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In this work, we study effects of magnon interactions in the excitation spectrum of CoNb2O6 in the quantum
paramagnetic phase in transverse field, where the 1/S spin-wave theory exhibits unphysical divergences at the
critical field. We propose a self-consistent Hartree-Fock approach that eliminates such unphysical singularities
while preserving the integrity of the singular threshold phenomena of magnon decay and spectrum renormal-
ization that are present in both theory and experiment. With the microscopic parameters adopted from previous
studies, this method yields a close quantitative agreement with the available experimental data for CoNb2O6 in
the relevant regime. Insights into the general structure of the spin-anisotropic model of CoNb2O6 and related
zigzag chain materials are also provided and a discussion of the effects of additional longitudinal field on the
spectrum is given.
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I. INTRODUCTION

Quantum magnets continue to generate an enormous in-
terest as a platform for realizing unconventional ordered
[1–7] and exotic quantum disordered spin-liquid phases
[8–11], which occur due to competing interactions between
their low-energy spin degrees of freedom. The celebrated
anisotropic-exchange Kitaev model, exhibiting a spin-liquid
ground state and fractionalized excitations [12–14], has
been particularly inspirational. However, the description
of real materials consistently requires exchanges beyond
the much-desired Kitaev one [15–18], resulting in the
models with several bond-dependent terms, which typi-
cally favor magnetically ordered, if unconventional, states
[19–28].

In the pursuit of the unusual physical outcomes of the
bond-dependent exchanges, recent studies have been cen-
tered on the materials with strong spin-orbit coupling [29–31]
and, specifically, on the transition-metal compounds with
Co2+ ions in an edge-sharing octahedral environment [32–38].
Cobalt niobate, CoNb2O6, is such an anisotropic-exchange
magnet, with spins forming quasi-one-dimensional ferromag-
netic zigzag chains. This material is one of the closest
realizations of the Ising model, which exhibits a paradig-
matic quantum phase transition in transverse field [39]. The
field-induced transition is from the ordered phase with the
domain-wall-like excitations to the fluctuating paramagnetic
phase, in which excitations are magnon-like spin flips; see
Fig. 1.

CoNb2O6 has generated further excitement by providing
experimental evidence of the bound states in its ordered phase,
of the emergent E8 symmetry near the critical field, and of
the spectacular realization of the magnon decay effect in
its paramagnetic phase [40–42]. More recently, all of these
phenomena have received a consistent explanation within
the microscopic spin model, which included important bond-
dependent off-diagonal exchange interactions allowed by the
crystal symmetry [43–45].

Specifically, in the paramagnetic phase of CoNb2O6,
these off-diagonal exchanges naturally yield the so-called
cubic anharmonic term that couples single-magnon exci-
tations to the two-magnon continuum, leading to magnon
decays, the scenario confirmed by the time-dependent density-
matrix renormalization group (tDMRG) calculations [43].
The magnon decay effect is well-documented in the isotropic
and diagonal-exchange models, in which the noncollinear
states are required for the anharmonic term to occur [46,47].
Conversely, in the presence of the off-diagonal exchanges,
the anharmonic term should be generally unavoidable even
in the collinear states [27,48–50], which is the case of the
fluctuating, nominally field-polarized paramagnetic phase of
CoNb2O6 for H > Hc.

Therefore, it is expected that the analytical insights into
magnon interactions and decays can shed further light on the
important aspects of the excitation spectrum in the param-
agnetic phase of CoNb2O6 and other anisotropic-exchange
magnets. However, quantum fluctuations shift Hc from its
classical value, leaving a wide field range inaccessible to
the standard spin-wave theory (SWT). Moreover, the 1/S ex-
pansion in anisotropic-exchange models, needed to account
for magnon decays, is contaminated by the unphysical di-
vergences at the critical field. Different methods have been

FIG. 1. The schematic H−T phase diagram of the 1D Ising chain
in a transverse magnetic field; Hc is the critical field. Dashed lines
indicate the spin excitation gap.
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proposed to overcome similar problems in other systems, with
auxiliary fields allowing for the shifts of the phase boundaries
[51,52] and self-consistent methods regularizing unphysical
divergences [50,53,54].

