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Simulating quantum spin systems at finite temperatures is an open challenge in many-body physics. This work
studies the temperature-dependent spin dynamics of a pivotal compound, FeI2, to determine if universal quantum
effects can be accounted for by a phenomenological renormalization of the dynamical spin structure factor
S(q, ω) measured by inelastic neutron scattering. Renormalization schemes based on the quantum-to-classical
correspondence principle are commonly applied at low temperatures to the harmonic oscillators describing
normal modes. However, it is not clear how to extend this renormalization to arbitrarily high temperatures.
Here we introduce a temperature-dependent normalization of the classical moments, the magnitude of which
is determined by imposing the quantum sum rule, e.g.,

∫
dωdqS(q, ω) = NSS(S + 1) for NS dipolar magnetic

moments. We show that this simple renormalization scheme significantly improves the agreement between the
calculated and measured S(q, ω) for FeI2 at all temperatures. Due to the coupled dynamics of dipolar and
quadrupolar moments in that material, this renormalization procedure is extended to classical theories based on
SU(3) coherent states, and by extension, to any SU(N) coherent state representation of local multipolar moments.
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I. INTRODUCTION

The computation of dynamical correlation functions of
interacting quantum spin systems at arbitrary temperature is
an important and largely open problem in quantum many-
body theory. These correlation functions play a crucial role
in magnetism. For instance, dynamical susceptibilities associ-
ated with two-point correlation functions can reveal the nature
of the excitations of spin-liquid phases and their instabili-
ties in the proximity to broken symmetry states. Moreover,
they are accessible to various spectroscopic and resonance
experiments, providing crucial insight and validation tests
for theoretical models. Among these different approaches,
inelastic neutron and x-ray scattering provide stringent tests
as these experiments can reveal the momentum-, energy-,
and spin-space dependence of the corresponding dynamical
susceptibility [1–4].

State-of-the-art numerical techniques for simulating quan-
tum many-body problems have severe limitations for comput-
ing dynamical correlation functions at arbitrary temperature.
Exact diagonalization techniques [5] are restricted to small
clusters, while density matrix renormalization group (DMRG)
[6–8] is so far only applicable to one-dimensional systems or
narrow ribbons of two-dimensional magnets. Tensor networks
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can deal with 2D systems and the first attempts of computing
dynamical spin structure factors based on single-mode ap-
proximations at T = 0 are very recent [9]. Quantum Monte
Carlo (QMC) techniques are restricted to the small set of
models free of the sign problem, and even for that class of
problems, the computation of dynamical correlation functions
is challenging because the analytical continuation of noisy
QMC data from the Matsubara domain to real frequencies can
lead to significant uncertainties [10–14]. Given these limita-
tions, any efficient numerical technique that can output a good
approximation to the exact temperature-dependent dynamical
correlation functions is of general interest to the quantum
many-body community.

In this work, we show that semiclassical approximations
relying on coherent state representations of local quantum
moments can fulfill both conditions: their numerical cost is
linear in the system size, and the finite-temperature dynam-
ical correlation functions of the quantum many-body system
are well approximated by the classical result after applying
a well-defined renormalization procedure. To elucidate this
procedure, we focus on spin systems where the ground state
is approximately a product state between magnetic units.
This covers many magnetically ordered systems and can also
provide high-fidelity results for spin liquids in a wide range
of temperatures. In particular, we detail a general approach
to compute the finite-temperature quantum dynamical spin
structure factor SQ(q, ω) (see below for precise definitions)
typically measured with inelastic neutron scattering. Our
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FIG. 1. Sketch of our approach to simulating the (generalized)
dynamical spin structure factor (DSSF) of classical magnetic mo-
ments. The classical magnetic moment is rescaled by a factor κ (T ),
which takes a value of 1 in the low-temperature, quantum (Q) regime
and increases with temperature across the dipolar ordering transi-
tion at T = TN and into the high-temperature classical (cl) regime.
κ (T ) is chosen to ensure that the DSSF fulfills the zeroth-moment
quantum sum rule at all temperatures, including in the T → ∞ limit.
Exchange interactions are untouched.

approach solves the equation of motion for classical mag-
netic moments, and while doing so, systematically enforces
the quantum sum rule (“zeroth moment”) for the dynam-
ical spin structure factor through a temperature-dependent
renormalization of the magnetic moments (see Fig. 1 for
a conceptual illustration). Building on our previous success
using the formalism of SU(3) coherent states to model the
zero-temperature dynamics of FeI2, a spin-orbital (effectively
S =1) magnet [15–17], we benchmark our method on the
same material at finite temperature, obtaining excellent agree-
ment with temperature-dependent neutron scattering results
collected across the dipolar long-range ordering transition of
the compound at T = TN.

Our work leverages a recent approach [18–20] to calcu-
late the classical Landau-Lifshitz (LL) equation of motion of
quantum spin systems using coherent states of SU(N), where
N is the number of levels of each magnetic unit (N = 2S + 1
when the magnetic unit contains only one spin S). The result-
ing generalized classical equations of motion can be linearized
at very low temperatures. The corresponding normal modes
(e.g., harmonic spin waves for magnetically ordered systems
and precessional dynamics for disordered systems) determine
the classical dynamical spin structure factor Scl(q, ω). The
generalized spin-wave approximation is then obtained by
quantizing the harmonic oscillators that describe these normal
modes. However, clear qualitative differences exist between
the classical and quantum mechanical oscillators. The former
have no fluctuations at zero temperature while the latter have
zero-point fluctuations. Correspondingly, limT →0 Scl(q, ω) =
0 for any h̄ω �= 0, while limT →0 SQ(q, ω) �= 0. In addition,
while the detailed balance condition produces a classical dy-
namical spin structure factor (DSSF) that is symmetric in ω, it
gives rise to SQ(−q,−ω) = exp[−h̄ω/kBT ]SQ(q, ω) for the
quantum DSSF. Nevertheless, one can use the correspondence
principle [21] between classical and quantum harmonic os-
cillators to obtain SQ(q, ω) as a function of Scl(q, ω) in the
harmonic/linearized approximation [22]:

SH
Q (q, ω) = sgn(ω)

h̄ω

kBT
[1 + nB(ω/T )]︸ ︷︷ ︸

g(ω/T )

SH
cl (q, ω), (1)

where nB(ω/T ) ≡ (eh̄ω/kBT − 1)−1 is the Bose function. In
essence, the correspondence factor g(ω/T ) accounts for the

different probability distributions in the calculation of the
two-point correlation function between the classical (Boltz-
mann, equipartition) and the quantum (Bose-Einstein) har-
monic oscillators [21,22]. For completeness, an intuitive
derivation of this factor is provided in Appendix C.

