)
sin[(V + mωR)t − k cos(θ0)]

}
,

˙̃φ ≈ C(θ0)

{
sin(θ0)θ̃ − [α + kε�F sin2(θ0)]φ̃ + εA cos(ωRt ) + ε

∞∑
m−∞

signm(m)J|m|

(
A

ωR

)
sin[(V + mωR)t − k cos(θ0)]

}
.

(11)

We split the system of Eq. (11) into an infinite number of
systems of equations by writing

θ̃ ≡ θ̃ωR +
∞∑

m=−∞
θ̃m and φ̃ ≡ φ̃ωR +

∞∑
m=−∞

φ̃m. (12)

The solutions of the system (11) in linear regime are given by:

θ̃ = − Aθ� sin (ωRt + φωR + δθωR )

−
∞∑

m=−∞
Aθm sin (ωmt + φωR ),

φ̃ = − Aφ� sin
(
ωRt + φωR + δφωR

)
−

∞∑
m=−∞

Aφm sin
(
ωmt + φωR + δφm

)
, (13)

where ωm ≡ V + mωR and the amplitudes are

Aθ� = εA
Ãθ

(
ωR
�F

)
f
(

ωR
�F

) ,

Aφ� = εA
Ãφ

(
ωR
�F

)
√

f
(

ωR
�F

) , (14)

and

Aθm = ε signm(m)J|m|
( A

ωR

) Ãθ

(
ωm
�F

)
f
(

ωm
�F

) ,

Aφm = ε signm(m)J|m|
( A

ωR

) Ãφ

(
ωm
�F

)
√

f
(

ωm
�F

) . (15)

The functions Ãθ , Ãφ , and f are defined in Appendix B.
If we define x ≡ ωR/�F [in (14)] or x ≡ ωm/�F [in

(15)], we observe that for the chosen parameters the ratios
Ãθ (x)/ f (x) and Ãφ (x)/ f (x) have sharp maxima at xres ≈ 1,

which we will call resonances. These resonances are due
to the fact that f (x) has a minimum very close to zero,
which corresponds (approximately) to xres. So from the equa-
tion df (x)/d (x2) = 0 we get

xres = ({2(1 − αεk�F ) sin2 θ0 − [α2 + (εk�F )2]

× sin4 θ0 − α2}/{2(1 + α2 + αεk�F sin2 θ0)2})1/2

≈ 1 for α, εk�F � 1. (16)

Therefore, resonances appear in the system at

�res = xres�F ≈ �F

|ωm,res| ≡ |V + m�| = xres�F ≈ �F , (17)

respectively. If we denote

Mθ ≡ Ãθ (xres )

f (xres)
,

Mφ ≡ Ãφ (xres)√
f (xres)

, (18)

the expressions of the amplitudes at resonances (14) and (15)
are simplified to

Aθ� = εAMθ , Aφ� = εAMφ, (19a)

and

Aθm = ε signm(m)J|m|

(
A

ωR

)
Mθ ,

Aφm = ε signm(m)J|m|

(
A

ωR

)
Mφ, (19b)

respectively. We notice that the amplitude at resonance in-
creases linearly with the amplitude of the external radiation
in (19a) and varies with A as a Bessel function in (19b). We
emphasize that the Bessel dependence appears because one of
the periodical signals which is applied to the nanomagnet has
a modulated frequency.
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FIG. 2. Manifestation of the ferromagnetic resonance on the de-
pendence mmax

z (V ) at �F = 0.5, α = 0.001, G = 0.3, k = 0.01, A =
0.1, and ωR = 0.7.

IV. DISCUSSION

Here we present the results of numerical simulations of the
system of Eq. (4) and provide a thorough comparison with the
obtained analytical expressions. Figure 2 shows the maximum
amplitude of mz oscillations as a function of V , for ωR = 0.7.
A ferromagnetic resonance peak is observed at a voltage
corresponding to the frequency of the Josephson oscillations
ωJ = 0.5. The results for mmax

x and mmax
y are qualitatively

the same and are not presented. We note that in agreement
with Eq. (17) for m = ±1, additional peaks are observed at
frequencies ωR − �F and ωR + �F .