In this work, we propose a method that allows us to ex-
plore the paramagnetic phase of CoNb2O6 in the field range
inaccessible to the standard SWT. It naturally regularizes the
unphysical 1/S divergences, while preserving the integrity
of the physical threshold singularities and affiliated decay
phenomena. This method combines a self-consistent Hartree-
Fock approach [55,56] with the perturbative treatment of the
cubic anharmonicities. Our results for the dynamical structure
factor using microscopic parameters suggested in Ref. [44]
agree closely with the inelastic neutron scattering data [42,43]
that were previously reproduced by the tDMRG [43]. Further-
more, we investigate the effects of the additional longitudinal
fields in the spectrum of CoNb2O6 in the paramagnetic phase
and make predictions of magnon band gaps and associated
Van Hove singularities. We also provide insights into the
general structure of the spin-anisotropic model for this and
related materials.

The paper is organized as follows. In Sec. II, we intro-
duce the spin Hamiltonian for CoNb2O6, relate it to the
other anisotropic models, and discuss phenomenological con-
straints. In Sec. III, we present the standard 1/S spin-wave
expansion, demonstrate the unphysical divergences in it, and
describe the self-consistent method that regularizes them. In
Sec. IV, we compare our results with the experimental data. In
Sec. V, we present our predictions of the effects of additional
longitudinal fields in the spectrum of CoNb2O6. We conclude
by summarizing our results in Sec. VI. The Appendices pro-
vide technical details.

II. MODEL

In this section, we introduce the anisotropic-exchange
model that should describe magnetic properties of CoNb2O6

and related quasi-1D materials. Following the prior analy-
sis [43,44], we use the space group of the crystal structure,
provide a connection of this model to the broader class of
anisotropic-exchange models, and discuss phenomenological
constraints on the spin Hamiltonian given in Refs. [43,44].

A. Crystal structure

The crystal structure of CoNb2O6 is orthorhombic, space
group Pbcn. The combination of the crystal-field and spin-
orbit coupling splits the j = 3/2 multiplet of the Co2+,
leading to an effective spin-1/2 ground state on each magnetic
site [57]. The magnetic Co2+ ions are arranged in 1D zigzag
chains oriented along the crystallographic c axis with the
staggered displacement along the b axis; see Fig. 2(a). In the
basal ab plane, Co2+ spins form a weakly coupled deformed
triangular lattice; see Ref. [41] for details. The schematic
representation of the isolated spin-1/2 zigzag chain is shown
in Fig. 2(a) together with the crystallographic {a, b, c} axes.

At low temperatures, Co2+ moments in each chain order
ferromagnetically, pointing along the Ising easy-axis, which
lies in the ac plane at an angle γ ≈ 30◦ to the c axis [57].
Therefore, it is natural to introduce another reference frame,

FIG. 2. (a) The schematic representation of a segment of the
zigzag spin chain, with the crystallographic {a, b, c} axes, bond-
dependent angles ϕα , nearest-neighbor vectors δα , lattice constant
c, width of the chain b, glide ac plane, and bc plane of the zigzag
structure. Dashed lines in b direction are the imaginary missing
bonds of the hypothetical honeycomb lattice, see text. (b) The lab-
oratory reference frame {x0, y0, z0} with z0 axis along the zero-field
Ising direction of spins and angle γ in the ac plane. (c) The “local”
reference frame {x, y, z} in the paramagnetic phase with z axis along
the transverse-field-induced spin orientation for H > Hc.

referred to as the laboratory frame {x0, y0, z0}, obtained by
a rotation of the crystallographic frame about the b axis by
the angle γ , so that z0 is aligned with the Ising direction; see
Fig. 2(b).

B. Symmetries and the nearest-neighbor model

Here, we consider the 1D zigzag spin-chain model with
interactions only between the nearest-neighbor sites. Given
the translational invariance, the most general nearest-neighbor
spin Hamiltonian of such a chain is

Ĥ1 =
∑
〈i j〉

ST
i ĴαS j, (1)

where ST
i = (Sx

i , Sy
i , Sz

i ), 〈i j〉 denotes summation over the
nearest-neighbor bonds, α = 1, 2 numerates the two distinct
bonds of the zigzag structure with the nearest-neighbor vec-
tors δ1(2) depicted in Fig. 2(a), and Ĵ1(2) being their respective
3 × 3 exchange matrices. At this stage, the two exchange ma-
trices in the model (1) have eighteen independent parameters
in total.