Equation (1) underpins the well-known approach of im-
plementing linear spin-wave theory (LSWT) by solving
the classical linearized LL equations of motion in thermal
equilibrium. Taken together, the LSWT and linearized LL ap-
proaches are enormously successful—perhaps unreasonably
so—in modeling inelastic neutron scattering from magnet-
ically ordered systems and cooperative paramagnets in the
low-temperature limit [23,24]. Notwithstanding these suc-
cesses, both approaches break down at elevated temperatures
as they fail to capture the nonlinear effects caused by large
thermal fluctuations. Since the original LL approach cap-
tures these effects at the classical level, it is natural to ask
if the classical-to-quantum correspondence principle survives
approximately in this nonlinear regime. This is the central
question our work aims to address and motivates our choice
to benchmark it to the spin dynamics of FeI2. Indeed, the
dominant on-site term (single-ion anisotropy) in the spin
Hamiltonian of FeI2 is expected to have a large effect on
thermal nonlinearities [18–20,25,26]. This strong influence of
the single-ion anisotropy is already visible in the linear regime
where experiments reveal the presence of hybridized dipolar
and quadrupolar fluctuations [15–17] requiring the utilization
of SU(3) coherent states to faithfully model the dynamical
spin structure factor. Recent results on the finite tempera-
ture dynamics of the weak-anisotropy compound Ba2FeSi2O7

[27] suggests that SU(3) coherent states can successfully de-
scribe temperature-dependent dynamics provided the norm of
classical moments is adjusted between the low- and high-
temperature regimes. The results on FeI2 presented here form
a strong impetus to extend this work to the strong anisotropy
regime where nonlinearities in the equation of motion are
relevant.

This paper is organized as follows. Section II presents
the theory and implementation of a temperature-dependent
correction to the dynamics of classical dipoles. Section III
motivates an extension of the theory to generalized magnetic
moments by presenting finite-temperature neutron scattering
data on FeI2. We then introduce the formalism for implement-
ing the generalized renormalization procedure and provide an
explicit benchmark between our approach and the neutron
scattering results on FeI2. Section IV discusses our results
and concludes the work. Additional computational and exper-
imental details provided in Appendices A and B, respectively.
The derivation of the quantum-to-classical crossover is pro-
vided in Appendix C.

II. RENORMALIZED CLASSICAL DYNAMICS
OF DIPOLAR MOMENTS

To outline our theoretical approach, we start by consid-
ering spin-S moments interacting via a given quantum spin
Hamiltonian ĤQ on a lattice and represented as purely dipo-
lar objects [SU(2) coherent states]. We aim at calculating
components of the quantum DSSF, which are given in the
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low-temperature limit by

Sαβ

Q (q, ω) =
∑
ν,μ

〈ν|Ŝα
q |μ〉〈μ|Ŝβ

−q|ν〉

× e−h̄εν/kBT

Z δ(εμ − εν − ω), (2)

where εν and |ν〉 are eigenvalues and eigenstates of ĤQ and

Ŝβ
q = 1√

NS

∑
j

eiq·r j Ŝβ
j . (3)

The trace over the three diagonal components of the DSSF,
SQ = trα[Sαα

Q ], satisfies the “quantum mechanical” zeroth-
moment sum rule:∫ ∞

−∞
dω

∫
dd qSQ(q, ω) =

NS∑
j=1

〈
Ŝ2

j

〉 = NSS(S + 1), (4)

where NS is the total number of dipolar moments. In practice,
LSWT is the best known approach to (approximately) obtain
the low-energy spectrum of ĤQ and calculate the quantum
DSSF in the harmonic approximation, SH

Q , using Eq. (2).
A corresponding classical theory may be constructed by

restricting the possible states to products of SU(2) coherent
states, |�〉 = ⊗

j |� j〉, where |� j〉 is an SU(2) coherent state
for a spin S at site j. The classical Hamiltonian corresponding
to the above quantum problem is then defined as

Hcl = lim
S→∞

〈�|ĤQ| �〉, (5)

where the expectation value is taken in the large-S limit. The
SU(2) coherent state on each site may each be associated
uniquely with a classical dipole, � j = 〈� j |Ŝ j |� j〉, and the
classical Hamiltonian generates the dynamics through the
well-known LL equation of motion:

d� j

dt
= dH

d� j
× � j . (6)

This dynamics generates trajectories from which the classical
DSSF may be estimated. Specifically, one samples a spin
configuration, �0

j , at thermal equilibrium as an initial condi-
tion, and then calculates a trajectory � j (t ) where � j (0) =
�0

j . With �q denoting the lattice Fourier transform of the
trajectory,

�q = 1√
Ns

∑
j

eiq·r j � j, (7)

the classical DSSF is estimated as

Sαβ

cl (q, ω) =
∫

e−iωt
〈

α

q (t )
β
−q(0)

〉
dt, (8)

where α, β = x, y, z, and the average is taken over many
trajectories generated from independent equilibrium samples.
This expression satisfies the “classical,” zeroth-moment sum
rule: ∫ ∞

−∞
dω

∫
dd qScl(q, ω) =

Ns∑
j=1

� j · � j = NsS
2. (9)

At very low temperatures, the dynamics produced by
Eq. (6) is essentially linear and the collective behavior will

resemble that of decoupled harmonic oscillators fluctuating
about the system’s ground state. We can therefore leverage the
correspondence factor g(ω/T ) in Eq. (1) to obtain a harmonic
approximation to the DSSF,

S̃Q(q, ω) ≡ sgn(ω)
h̄ω

kBT
[1 + nB(ω/T )]Scl(q, ω). (10)

In the low-temperature limit, where the harmonic oscillator
approximation is good, S̃Q(q, ω) satisfies the quantum me-
chanical sum rule, Eq. (11), up to corrections of order S0:

lim
T →0

[∫ ∞

−∞
dω

∫
dd q S̃Q(q, ω)

]
= Ns[S(S + 1) + O(S0)].

(11)

We note, however, that even if we make the strong assumption
that the harmonic approximation holds at higher tempera-
tures, this approach to enforcing the quantum mechanical sum
rule will break down as we increase T . In particular, the
quantum-classical crossover for each mode of frequency ω

occurs at a temperature kBT ≈ h̄ω and the correspondence
factor (h̄ω/kBT )[1 + nB(ω/T )] → 1 for kBT 
 h̄ω. Thus, in
the high-temperature limit defined as kBT 
 h̄ωmax, where
ωmax is the maximum frequency of the normal modes (see
Fig. 1), the DSSF constructed from classical dynamics using
Eq. (10) fulfills the classical sum rule,

lim
T →∞

[∫ ∞

−∞
dω

∫
dd q S̃Q(q, ω)

]
= NsS

2, (12)

that misses the O(S) correction NSS.
An extra temperature-dependent renormalization is thus

required to guarantee that S̃Q(q, ω) fulfills the quantum sum
rule at any temperature. As noticed in Ref. [28], the correct
quantum sum rule of NsS(S + 1) can be recovered in the
high-temperature limit if the classical dipole moments are
renormalized such that |�′

j | = √
S(S + 1). In the language of

coherent states, this normalization corresponds to the square
root of the quadratic Casimir of SU(2),

C(2)
SU(2) = Ŝα Ŝα = S(S + 1), (13)

where from now on we adopt the convention of summation
over repeated Greek indices. This departs from the usual
|� j | = S normalization, which guarantees that the classical
theory coincides with linear spin-wave theory upon quan-
tization in the zero-temperature limit. As the conflicting
sum-rule requirements are independent of the spin Hamil-
tonian, our approach here is to renormalize the classical
dipole moments �̃ j (T ) = κ (T )� j where |� j | = S, using a
temperature-dependent factor κ (T ). In the zero-temperature
limit, κ (0) = 1, since in this regime the classical-to-quantum
correspondence factor g(ω/T ) is sufficient to recover the
quantum mechanical sum rule up to O(S0) corrections. In the
high temperature limit, we set κ (T → ∞) = √

S(S + 1)/S =√
1 + 1/S following Ref. [28]. Between these extremes, the

value of κ (T ) may be empirically determined to enforce the
quantum mechanical sum rule of Eq. (4).