The amplitudes of oscillations at V = �F and V = ωR −
�F are plotted in Fig. 3 as functions of A. These choices of fre-
quencies correspond approximately to the resonances ω0,res =
Vres = xres�F ≈ �F and ω−1,res = (V − ωR)res = xres�F ≈
�F . We observe that the amplitudes approximately follow

A

P
ea

k 
h

ei
g

h
t

0 5 10 150

0.05

0.1

0.15

0.2

0.25

V=ωR-ΩF

V=ΩF

FIG. 3. The heights of the resonance peaks as a function of the
amplitude A at �F = 0.5, α = 0.01, G = 0.01, k = 0.53, and ωR =
1.7. Symbols are simulated from the system of Eq. (4), and solid
lines are analytical approximations using (19b). The red lines are the
height of the resonance peak V ≈ ωR − �F . The green lines are the
height of the resonance peak V ≈ �F .

FIG. 4. Manifestation of the ferromagnetic resonance �F =
ωR 	= V on the dependence mmax

z (ωR) at �F = 0.5, α = 0.001, G =
0.3, k = 0.01, A = 1 and (a) V = 5, (b) V = 2.

the Bessel function behavior of (19b). The symbols in Fig. 3
are simulated from the system of Eq. (4). Notice that the
figure demonstrates an almost perfect matching between the
analytically obtained and numerically simulated results. We
note that the heights of the resonance peaks (as a function
of A) oscillate differently, depending on the order of the
Bessel function. For example, while the height of the peak
corresponding to V ≈ �F is proportional to J0( A

ωR
), the height

of the peak corresponding to ω−1,res = (V − ωR)res ≈ �F is
proportional to J1( A

ωR
). Therefore, the position of resonances

can be determined by (17) and their heights are determined
by (19b). This feature allows one to change the position and
the intensity of different resonances by the amplitude and the
frequency of the external periodic drive. The first resonance
condition in (17) can be realized with a variation of ωR at fixed
value of V .

Figure 4 shows the calculated maximum amplitude of os-
cillations mmax

z as a function of the periodic drive frequency
ωR at different values of V . A ferromagnetic resonance peak
is observed [see Fig. 4(a)] at the frequency corresponding
to ωR ≈ �F that is formed by AθωR (19a). In Fig. 4(b) we
reduced the value of V and additional peaks appeared in
the frequency interval ωR ∈ (0, 1) corresponding to the res-
onances of the amplitudes Aθm (19b) at different values of
m: (−6,−10,−5,−4,−4,−2) (from left to right) when the
value of V is reduced (V = 2). They appear because distance
in frequency between the peaks reduces according to (17).
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So, the smaller the difference between � and corresponding
Josephson frequency (V ≡ ω j), the smaller the distance be-
tween the resonance peaks. In Fig. 4(a) the corresponding
peaks do not appear within the presented region. Note that
these resonances, strongly dependent on the driving ampli-
tudes, are similar to Kittel’s ferromagnetic resonance.

The obtained results can be used to calculate the resonance
condition for the φ0 Josephson junction, where the phase shift
ϕ0 in the current-phase relation is proportional to the magnetic
moment perpendicular to the gradient of the asymmetric spin-
orbit potential [51,52] [43], by neglecting the effective field
due to quasiparticle current [the term V + A cos(ωRt ) in (5)].
In this case, we immediately obtain

AθωR = AφωR = 0 (20)

and

Aθm = ε signm(m)J|m|(A/ωR)

√
1 + 3α2

2α
, (21a)

Aφm = ε signm(m)J|m|(A/ωR)

√
1 − α2

2α
. (21b)

Furthermore, the results presented in Ref. [41] can be obtained
at A = 0. In this case, only the term m = 0 (ωm=0 = V ) sur-
vives and Eq. (19) becomes

Aθm = ε
Ãθ

(
V
�F

)
f
(

V
�F

) (22a)

and

Aφm = ε
Ãφ

(
V
�F

)
√

f
(

V
�F

) . (22b)

The resonances can now be observed as maxima of Aθm and
Aφm as functions of V and formulas (17) transform to Vres ≡
xres�F .