The number of independent parameters in the model (1) is
reduced by the space group symmetry of the lattice. The effect
of these symmetries on the form of the exchange matrices Ĵα

have been thoroughly discussed in Ref. [43]. Here, we provide
a complementary derivation.

CoNb2O6 has two space-group symmetries, the bond-
center inversion of the nearest-neighbor bond and the glide
symmetry. The inversion with respect to the bond center trans-
poses individual exchange matrices Ĵα , but must leave them
invariant, permitting only symmetric off-diagonal terms. This
reduces the number of independent parameters in the model
(1) to six per bond.
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The glide symmetry consists of the spatial reflection in
the ac plane, followed by a translation by half of the unit
cell c0 = c/2; see Fig. 2(a). The spatial reflection flips the
sign of the spin components that are parallel to the ac plane,
leaving the b component intact. The half-translation completes
the space-group operation, but swaps Ĵ1 and Ĵ2, yielding the
exchange matrices for the two bonds in the crystallographic
{a, b, c} reference frame given by

Ĵα =
⎛⎝ Jaa (−1)αJab Jac

(−1)αJab Jbb (−1)αJbc

Jac (−1)αJbc Jcc

⎞⎠. (2)

Thus, the nearest-neighbor model (1) has only six independent
parameters, {Jaa, Jbb, Jcc, Jab, Jac, Jbc}.

An important aspect of the exchange matrices in Eq. (2)
is the presence of the two off-diagonal staggered terms that
alternate between the zigzag bonds. Such a bond-dependence
suggests a broad relation of the model for CoNb2O6 with the
other well-known forms of the anisotropic-exchange models,
discussed next.

C. Alternative parametrizations

Given the bond-dependence of the exchange matrices in
Eq. (2), it is tempting to establish a connection between the
zigzag chain model and the much-studied bond-dependent
models on the honeycomb and other lattices. To make this
parallel more explicit geometrically, one can perceive the 1D
zigzag structure as an element of a hypothetical honeycomb
lattice, which is missing bonds in one direction [58–60]. For
CoNb2O6, one can introduce the imaginary missing bonds in
the b direction; see Fig. 2(a). As is noted below, the mutual 2D
arrangement of the chains in the bc plane of CoNb2O6 does
not correspond to the honeycomb lattice, but an important
symmetry that is needed to make such a construct possible
is present. However, there are a few nuances in the discussed
connection that are worth highlighting.

First, the angles of the nearest-neighbor vectors δα with the
imaginary missing bonds shown in Fig. 2(a), ϕ1,2 = ∓127◦,
are close but not equal to those in an ideal honeycomb lat-
tice. Second, unlike in the honeycomb lattice, the physical
bonds of the zigzag chain are not the C2-symmetry axes,
or, alternatively, the zigzag chain has only one of the three
glide planes of the honeycomb lattice. While the imaginary
bonds are the true C2-symmetry axes, the π -rotation in them
is equivalent to a combination of the glide and bond-center
inversion symmetries discussed above, providing no further
restrictions on the parameters of the model in Eq. (2).

Curiously, the true 2D arrangement of the chains in the bc
plane of CoNb2O6 is that of a distorted centered rectangular
lattice, see Fig. 3, which has the C2-symmetry axis for the
imaginary bonds.

With these insights, the model (2) can be straightforwardly
cast into the “icelike” form [3]. Within this parametrization,
one remains in the same crystallographic reference frame
{a, b, c}, but the diagonal elements in Eq. (2) are rewritten as

Jbb + Jcc = 2J, Jbb − Jcc = 4J±± cos ϕα, Jaa = �J, (3)

where � is the XXZ anisotropy parameter, with a being
anisotropy axis, and ϕα are the bond angles in Fig. 2(a). The

FIG. 3. The crystal structure of CoNb2O6 as seen in the bc plane
(a) with and (b) without the oxygen octahedral environment. The Nb
ions are not shown.