We emphasize that this κ renormalization is solely applied
to the normalization of classical moments in the equations of
motion, while the Hamiltonian itself is left untouched. Prac-
tically, this means that the DSSF of Eq. (8) is calculated
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by first sampling equilibrium spin configurations from the
classical Hamiltonian, Eq. (5), while the dynamics of Eq. (6)
are modified by the substitution � j → κ (T )� j . The resulting
Scl(q, ω) is then multiplied by the classical-to-quantum cor-
respondence factor g(ω/T ) in Eq. (1).

We observed above that simply applying the correspon-
dence factor to the classical DSSF fails to preserve the
quantum sum rule above the quantum-to-classical crossover
temperature. This factor is derived from the correspondence
between quantum and classical harmonic oscillators. At
higher temperatures, however, the harmonic description itself
becomes invalid as thermally induced nonlinearities become
relevant. An advantage of the classical approach is that it
captures the full nonlinear dynamics of Eq. (6) at no additional
computational cost.

III. RENORMALIZED CLASSICAL DYNAMICS
OF GENERALIZED MOMENTS

A. Motivation and primer on FeI2

The above discussion follows the traditional semiclassi-
cal treatment of spin Hamiltonians, working with dipolar
moments—coherent states of SU(2)—in the large-S limit.
However, in many quantum materials of current interest, such
as our benchmark material FeI2, the low-energy effective
Hamiltonian comprises spin S > 1/2 with (possibly domi-
nant) single-ion anisotropies. In such a case, an appropriate
semiclassical treatment needs to consider dipolar and mul-
tipolar fluctuations on an equal footing, which calls for the
utilization of SU(N) coherent states (N = 2S + 1). As we will
show below, our classical moment renormalization procedure
extends naturally to this case.

To motivate the need to extend the formalism of Sec. II to
larger moments, we first present a brief review on FeI2, the
recent understanding of which [15–17] has motivated theoret-
ical efforts in using generalized coherent states of SU(N) in
quantum magnetism [18–20] and possible multipolar interac-
tions [29]. FeI2 (space group P3̄m1), belongs to a large family
of transition metal dihalides with trigonal symmetry [30] com-
prising perfect triangular-lattice metal layers weakly bonded
by van der Waals interactions. The bulk magnetic behavior of
FeI2 is characterized by a pronounced easy c-axis anisotropy
for the effectively S = 1 moments [31] and the onset of a
complex dipolar magnetic order below TN =9.3 K [32], where
↑↑↓↓-stripes develop in the triangular plane, breaking the 3̄m
symmetry. When a magnetic field is applied along the easy-
axis, the system undergoes several metamagnetic transitions
before reaching saturation around Hs ≈ 12 T [33], resulting
in a rich temperature-field phase diagram [34,35].

The excitations of FeI2 have been studied at low tem-
peratures (T � TN) by various spectroscopic techniques,
including far-infrared and time-domain THz [16,36–38], Ra-
man [39], electron spin resonance [40,41], and neutron
scattering [15,17,42]. These experiments show that the dy-
namical susceptibility of FeI2 is characterized by two types of
excitations: conventional single-magnon (SM) modes forming
wide bands with dipolar character, and single-ion bound states
(SIBS) [43,44] forming almost-flat bands with quadrupo-
lar character due to the dominant uniaxial anisotropy (see

Refs. [15,17] for illustrations). SIBS are unique to effective
S > 1/2 local Hilbert spaces and are visible in the DSSF
of FeI2 because spin-nonconserving off-diagonal exchange
interactions hybridizes them with SM excitations [15] (see
Appendix A 5 for definitions of the model). As a result,
generalized spin-wave theory [using SU(3) coherent states] is
a necessary framework to describe the DSSF of FeI2 since it
treats both elementary excitations on an equal footing. This
hybridization effect also unveils the presence of exchange
bound states (nonelementary excitations corresponding to 4-
and 6-magnon) [16] as well as strong quantum interactions
leading to spontaneous quasiparticle decays induced by mag-
netic field [17]. These phenomena are nonlinear quantum
effects that, upon increasing temperature, are expected to
crossover into nonlinear classical effects. In this work, we
focus solely on the spin dynamics in zero magnetic field
for which SM and SIBS are the only relevant excitations.
We tune these magnetic excitations with temperature and
cross T = TN into the paramagnetic regime. Explaining the
temperature-dependent data is a stringent test of our compu-
tational approach that requires an extension of the formalism
of Sec. II to SU(N) coherent states.

B. Formalism for multipolar magnetic moments

The derivation of the traditional classical limit of a spin
system begins by restricting the quantum state space to prod-
ucts of SU(2) coherent states (equivalent to pure two-level
states). This is the approach described in Sec. II. When S = 1,
a better classical approximation can often be derived by start-
ing from a product of SU(3) coherent states (equivalent to
pure three-level states) [18]. In this section, we briefly sum-
marize how to generalize the contents of Sec. II to a classical
theory based on SU(3) coherent states.

The DSSF defined in Eq. (2) involves correlations among
the three spin operators, Ŝx, Ŝy, and Ŝz. These observables
completely characterize the state of an S = 1/2 spin. In par-
ticular, a one-to-one correspondence may be set up between
an SU(2) coherent state, |� j〉, and the expectation values
of these operators: 〈� j |Ŝα|� j〉 = 
α . This is the familiar
Bloch sphere construction, and it is this correspondence that
establishes the relationship between the classical dynamics
of dipoles in Eq. (6) and the quantum language of coherent
states [19].

The one-to-one correspondence between dipolar expecta-
tion values and SU(2) coherent states, |� j〉, does not carry
over to SU(3) coherent states, |� j〉. This reflects the physi-
cal fact that, when S > 1/2, a spin is characterized not just
by a dipole but also by higher-order multipole moments.
We may, however, choose a larger set of eight observ-
ables, T̂ α , including not just the spin operators but also five
quadrupole operators, and establish a one-to-one correspon-
dence between their expectation values and SU(3) coherent
states: 〈� j |T̂ α|� j〉 = �α , where 1 � α � 8. The arguments
of this section essentially repeat those of Sec. II while using
SU(3) coherent states and this extended set of observables.
In particular, the generalized DSSF will track correlations
among these eight observables instead of just the spin
operators.
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Following [18], we select the following set of observables,

T̂ 4
j = −(

Ŝx
j Ŝ

z
j + Ŝz

j Ŝ
x
j

)
,

T̂ 1
j = Ŝx

j T̂ 5
j = −(

Ŝy
j Ŝ

z
j + Ŝz

j Ŝ
y
j

)
,

T̂ 2
j = Ŝy

j T̂ 6
j = [(

Ŝx
j

)2 − (
Ŝy

j

)2]
,

T̂ 3
j = Ŝz

j T̂ 7
j = Ŝx

j Ŝ
y
j + Ŝy

j Ŝ
x
j ,

T̂ 8
j =

√
3
(
Ŝz

j

)2 − 2√
3
,

(14)

where Ŝx
j , Ŝy

j , and Ŝz
j are the three spin operators in the stan-

dard S = 1 representation. The first three correspond to the
components of the dipole moment and the final five to the
components of the quadrupole moment. We note that these
operators constitute a complete set of generators for the group
SU(3) [a basis for the Lie algebra su(3)] and satisfy the
orthonormality condition tr[T̂ αT̂ β] = 2δαβ . With this normal-
ization convention, the generators satisfy a quadratic Casimir,

C(2)
SU(3) = T̂ αT̂ α = 16

3 , (15)

with 1 � α � 8. This is the natural generalization of the more
familiar relation given in Eq. (13).