Therefore, the derived analytical description presented in
Sec. III is universal and could be applied to various systems
such as superconducting and magnetic heterostructures (φ0

Josephson junction, nanomagnet coupled to the JJ), and non-
linear pendulum.

V. CONCLUSIONS

We present a thorough analytical description and classi-
fication of possible resonances arising in the system. The
amplitudes of the induced oscillations Aθ�(V, ωR,�F ) and
Aθm(ωm, ωR,�F ) are calculated in the linear approximation.
They have very sharp maxima (resonances) at �res and ωm,res,
respectively, which can be found numerically, in general.
When α, ε � 1, both �res and ωm,res are approximately equal
to �F . In the limit α, ε → 0, we have �res, ωm,res → �F and
the amplitudes AθωR , Aθm diverge.

We demonstrated resonance effects in a system consisting
of the nanomagnet coupled to the Josephson junction under

the influence of the external periodic drive of frequency ωR. It
has been shown that the magnetic dynamics of such a system
manifests additional resonances at V + mωR ≈ �F , where m
is an integer. We found that the heights of the resonance peaks
strongly depend on the amplitude of the external periodic
drive. Therefore, by changing the amplitude, it is possible
to suppress the main ferromagnetic resonance (V = �F ) and
enhance resonances at V = |�F + mωR|. This represents a
method for controlling the resonance properties of the system
by adjusting the driving frequency and amplitude. In other
words, by applying an external periodic drive, one can gen-
erate specific resonances at voltages V ≈ �F + mωR and, at
the same time, suppress the FMR at V = �F . This method
provides wide opportunities for experimental applications.

Our results are of practical importance. It is known, that
one of the methods for determining the characteristics of
magnetic systems is FMR. The standard FMR theory based
on microwave absorption in magnetic materials shows that
the resonant frequency is the functions of the effective field,
material, and system parameters. These dependences can be
used to determine the parameters of the material. On the
other hand, these parameters can be varied to control the mi-
crowave absorption properties of the material. This two-way
relationship between the FMR characteristics and the phys-
ical parameters of the system is usually based on analytical
expressions that give the resonant frequency as a function
of the material parameters (anisotropy constants, exchange
and dipole couplings, etc.). In the case of hybrid structures,
however, such analytical expressions cannot be obtained and
one has to resort to numerical simulation or some approximate
solution. Our analytical results provide necessary informa-
tion to estimate the ferromagnetic resonance frequency [using
(17)] and damping parameter [using (19) and (B5) from the
Appendix] in hybrid structures of the SFS and JJ-NM types,
and can have applications related to the resonance properties
of hybrid structures as well as in quantum information pro-
cessing and spintronics.

ACKNOWLEDGMENTS

The reported study was funded by the (ASRT, Egypt)-
(JINR, Russia) research projects. Numerical simulations were
funded by Project No. 22-71-10022 of the Russian Scientific
Fund. D.V.A. and M.D. aknowledge the financial support from
UEFISCDI (Romania), projects PN 23210101/2023 and PN
23210204/2023. Special thanks are due to the BLTP, Hy-
briLIT heterogeneous computing platform (LIT, JINR Russia)
and Bibliotheca Alexandrina (Egypt) for the HPC servers.