off-diagonal terms can be rewritten as Jac = Jz± cos ϕα and

(−1)αJab = −λzJz± sin ϕα, (−1)αJbc = 2λ±J±± sin ϕα, (4)

thus encoding the staggered nature of the bond-dependent
terms in that of the bond angles, ϕ1 = −ϕ2; see Fig. 2(a). This
converts the bond-dependent exchange matrix in Eq. (2) to

Ĵα =
⎛⎝ �J −λzJz±sα Jz±cα

−λzJz±sα J + 2J±±cα 2λ±J±±sα

Jz±cα 2λ±J±±sα J − 2J±±cα

⎞⎠, (5)

where the notations cα ≡ cos ϕα and sα ≡ sin ϕα are used for
brevity. The form (5) provides an alternative parametrization
to the exchange matrix, translating the set of six inde-
pendent variables in Eq. (2) to {J,�, J±±, Jz±, λ±, λz}, see
Appendix A 1.

This form in Eq. (5) is similar to the anisotropic-exchange
matrices for the triangular and honeycomb lattices within the
same “icelike” parametrization, up to a cyclic permutation
of the axes [26,50], but it is enriched by the two additional
independent terms, which are introduced as the multiplicative
factors, λ± and λz. The presence of these extra terms is due to
the lower symmetry of the zigzag chains discussed above. An
obvious utility of the form (5) is that one can straightforwardly
characterize the deviation of the zigzag model from the more
symmetric honeycomb-lattice case by using the actual param-
eters proposed for CoNb2O6 and examining the differences of
λ± and λz from unity.

We also note that recently, an attempt to introduce the
bond-dependent exchanges of the Kitaev honeycomb-lattice
model to describe CoNb2O6 was made in the form of the
twisted Kitaev-chain Hamiltonian; see Ref. [61]. This Hamil-
tonian corresponds to an interpolation between the Ising chain
and the 1D Kitaev model [62]. However, a limited number
of independent exchange terms in this model restricts its
ability to describe quantitatively generic anisotropic-exchange
zigzag chain materials and, specifically, CoNb2O6 [44]. Nat-
urally, a more complete description should be achievable
within this Kitaev-like parametrization, but it would require
an extended version of the model with all symmetry-allowed
terms present in the exchange matrices, corresponding to a
generalized Kitaev-Heisenberg chain [58–60].

Next, we discuss phenomenological constraints on the
model (2) for CoNb2O6.
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D. Phenomenological constraint

In principle, having taken advantage of all of the lattice
symmetries, the full six-parameter nearest-neighbor model (1)
with the exchange matrices from Eq. (2) and minimal addi-
tional further neighbor and three-dimensional terms should be
used to provide the best fit of the experimental data and to
determine the actual values of these parameters for a specific
material.

However, in the most comprehensive studies of CoNb2O6

in Refs. [43,44], the number of independent terms in the
nearest-neighbor exchange matrices (2) has been reduced to
four by utilizing a phenomenological constraint before the
parameter fitting procedure.

1. Ising axis direction

Since the zero-field magnetic order in CoNb2O6 has a
preferred direction, it is natural to rotate the crystallographic
reference frame to align one of the axes (z0) with the observed
Ising axis of the spins. It is done by a rotation of the {a, b, c}
axes by γ about the b axis; see Fig. 2(b). Then, the exchange
matrices (2) are transformed to this laboratory reference frame
{x0, y0, z0} via Ĵα = R̂γ ĴαR̂T

γ , where R̂γ is the rotation matrix
and

Ĵα =

⎛⎜⎝ Jx0x0 (−1)αJx0y0 Jx0z0

(−1)αJx0y0 Jy0y0 (−1)αJy0z0

Jx0z0 (−1)αJy0z0 Jz0z0

⎞⎟⎠, (6)

with the relations of the {x0, y0, z0} exchanges to the ones in
the {a, b, c} frame given in Appendix A 1. One can notice that
matrices in Eq. (6) retain the structure of Eq. (2).

Since the Ising direction is minimizing the energy of the
zero-field spin configuration, it provides an implicit phe-
nomenological constraint on the matrix elements of Ĵα in
Eq. (6), such that the spins in the ground state of the model
should stay aligned along the z0 axis.