The DSSF is then expressed in terms of correlations among
these observables:

T αβ

Q (q, ω) =
∑
ν,μ

〈ν|T̂ α
q |μ〉〈μ|T̂ β

q |ν〉e−βεν

Z δ(εμ − εν − ω),

(16)

where α runs over 1 to 8 and

T̂ α
q = 1√

NS

∑
j

eiq·r j T̂ α
j . (17)

As a direct consequence of Eq. (15), the trace over the eight di-
agonal components of the generalized DSSF, TQ = trα[T αα

Q ],
satisfy a sum rule similar to Eq. (4):∫ ∞

−∞
dω

∫
dd q TQ(q, ω) =

Ns∑
j=1

〈
T̂2

j

〉 = NsC
(2)
SU(3). (18)

To derive the corresponding classical DSSF, we restrict
the quantum state space to products of SU(3) coherent states,
|�〉 = ⊗

j |� j〉. The classical Hamiltonian is then defined as

Hcl = 〈�|ĤQ|�〉, (19)

where we note that, in comparison with Eq. (5), no limit
appears in Eq. (19). Formally, the limit may be written H =
limλ1→∞〈Ĥ〉, where λ1 labels degenerate irreps of SU(3).
However, after suitable renormalization, limλ1→∞〈Ĥ〉 = 〈Ĥ〉.
In other words, the classical limit is the quantum expectation
value, see Ref. [18] for details.

As described in Refs. [18–20], the classical Hamiltonian
above generates the dynamics of multipolar moments (three
dipolar and five quadrupolar moments) associated with SU(3)
coherent states through the generalized LL equation of motion

d�α
j

dt
= fαβγ

dHα

d�
β
j

�
γ
j , (20)

where fαβγ are the structure constants of SU(3),[
T̂ α

j , T̂ β
j

] = i fαβγ T̂ γ
j , (21)

and

�α
j = 〈� j |T̂ α

j |� j〉 (22)

is the α-component of the classical multipolar moment at site
j and � j an 8-vector of these components.

The generalized classical DSSF may be estimated in
a manner directly analogous to the approach described in
Sec. II. A sample spin configuration is generated at thermal
equilibrium, �0

j , and the sample is used as an initial condition
for a trajectory, � j (t ), generated by the dynamics of Eq. (20).
Fourier transforming this trajectory on the lattice,

�q = 1√
Ns

∑
j

eiq·r j � j, (23)

the generalized classical DSSF may be written

T αβ

cl (q, ω) =
∫ ∞

−∞
e−iωt�α

q (t )�β
−q(0)dt, (24)

and follows the classical sum rule,∫ ∞

−∞
dω

∫
dd qTcl(q, ω) =

Ns∑
j=1

� j · � j = 4

3
Ns, (25)

where 4/3 is the normalization factor of the 8-vector, which
may be calculated directly be evaluating

∑
α〈T̂ α〉2 for any

state.
Similar to the purely dipolar case, a temperature-dependent

normalization of classical multipolar moments,

�̃ j (T ) = κ (T )� j, |� j | =
√

4/3, (26)

is introduced. It ensures that the quantum sum rule is saturated
for the quantum-equivalent generalized DSSF T̃ αβ

Q (q, ω) at
arbitrary temperature, constructed from the classical DSSF,

T̃ αβ

Q (q, ω) = h̄ω

kBT
[1 + nB(ω/T )]T αβ

cl (q, ω). (27)

C. Moment renormalization with SU(3) coherent states

For concreteness we now illustrate how our approach can
be applied in practice with LL simulations for the model
spin S =1 Hamiltonian of FeI2 (see Appendix A for details).
In Fig. 2(a) we report the total sum rule of the generalized
DSSF as a function of temperature. As expected, in absence
of moment renormalization (i.e., κ =1), the DSSF fullfills the
quantum sum rule in the low-temperature limit with the ex-
pected distribution between elastic and inelastic channels for a
fully ordered state. Significant deviations are quickly observed
in the vicinity to T ≈ TN (see Fig. 2(a), left). Above T � TN

and in the limit kBT ≈ h̄ωmax, the sum rule smoothly ap-
proaches the classical result indicating the break-down of the
quantum-classical correspondence of Eq. (1). Upon inclusion
and optimization of a temperature-dependent renormalization
κ (T ), the quantum sum rule can be conveniently enforced for
all temperatures with only minute departures in the vicinity
to T ≈ TN [see Fig. 2(a), right]. An important observation is
that the temperature profile of κ (T ) [see Fig. 2(b)] smoothly
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(a)

(b) (c)

FIG. 2. (a) Temperature dependence of the generalized DSSF
sum rule for simulations of our FeI2 model (see Appendix A for
details) using SU(3) coherent states (S =1) (left) without, (right)
with κ-renormalization of the eight-component classical magnetic
moments (three dipolar, five quadrupolar). Blue triangles, yellow
diamonds, and red circles, respectively, indicate the elastic (h̄ω = 0),
inelastic (h̄ω �= 0), and total contributions to the sum rule. Through-
out, the dotted and dashed lines indicate the classical and quantum
sum rules, respectively. Results are presented in a relative temper-
ature scale T/TN, and the sum-rule results are normalized per site.
(b) Temperature-dependence of the renormalization factor κ (T ) ob-
tained from simulations for our FeI2 model. (c) Sum rule restricted
to the three dipolar moments of the generalized DSSF.

interpolates between κ (0) = 1 and κ (∞) → 2, even in the
vicinity of TN.

The generalized DSSF calculated in Fig. 2(a) not only
includes dipolar fluctuations accessible to INS but also
quadrupolar excitations that are in principle invisible to such
a probe. As dipolar and quadrupolar fluctuations are treated
on equal footing by SU(3) coherent states and can evolve
into each other under the LL dynamics, a natural question
is if the dipolar components of the generalized DSSF also
fulfill a quantum sum rule. Indeed, we observe that the
sum rule restricted to the three dipolar components of the
generalized DSSF fulfills expectations for S = 1 moments
represented as SU(2) coherent states, both above and below TN

[see Fig. 2(c)].

D. Comparison with experimental temperature-dependent
spin dynamics in FeI2

Next, we demonstrate that our approach to solving the
generalized LL equations of motion for SU(3) coherent states
reproduces all the basic features of the momentum- and

(a) (b)

FIG. 3. Comparison between the energy-dependence of general-
ized DSSF between (a) unrenormalized or (b) renormalized moments
for the Hamiltonian of FeI2.

energy-resolved experimental data. Furthermore, we show
that by incorporating the temperature-dependent renormaliza-
tion κ (T ) of classical moments, we achieve a semiquantitative
agreement with the data across the entire temperature range,
which crosses the dipolar ordering temperature. For compar-
ison with the experimental INS data, the simulation results
are recast (see Appendix A) with the quantum sum rule fixed,
further benchmarking between simulations and experiments
requires inspecting momentum- and energy-resolved neutron
scattering results. Before turning to these complete results,
we examine the general consequences of the moment renor-
malization procedure on the energy dependence of dipolar
and quadrupolar fluctuations (see Fig. 3). Since the exchange
parameters of our Hamiltonian are untouched, our renormal-
ization procedure yields a scaling and reweighting of the
fluctuations in the energy axis but no redistribution of spectral
weight as a function of momentum. Above T = TN, where
the effect of κ (T ) is the most prominent, the moment renor-
malization leads to a stretch and enhancement of high-energy
fluctuations.