APPENDIX A: THE STATIONARY POINT

To determine the stability of the stationary points (10),
we calculate the projection of the velocity v ≡ (θ̇ , φ̇) on the
unit vector ŝ ≡ [(θ0 − θ )/u, (φ0 − φ)/u], which gives the di-
rection from the current point (θ, φ) to the stationary point
(θ0, φ0) (where u =

√
(θ0 − θ )2 + (φ0 − φ)2):

P(θ, φ) ≡ v · ŝ = 1√
(θ0 − θ )2 + (φ0 − φ)2

{(θ0 − θ ) sin θ [αεV − sin φ(cos φ + α cos θ sin φ)] + (φ0 − φ)
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× [εV + (εk�F sin2 θ cos φ − sin φ cos θ + α cos φ) sin φ]}. (A1)

FIG. 5. The contours corresponding to F0(θ, φ) = 0 (blue thick
solid line), Q0(θ, φ) = 0 (red thick solid lines), and P(θ, φ) = 0
(green thick solid lines). By the colored signs + and − we indicate
the signs of the corresponding functions: blue + and − signs indicate
the regions in which F0(θ, φ) > 0 and F0(θ, φ) < 0, respectively,
bordered by the thick blue solid line; red + and − signs indicate
the regions in which Q0(θ, φ) > 0 and Q0(θ, φ) < 0, respectively,
bordered by the thick red solid line; green + and − signs indicate
the regions in which P(θ, φ) > 0 and P(θ, φ) < 0, respectively, bor-
dered by the thick green solid line.

In the absence of external time dependent perturbations [i.e.,
F1(θ, t ) = 0 and Q1(θ, t ) = 0], if P(θ, φ) > 0, the magnet
moves toward the stationary point, whereas the magnet moves
away from the stationary point if P(θ, φ) < 0. In Fig. 5 we
see two stationary points (the intersections of the red and blue
solid lines) and observe that, for the chosen parameters, the
point corresponding to (φ0 = π/2) is in the region P(θ, φ) >

0, whereas the point (φ0 = 3π/2) is in the region P(θ, φ) < 0.

APPENDIX B: THE ELEMENTARY OSCILLATIONS

In system (11), we redefine θ̃ and φ̃ according to (12). The
new variables describe “individual” oscillations of specified
frequencies: the variables (θ̃ωR , φ̃ωR ) for the frequency ωR and
the variables (θ̃m, φ̃m) for the frequencies ωm ≡ V + mωR.
These oscillations satisfy the systems of equations

˙̃θωR = −C(θ0) sin(θ0){α sin(θ0)θ̃ωR

+ φ̃ωR + αεA cos(ωRt )},
˙̃φωR = C(θ0){sin(θ0)θ̃ωR − [α + kε�F sin2(θ0)]φ̃ωR

+ εA cos(ωRt )}, (B1)

and

˙̃θm = − C(θ0) sin(θ0)

{
α sin(θ0)θ̃m + φ̃m + αεsignm(m)J|m|

(
A

ωR

)
sin[ωmt − k cos(θ0)]

}
,

˙̃φm =C(θ0)

{
sin(θ0)θ̃m − [α + kε�F sin2(θ0)]φ̃m + εsignm(m)J|m|

(
A

ωR

)
sin[ωmt − k cos(θ0)]

}
, (B2)

where m ∈ Z (integer). By this decomposition we show that the movement of the nanomagnet (11) is a superposition of an
infinite number of oscillations of frequencies ωR, and ωm ≡ V + mωR. The system (B1) has solutions of the form

θ̃ωR = C2(η + √
χ + 2P)

2 sin θ0
e

(η+√
χ )C(θ )t
2 + C1(η − √

χ + 2P)

2 sin θ0
e

(η−√
χ )C(θ )t
2 − AθωR sin

(
ωRt + φωR + δθωR

)
,

φ̃ωR = C2e
(η+√

χ )C(θ )t
2 + C1e

(η−√
χ )C(θ )t
2 − AφωR sin

(
ωRt + φωR + δφωR

)
, (B3)

whereas the solutions of the system (B2) are

θ̃m = C2(η + √
χ + 2P)