Next, we demonstrate that our approach to solving the
generalized LL equations of motion for SU(3) coherent states
reproduces all the basic features of the momentum- and
energy-resolved experimental data. Furthermore, we show
that by incorporating the temperature-dependent renormaliza-
tion κ (T ) of classical moments, we achieve a semiquantitative
agreement with the data across the entire temperature range,
which crosses the dipolar ordering temperature. For compari-
son with the experimental INS data, the simulation results are
recast (see Appendix A) as

Ĩsim(Q, E ) = C| f (Q)|2
3∑

α,β=1

(δαβ − Q̂αQ̂β )T̃ αβ

Q (Q, E ), (28)

where C is a constant, f (Q) is the form-factor of Fe2+, and
the sum is restricted to dipolar components of the generalized
DSSF projected perpendicular to Q.

In Fig. 4, we present the temperature evolution of the
momentum- and energy-dependent INS intensity Ĩ (Q, E ) in
FeI2 as well as a comparison with our modeling results along
several high-symmetry paths in the triangular-lattice Brillouin
zone. We have selected experimental temperatures that are
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FIG. 4. (a)–(d) Temperature evolution of momentum- and energy-dependent INS intensity Ĩ (Q, E ) in FeI2 compared to LL simulations
of the dipolar DSSF using (e)–(h) κ (T )-renormalization for SU(3) coherent states, (i)–(l) κ = 1 normalization for SU(3) coherent states, and
(m)–(p) κ = 1 normalization for SU(2) coherent states. The intensity is shown along chosen high-symmetry directions of the triangular-lattice
Brillouin zone, with integration over �Q� = 0.05 Å−1 (�� = ±0.1 r.l.u.) in the out-of-plane direction and �Q⊥ = 0.19 Å−1 in the transverse
in-plane direction. The simulated spectra are arranged from the bottom row up with an improved level of agreement with the data. Simulations
are performed at relative temperatures T/TN matching the relative temperatures of the experimental data. A global intensity scaling factor and
an energy-transfer-dependent energy resolution function estimated from the instrument configuration are applied to all simulated results. A
pair of temperature-independent and highly localized features at E ≈ 1 meV originate from multiple scattering events involving cryostat walls.

representative of four different regimes with respect to the
Néel temperature TN = 9.3 K: low temperature T = 1.9 K
same as Ref. [17] [Fig. 4(a)], just below and above the dipolar
ordering transition T = 8 K and T = 11 K [Figs. 4(b) and
4(c)], and high temperature T = 60 K [Fig. 4(d)].

In the fully ordered phase [Fig. 4(a)], the data display two
bands of overlapping magnetic excitations. The upper band,
with several branches corresponding to the different sublat-
tices and domains of the dipolar ordered structure, primarily
originates from SM excitations, while the lower band orig-
inates from SIBS and shows a momentum-dependence due
to hybridization with SMs, a phenomenon particularly visible
near Brillouin zone centers, such as Q = (1, 0, 0) and Q =
(0, 1, 0). Conversely, the flat band along the zone boundary,
e.g., between Q = (0, 1, 0) and Q = (1,−1, 0), has a strong
SIBS character. Evidently, these results cannot be captured
with traditional dipolar moments [see Fig. 4(m)]. Instead, a
quantitative match requires the use of generalized magnetic
moments represented by SU(3) coherent states [see Fig. 4(i)].
In the low-temperature limit, both generalized spin-wave the-
ory [15] and generalized classical dynamics [see Fig. 4(i)]
give identical results, in good agreement with the data.

The dichotomy of SM and SIBS survives for T =0.86 TN,
although excitations broaden significantly [Figs. 4(a) and
4(b)]. At elevated temperatures [Figs. 4(c) and 4(d)], as the
dipolar order parameter vanishes, the distinction between
dipolar and quadrupolar excitations is smeared as Sz is not
a good quantum number anymore (even approximately). Just
above the phase transition, at T =1.17 TN, the INS data
gradually evolves into an energy continuum with momen-
tum modulation reflecting the short-range correlated nature
of the underlying dynamic paramagnetic state. In the high-
temperature regime, fluctuations become damped (but not
quite overdamped), forming an incoherent energy continuum
with reduced momentum-dependent correlations. Yet, even in
that regime, the bandwidth of the fluctuations matches the
energy scale of the single-ion anisotropy, as expected from
the results of Ref. [18].

The contrast between the experimental behavior and LL
simulations using SU(2) coherent states in the large-S limit
is striking. In the ordered phase, despite closely describing
the upper excitation band of the data, the lower band is
entirely missing [Fig. 4(m)]. This is not surprising because
although these simulations solve the classical equations of
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FIG. 5. Detailed comparison between INS intensity Ĩ (Q, E ) in FeI2 (symbols) measured at selected momentum transfers, and correspond-
ing LL simulations of the dipolar DSSF using SU(3) coherent states with (solid lines) and without (dashed lines) κ (T ) renormalization. A
global intensity scaling factor and a Gaussian resolution function (FWHM = 0.47 meV) is applied to all simulated results. Spectra are offset
for clarity. The upturn in experimental data above E � 5 meV and high temperatures is due to phonons. The spurious signals around 1 meV
is due to scattering of higher order neutrons, see Appendix B for further details. The black lines are from generalized linear spin-wave theory
calculation.

motion using the same exchange Hamiltonian parameters,
they only consider dipole moments as dynamic degrees of
freedom. It is only through simulations with SU(3) coherent
states [Fig. 4(i)] that both excitation bands can be faithfully
captured. Above the phase transition at T =1.17 TN, both
SU(2) and SU(3) simulations [Figs. 4(o) and 4(k)] quali-
tatively reproduce the momentum-dependent modulation of
inelastic signals observed in data. However, the overall inten-
sities are significantly underestimated, with spectral weights
predominantly concentrated in the quasielastic region. In
the high-temperature limit at T =6.45 TN, neither simulation
[Figs. 4(l) and 4(p)] provides a good description of the data.
The SU(3) simulation [Fig. 4(l)] produces a narrow gapped
band at the energy of the single-ion anisotropy, which does
not agree with the observation. The dipole-only simulations
[Fig. 4(p)] yield a broad, temperature-damped excitation band
that resembles the data but the width of the band is consider-
ably smaller than that of the actual data.

By enforcing the quantum sum rule, the temperature-
dependent κ (T ) renormalization [Figs. 4(e)–4(h)] offers two
substantial improvements. First, inelastic signals are gener-
ally enhanced such that the change of overall intensities as
a function of temperature is much more gradual and consis-
tent with the data. In contrast, inelastic intensities drop too
quickly above the phase transition in SU(2) simulations and
SU(3) simulations without κ (T ) renormalization. Second, the
bandwidth of excitations is increased, which is a result of
amplified local mean-fields due to the rescaling of moments.
This effect produces a better agreement in energy profiles of

INS spectra at all temperatures, particularly important in the
high-temperature limit [Fig. 4(h)]. A more detailed inspection
of the temperature-dependence of the INS intensity at three
distinct momenta Q = (h, 0, 0) with h = 1/2, 3/4 and 1 is
presented in Fig. 5. The bandwidth and energy position of
the simulated excitation continuum in the high-temperature
match quantitatively with the data. Overall, this establishes
that generalized LL dynamics with temperature-renormalized
SU(N) coherent states are a necessary minimal approach to
perform semiclassical simulations of the DSSF of quantum
spin systems at finite temperatures.

IV. DISCUSSION AND CONCLUSION

In this section, we discuss some limitations of our approach
and the scope for future work. The comparison at T =0.86 TN

[Figs. 4(b) and 4(f)] reveals an obvious discrepancy because
the SIBS excitations are more visible in the data than in the
simulations. A close inspection of spectra in Fig. 5 reveals that
the simulated SIBS excitations have a weaker intensity than
experiments due to a broadened lineshape. More generally,
the detailed temperature-dependent comparison also shows
that simulations systematically underestimate the energy of
the dominant excitations. The discrepancy is around 0.1 meV
at T =0.49TN and it increases upon approaching T =TN. This
is not due to the inaccuracy of our Hamiltonian parameters as
generalized linear spin-wave calculations at zero-temperature
are in good agreement with the peak positions in the data
(black lines in Fig. 3).
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FIG. 6. Temperature dependence of the dipolar order parameters
in FeI2. The red circles indicate experimental integrated intensities
of the magnetic Bragg peak at the ordering wave vector. The blue
triangles are simulated Bragg intensities of an Ising model (see
Appendix A 4 for details), which best captures the first-order nature
of the phase transition. The yellow diamonds and green squares
are simulations with SU(3) spins and different system sizes. These
results show the discrepancy with experimental data is not a finite
size effect and is instead rooted in the simulation approach.

To shed some light on the source of these discrepancies, we
examine the temperature dependence of the order parameter
shown in Fig. 6. In the experiment, the system undergoes a
first-order transition at T =TN with the Bragg peak intensities
saturating within a small temperature window. The simulated
order parameter, however, grows at a much slower rate and
only reaches 70% of its maximal value at T =0.5 TN. The
corresponding reduction in the average molecular fields due
to the excessive amount of thermal disorder in the simula-
tions reduces the bandwidth of the collective modes. In other
words, we employ thermalized classical configurations of
SU(3) coherent states that fail to describe the magnetic phase
transition of FeI2 because they cannot reproduce its first-order
nature. This problem is rooted in the Boltzmann statistics
of the classical model: the equipartition theorem guarantees
a constant specific heat at low temperatures, which vastly
overestimates the exponentially suppressed specific heat of
our gapped quantum mechanical system. A possible improve-
ment is to incorporate the quantum (Bose-Einstein) statistics
through random Langevin-like forces with a specific power
spectral density (colored noise) [45]. This improvement could
lead to a first-order thermodynamic phase transition in agree-
ment with the experimental observation. Indeed, our classical
simulations of the spin Hamiltonian of FeI2 in the Ising limit
(where Ising variables replace moments in the limit of infinite
single-ion anisotropy) produce a first-order thermodynamic
phase transition at TN,Ising = 8.7 K that is in very good quan-
titative agreement with the experimental data (Fig. 6).

In summary, our work shows that generalized classical LL
simulations can quantitatively describe the finite-temperature
dynamics of coupled local dipoles and quadrupoles in FeI2.
The high numerical efficiency of this approach allows for sim-
ulation of the entire temperature-, momentum-, energy-, and
spin-dependence of the dynamical spin structure factors with
high resolution. The generalized LL dynamics is derived using
coherent states of the degenerate representations of SU(3)
[18–20,46]. This approach benchmarks well with inelastic

neutron scattering results on FeI2 despite two significant com-
plications. First, this compound hosts hybridized dipolar and
quadrupolar fluctuations that must be treated equally. Second,
the system orders magnetically, and the experimental spin dy-
namics need to be simulated over two decades of temperature
from T ≈ 0.1 TN to T ≈ 10 TN. Even under these constraints,
and provided the classical moments are renormalized as a
function of temperature so that the DSSF satisfies the quantum
sum rule, the entire dynamical response of the material is
approximated with good fidelity. The gapped excitation spec-
trum of FeI2 (in zero magnetic field), and the approximate
product state nature of the ground state, aided by the large
single-ion anisotropy, are likely favorable conditions. In the
future, extensions to gapless systems are planned.

The effectiveness and efficiency of classical and semi-
classical approaches to describe spin dynamics in quantum
magnetism is remarkable. Even in the extreme quantum limit
of quantum spin-liquids, the ground states of which cannot
be approximated by product states, preliminary results [47,48]
indicate that the semiclassical approach offers significant ben-
efits and a good approximation of the dynamical response
function as long as the temperature is sufficiently high. In
general, a unique advantage of classical and semiclassical
approaches is that the computational cost of their numerical
implementation scales linearly in the number of spins. This
property is crucial for solving the inverse scattering problem
of extracting models from inelastic scattering data because of
the requirement of solving the direct problem for a very large
number of candidate spin Hamiltonians.

Data supporting this publication is available from Georgia
Tech’s Library at the following link [49].
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APPENDIX A: COMPUTATIONAL METHODS

All calculations, excluding the final energy convolution,
were performed using the Sunny.jl package [50]. They may
be reproduced using example code available at Ref. [51].

1. Calculating structure factors

The structure factors were calculated by first sampling
spin configurations at thermal equilbrium and, for each of
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these samples, calculating a dissipationless trajectory, 
α
j,n(t ),

where j is the site index, n the sample number, and α spin
component. This trajectory was then Fourier transformed,
both on the lattice and in time,


α
q (ω) = 1√

2πNs

∫ ∞

−∞
dωei2πωt

∑
j

eiq·r j 
α
j (t ),

where r j is the position of site j. The convolution theorem
then allows us to estimate the classical DSSF as

Sαβ

cl (q, ω) = 1

Nsamples

∑
n


α
q,n(ω)
β

−q,n(−ω). (A1)

The final estimate of the quantum DSSF was calculated using
the classical-to-quantum correspondence factor of Eq. (1).

All simulations were performed numerically on a lattice
of dimensions 24×24×8 and in discrete time, so in fact the
discrete analog of the above equation was the actual compu-
tation. The Fourier transform was performed using the FFTW
package.

For the traditional Landau-Lifshitz simulations, the results
of which are shown in the final row of Fig. 4, 


β
j (t ) was

calculated by numerically simulating Eq. (6) directly. For the
SU(3) results, the generalized dynamics of Eq. (20) were
simulated in an equivalent Schrödinger formulation [19]. This
approach evolves an SU(3) coherent state, |� j (t )〉, on each
site, from which the purely dipolar trajectory may be recov-
ered by taking expectation values: �α

j = 〈� j (t )|Ŝα|� j (t )〉.
These trajectories were Fourier transformed as above, yielding
�α

q (ω). The DSSF was calculated as in Eq. (A1), with the
substitution 
α

q (ω) → �α
q (ω).

Equilibrium samples were generated by first initializing
the system in one of the three degenerate ground states [or-
dering wave vectors Q = (0,−1/4, 1/4), (1/4, 0, 1/4), and
(−1/4, 1/4, 1/4)]. The system was then thermalized using
Langevin integration [19] at the desired temperature until
reaching equilibrium, as determined by examining the ergod-
icity of energy trajectories. A time step of �t = 0.004 meV−1

was used to ensure numerical stability, and it was found that
a thermalization duration of 12.5 meV−1 was sufficient to
reach equilibrium at all temperatures examined. The coupling
to the thermal bath was determined by a phenomenological
parameter, λ, which was set to 0.1—see Ref. [19] for further
details. For the results presented in Figs. 2 and 3, a total
of 1200 samples were collected at each temperature. As a
result of the ground-state degeneracy, the experimental data
effectively averages over each of the possible ground states
due to domain formation. Therefore, of the 1200 samples, 400
were thermalized starting from each of the degenerate ground
states.