2 sin θ0
e

(η+√
χ )C(θ )t
2 + C1(η − √

χ + 2P)

2 sin θ0
e

(η−√
χ )C(θ )t
2 − Aθm sin

(
ωmt + φωR

)
,

φ̃m = C2e
(η+√

χ )C(θ )t
2 + C1e

(η−√
χ )C(θ )t
2 − Aφm sin

(
ωmt + φωR + δφm

)
, (B4)

where P ≡ α + kε�F sin2 θ0, χ ≡ (α sin2 θ0 − P)2 − 4 sin2 θ0, η ≡ −(α sin2 θ0 + P), and ξ0 ≡ C(θ0)2(Pα + 1) sin2 θ0 (by φωR

we denote an arbitrary phase).
Since (η ± √

χ ) < 0, the terms proportional to C1 and C2 decay in time and only the oscillatory terms remain. Therefore, in
the linear regime the solutions (B3) and (B4) could be combined and substituted into (12) to obtain Eq. (13) with the amplitudes
(14) and (15).

In Eqs. (14) and (15) we have the notation

f (x) = �2
1x4 + [(

α2 + �2
2

)
sin4 θ0 + 2(α�2 − 1) sin2 θ0 + �2

2

]
x2 + sin4 θ0

�2
1

, (B5a)
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Ãθ (x) = sin θ0

�1

⎧⎨
⎩

[
sin2 θ0 + (

α2 sin2 θ0 − 1
)
x2

]2

�2
1

+
(

α + �2 sin2 θ0

�1
+ αx2

)2

x2

⎫⎬
⎭

1/2

, (B5b)

Ãφ (x) = 1

(1 + α2 + �2 sin2 θ0)
x, (B5c)

where �1 = 1 + α2 + αεk�F sin2 θ0, �2 = εk�F .
In the notation (B5), we consider f , Ãθ , and Ãφ as functions of x. The phases of Eqs. (B3) and (B4) are defined by the relations

sin δθωR = ξ0
[
ξ0 + ω2

R (α2 sin2 θ0−1)
αP+1

]
√

ξ 2
0

[
ξ0 + ω2

R (α2 sin2 θ0−1)
αP+1

]2 + C(θ0)2ω2
R

(
Pξ0 + ω2

Rα sin2 θ0
)2

,

cos δθωR = C(θ0)ωR
(
Pξ0 + ω2

Rα sin2 θ0
)

√
ξ 2

0

[
ξ0 + ω2

R (α2 sin2 θ0−1)
αP+1

]2 + C(θ0)2ω2
R

(
Pξ0 + ω2

Rα sin2 θ0
)2

,

sin δφωR = ωRC(θ0)η√(
ω2

R − ξ0
)2 + C(θ0)2η2ω2

R

, cos δφωR = −
(
ω2

R − ξ0
)

√(
ω2

R − ξ0
)2 + C(θ0)2η2ω2

R

,

sin δθm = −C(θ0)ωR
(
Pξ0 + ω2

Rα sin2 θ0
)

√
ξ 2

0

[
ξ0 + ω2

R (α2 sin2 θ0−1)
Pα+1

]2
+ C(θ0)2ω2

R

(
Pξ0 + ω2

Rα sin2 θ0
)2

,

cos δθm =
ξ0

[
ξ0 + ω2

R (α2 sin2 θ0−1)
Pα+1

]
√

ξ 2
0

[
ξ0 + ω2

R (α2 sin2 θ0−1)
Pα+1

]2
+ C(θ0)2ω2

R

(
Pξ0 + ω2

Rα sin2 θ0
)2

,

sin δφm = ω2
R − ξ0√(

ω2
R − ξ0

)2 + C(θ0)2η2ω2
R

, cos δφm = ωRC(θ0)η√(
ω2

R − ξ0
)2 + C(θ0)2η2ω2

R

.
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