The dissipationless trajectories were calculated using a
symplectic integration scheme to ensure energy conserva-
tion [19]. A time step of �t = 0.025 was selected to ensure
numerical stability, and trajectories were run for a duration
of 180 meV−1. Only every 12th step of the trajectory was
recorded, resulting in a maximum resolved energy of h̄ω =
π/(12�t ) = 10.47 meV, with 300 nonnegative energy bins
of width h̄�ω = 0.03496 meV. Finally, the ω axis of the
resulting data was convolved with an ω-dependent smooth-

ing kernel based on the energy resolution of the SEQUOIA
instrument.

2. Estimating the spin renormalization factor κ(T )

Estimating the κ (T ) requires computation of the general-
ized DSSF for SU(3) coherent states Eq. (24). The procedure
for calculating this is identical what was described for the
ordinary DSSF in the SU(3) case, involving the sampling
of initial condition from thermal equilibrium and simulating
dissipationless trajectories. The main addition is that the dis-
sipationless trajectories now include the expectations not only
of the dipole operators but also the remaining generators given
in Eq. (14), �α

j,n = 〈� j (t )|T̂ α|� j (t )〉, with α ranging from 1
to 8. Using these trajectories, the generalized, classical DSSF
is estimated as

Tcl
αβ (q, ω) = 1

Nsamples

∑
n

�α
q,n(ω)�β

−q,n(−ω).

When performing the κ rescaling, this same procedure is used,
except that the dynamical trajectories, �α

j (t ), are calculated
using renormalized spins. In other words, the dynamics of
Eq. (20) are subjected to the substitution �α

j → κ�α
j . How

well the DSSF calculated using the renormalized dynamics,
Tκ = tr[T αβ

κ ], satisfies the quantum sum rule may be deter-
mined by evaluating∫ ∞

−∞
dω

∫
dd q g(ω/T )Tκ (q, ω), (A2)

where g(ω/T ) is the classical-to-quantum correspondence
factor of Eq. (1).

Using a binary search algorithm, κ was estimated for
100 logarithmically spaced temperatures, Ti, between 0.1 and
100.0 K. For each temperature, the bounds of the κ search
space were set to κlo = κ (0) = 1.0 and κhi = κ (∞) = 2.0.
An initial guess was chosen between these two values, κ0

i ,
where the upper index is the iteration number and the lower
index corresponds to the given temperature, Ti. The DSSF was
then calculated using κ0

i , and the resulting sum, Eq. (A2), was
evaluated. If the sum exceeded the reference quantum sum,
NsC

(2)
SU(3) = 16

3 Ns, with Ns the number of sites, then the process
was repeated, setting the new candidate to κ1

i = (κlo + κ0
i )/2

and resetting the upper bound to κhi = κ0
i . If the sum was less

than 16
3 Ns, then the new candidate was taken to be κ1

i = (κ0
i +

κhi )/2 the lower bound was reset as κlo = κ0
i . This process was

repeated until the estimated sum satisfied the condition∣∣∣∣
∫ ∞

−∞
dω

∫
dd q g(ω/T )Tκn

i
(q, ω) − NsC

(2)
SU(3)

∣∣∣∣ < 0.01.

κi was then defined as κn
i . κ0

0 was set to 1 initially, since the
renormalization for the lowest temperature was expected to
be very close to κ (0) = 1. For each successive temperature,
the initial guess was set to the value determined for the next
lowest temperature, i.e., κ0

i = κi−1, as κ (T ) was expected
to vary smoothly with T . The results of this procedure are
presented in Fig. 2.
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TABLE I. Hamiltonian parameters of FeI2. The values are in the unit of meV.

Nearest neighbor Further neighbor Single-ion

J±
1 J±±

1 Jz±
1 J±

2 J±
3 J ′±

0 J ′±
1 J ′±

2a —

−0.236 −0.161 −0.261 0.026 0.166 0.037 0.013 0.068 —

Jzz
1 — — Jzz

2 Jzz
3 J ′zz

0 J ′zz
1 J ′zz

2a D

−0.236 — — 0.113 0.211 −0.036 0.051 0.073 2.165

3. Simulated Néel temperature and temperature rescaling

In general, classical simulations will not reproduce the
Néel temperature, TN , of the corresponding quantum problem.
It is therefore necessary to rescale the simulation temperature,
Tsim, to make a meaningful comparison with a corresponding
experimental temperatures, T . In the work presented here, the
experimental temperature was rescaled linearly by the ratio
of the simulated Néel temperature, TN,sim, to the experimental
one, TN: Tsim = (TN,sim/TN )T .

To determine TN,sim, the dipolar order parameter was esti-
mated at 88 logarithmically distributed temperatures between
0.1 and 77.0 K, with a greater density of sampling in the
transition region, as illustrated in Fig. 6. For each temperature,
3000 equilibrium samples were drawn, 
α

j,n, where α is the
spin component, j is the site index, and n the sample num-
ber. Samples were generated using the Langevin integration
scheme described in Appendix A 1. Specifically, the system
was initialized in the ground state with ordering wave vector
qord = (0,−1/4, 1/4). The Langevin dynamics were run to
until the system reached equilibrium, as determined by the
ergodicity of the time series generated by the system’s energy.
A duration of 15 meV−1 was sufficient for all temperatures.
Subsequent samples were generated by running the dynam-
ics for intervals long enough to decorrelate the time series
generated by the systems’ energy. Decorrelation times ranged
from 12 meV−1 at low temperature to 0.8 meV−1 at high
temperatures.

Each sample was Fourier transformed on the lattice,


α
q,n = 1√

Ns

∑
j

eiq·r j 
α
j,n, (A3)

and the instantaneous structure factor for a given temperature
T was calculated as

Sαβ
T (q) = 1

Nsamples

∑
n


α
q,n


β
−q,n. (A4)

The Bragg intensity,

IBragg(T ) ≡
∑

α

Sαα
T (qord ), (A5)

was determined by calculating the trace of the instant struc-
ture factor at the ordering wave vector. TN,cl was defined as
the temperature at which a discontinuity appeared in the nu-
merical derivative of the IBragg(T ). For the SU(2) (traditional
Landau-Lifshitz) simulations, TN,cl = 5.35 K; for the SU(3)
simulations, TN,cl = 3.05 K.

4. Monte Carlo simulations of the Ising model

With the same Jzz exchange interactions from Table I, we
simulated a classical Ising model where D was replaced by
the constraint that spin dipoles be allowed only to point in the
±z directions. We utilized the parallel tempering [52] Monte
Carlo method with single spin flips to thermalize the system
and generate equilibrium samples. Using a parallel tempering
simulation with 256 logarithmically distributed temperature
points between 0.1 and 77.0 K, the average dipolar order
parameter was determined from Eq. (A4) using 100 indepen-
dent equilibrium samples at each data point. Results for the
described simulation are shown in Fig. 6.

5. Hamiltonian model of FeI2

The Hamiltonian model of FeI2, Eq. (A6), consists of
three intralayer, three interlayer interactions and a uniax-
ial single-ion anisotropy (see Fig. 7 and Table I). For
nearest-neighbor bonds, all symmetry-allowed diagonal and
off-diagonal exchange interactions are included in the model.
For further-neighbor bonds, only diagonal anisotropy is
considered. We adopt the representative values of model pa-
rameters, Table I, obtained in Ref. [15] by joint fits to the
energy-integrated paramagnetic diffuse scattering data and the
energy-resolved magnetic excitation data in the ordered phase.

nearest neighbor

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

H =
∑
〈i, j〉

[
Jzz

1 Sz
i Sz

j + 1

2
J±

1 (S+
i S−

j + S−
i S+

j )

}
spin-conserving

+ 1

2
J±±

1 (γi jS
+
i S+

j + γ ∗
i jS

−
i S−

j )

− iJz±
1

2
[(γ ∗

i jS
+
i − γi jS

−
i )Sz

j + Sz
i (γ ∗

i jS
+
j − γi jS

−
j )]

]
⎫⎪⎪⎬
⎪⎪⎭ spin-nonconserving

+
∑
(i, j)

[
Jzz

f.n.S
z
i Sz

j + 1

2
J±

f.n.(S
+
i S−

j + S−
i S+

j )
]

︸ ︷︷ ︸
further neighbor

−D
∑

i

(
Sz

i

)2

︸ ︷︷ ︸
single-ion

, (A6)
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FIG. 7. Crystal structure of FeI2 and exchange pathways in the
Hamiltonian model.

where γi j = eiθi j are bond-dependent phase factors with θi j =
θ ji = 0,+ 2

3 ,− 2
3 depending on the direction of the bond of the

triangular lattice [53,54].

APPENDIX B: EXPERIMENTAL METHODS

Single-crystal samples of ∼3 g FeI2 were synthesized
using the Bridgman method at the PARADIM facility, see
Methods sections of Refs. [15,17] for details. The inelas-
tic neutron-scattering data presented in Figs. 4 and 5 were
respectively collected on the SEQUOIA time-of-flight spec-
trometer [55,56] at the Spallation Neutron Source (SNS) and
the HB3 triple-axis spectrometer at High Flux Isotrope Re-
actor (HFIR) at Oak Ridge National Laboratory (ORNL).
SEQUOIA was operated with an incident neutron energy
Ei = 12 meV and a high-resolution chopper mode yielding a
full-width at half-maximum (FWHM) elastic energy resolu-
tion of �E =0.27 meV. The sample was aligned in the (h k 0)
plane. A liquid-helium cryostat was used to cool the sample
mount to a base temperature of T =1.8 K. Measurements at
T =2 K were performed by rotating the sample in steps of
0.5◦ for a coverage of 190◦. Data at alleviated temperatures
T =8, 11, 60 K were collected in steps of 1◦ rotation for a
range of 200◦, 200◦, and 100◦, respectively. The counting time
was ∼2.5 min per angle for all data. Raw data were reduced
in Mantid [57] and subsequently processed and symmetrized
in Horace [58]. All 12 symmetry operations of the point group
3̄m were used in the symmetrization process.

HB3 was operated with pyrolytic graphite (PG 002)
monochromator and analyzer set to a final neutron energy of
Ef =9.1 meV. Collimation of 48′–40′–40′–120′ were selected,
producing an elastic energy resolution FWHM of �E ≈
0.47 meV. A close-cycle refrigerator reaching a base temper-
ature of T =4 K was employed, and data collected at T =
4, 6, 8, 9, 10, 20, 40, 80 K. For either inelastic experiments,
the neutron scattering intensity Ĩ (Q, E ) = ki/kf[d2σ/d
dEf]
is plotted in arbitrary intensity units with Q = ha∗ + kb∗ +
�c∗ projected in the recriprocal lattice of the hexagonal unit-
cell. On HB3, the monitor count unit (mcu) of intensity
corresponds to counting times of around 1 mcu ≈1 second
for Ei = Ef (elastic scattering). A pyrolytic graphite filter was

FIG. 8. Comparison of INS spectra measured with and without
a pyrolytic graphite filter. The spurious signals around 1 meV is
strongly suppressed, confirming their origin from the scattering of
higher-order neutrons. The efficiency of the filter is not optimal at
Ef =9.1 meV which leads to residual spurious signals still being
visible in the data.

used to remove higher-order neutrons with λ/2 wavelength. A
direct comparison between spectra obtained with and without
the PG filter is illustrated in Fig. 8.

The elastic order parameter data presented in Fig. 6 were
measured at the HB3A DEMAND instrument [59] at HFIR.
The instrument was operated in two-axis mode with an incom-
ing neutron wavelength of λi = 1.542 Å from a bent Si-220
monochromator and temperatures recorded down to 1.4 K in
a cryomagnet.

APPENDIX C: DERIVATION OF THE
QUANTUM-TO-CLASSICAL CROSSOVER

1. Classical harmonic oscillator

Consider the Hamiltonian of a classical harmonic
oscillator:

H = p2

2m
+ mω2

0

2
x2,

At temperature T , the equipartition theorem tells us that
〈H〉 = kBT and 〈

mω2
0

2
x2

〉
=

〈
p2

2m

〉
= kBT

2
,

or

〈x2〉 = kBT

mω2
0

.

We introduce now the two-point correlation function:

Ccl(t ) = 1

T

∫ T

0
〈x(t + τ )x(τ )〉dτ,

where T = 2π/ω0 is the period of the harmonic oscillator.
Since

x(t ) = x(t = 0) cos(ω0t ) + ẋ(0)

ω0
sin(ω0t ),
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the Fourier transform C̃cl(ω) of the correlation function Ccl(t )
has the form

C̃cl(ω) = A[δ(ω − ω0) + δ(ω + ω0)].

The unknown constant A is determined from the sum rule:∫
dωC̃cl(ω) = 〈x2〉 = kBT

mω2
0

= 2A,

implying that

C̃cl(ω) = kBT

2mω2
0

[δ(ω − ω0) + δ(ω + ω0)]. (C1)

2. Quantum harmonic oscillator

Let us compute now the same correlation function for the
quantum harmonic oscillator, whose Hamiltonian operator is

Ĥ = p̂2

2m
+ mω2

0 x̂2

2
.

This Hamiltonian operator can be diagonalized by introducing
the creation and annihilation operators:

â =
√

mω0

2h̄

(
x̂ + i

mω0
p̂

)
,

â† =
√

mω0

2h̄

(
x̂ − i

mω0
p̂

)
,

that lead to

Ĥ = h̄ω0(â†â + 1/2).

The eigenstates of Ĥ are also eigenstates of the number oper-
ator n̂ = â†â and n̂|n〉 = n|n〉 with n being an integer larger or
equal than zero:

Ĥ|n〉 = εn|n〉,
with εn = h̄ω0(n + 1/2). The two-point correlation function

CQ(t ) = 〈x̂(t )x̂(0)〉 ≡ Trρ̂x̂(t )x̂(0).

By using that x̂(t ) = eiĤt x̂(0)e−iĤt , we obtain

CQ(t ) =
∑

n

e−βεn

Z
〈n|eiĤt (â† + â)e−iĤt (â† + â)|n〉.

By inserting an identity,

CQ(t ) = h̄

2mω0

∑
n,m

e−βεn

Z
〈n|eiĤt (â† + â)

×e−iĤt |m〉〈m|(â† + â)|n〉,
and using the orthonormality condition 〈n|m〉 = δn,m, we ob-
tain

CQ(t ) = h̄

2mω0
[(1 + nB(ω0))eiω0t + nB(ω0)e−iω0t ],

which leads to the Fourier transform:

C̃Q(ω) = h̄

2mω0
[(1 + nB(ω))δ(ω − ω0)

− (1 + nB(ω))δ(ω + ω0)], (C2)

By comparing Eqs. (C1) and (C2), we obtain

C̃Q(ω) = sgn(ω)
h̄ω

kBT
[1 + nB(ω)]C̃cl(ω), (C3)

which is Eq. (1) from the main text.
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