The essence of the approach proposed in Refs. [43,44]
is to impose such a constraint explicitly by eliminating all
individual terms in Eq. (6) that generate an unphysical tilt
of spins away from the z0 axis. One of such offending terms
is Jx0z0 . Since it creates an x0-tilt of spins in the x0z0 plane
already in the classical limit of the model, it is rendered zero
in this approach. Curiously, the Jy0z0 -term does not provide a
y0-tilt because of its staggered nature stemming from the glide
symmetry of the lattice.

Less obviously, in the quantum case, the x0-tilt is also
generated by the combination of the two staggered terms,
Jx0y0 and Jy0z0 , as we demonstrate below. The Jy0z0 -term was
found crucial for the CoNb2O6 phenomenology as the key
microscopic source of the domain-wall dispersion observed in
the ordered phase [43,44]. Then, it follows that the only way
to eliminate the unphysical x0-tilt completely is to vanish Jx0y0 -
term, yielding the four-parameter exchange matrix advocated
in Refs. [43,44],

Ĵα =

⎛⎜⎝Jx0x0 0 0

0 Jy0y0 (−1)αJy0z0

0 (−1)αJy0z0 Jz0z0

⎞⎟⎠. (7)

While we will adopt this form of the exchange matrix in the
main part of the present work below, the following note is
in order. Although the approach of Refs. [43,44] is simple,
seemingly unambiguous, and potentially generic, it is not
without a caveat.

One may suspect that such an approach is overconstrain-
ing, because a single phenomenological constraint is used
to eliminate two symmetry-allowed terms from the exchange
matrix. Instead, both offending terms, Jx0z0 and Jx0y0 , may be
allowed to be nonzero, but exactly compensating each others’
spin tilting and leaving the physical Ising direction intact.
Of course, the technical implementation of such an indirect
constraint as a part of the parameter-fitting procedure is more
challenging, so the approach of making Jx0z0 = Jx0y0 = 0 can
be taken as a mild assumption in the search of a minimal
model.

To vindicate the assumption of Refs. [43,44] in the case of
CoNb2O6 further, we note that the compensating tilts from
Jx0z0 and Jx0y0 (Jy0z0 ) terms appear in different orders of the
quasiclassical theory. Jx0z0 creates a tilt already in the classical
limit of the model, while the tilt due to Jx0y0 is a purely
quantum effect. Given this hierarchy and using the fact that the
off-diagonal exchanges in CoNb2O6 are secondary to the main
Ising term, below we provide a perturbative consideration of
the effects of the “residual” Jx0z0 and Jx0y0 terms.

2. Perturbative consideration

Coming back momentarily to the exchange matrix in the
crystallographic reference frame (2), a straightforward mini-
mization of the classical energy of the model yields the tilt
angle of spins away from the c axis as

tan 2γ̃ = 2Jac

Jcc − Jaa
= − 2Jz± cos ϕα

(� − 1)J + 2J±± cos ϕα

, (8)

given here for both parametrizations of the exchange matrix
in Eqs. (2) and (5). The latter illustrates one of the broader
perspectives provided by the form in Eq. (5) as the Jz± term
is known to produce such an out-of-the-plane tilt in the previ-
ously discussed models [26,50,63].

Then, within the classical approximation, one would
equate the tilt angle γ̃ to its experimentally observed value
γ , thus using the preferred direction of the magnetic order
in CoNb2O6 shown in Fig. 2(b) as a phenomenological con-
straint that provides a relation between exchanges given by
Eq. (8). As a result, the number of independent terms in the
nearest-neighbor exchange matrix would be reduced to five,
setting Jx0z0 ≡ 0 in Eq. (6).

However, quantum fluctuations can renormalize the tilt
angle of the ordered magnetic moment, producing deviations
from the classical result (8). In other words, if one would
calculate the angle between the Ising z0 and c axes in the quan-
tum case with Ĵα in Eq. (6) and Jx0z0 = 0, it would generally
deviate from γ .

This quantum renormalization can be accessed pertur-
batively by considering virtual spin-flip processes that are
generated by the staggered terms Jx0y0 and Jy0z0 . Using the
real-space perturbation theory [64–66] for the S = 1/2 model
in Eq. (6) with only the main Ising and staggered terms,
we derive the tilt angle in the second order of the theory as
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FIG. 4. Jx0z0 vs Jx0y0 for the CoNb2O6 parameters in Sec. II E.
Line is the real-space perturbation theory (RSPT) result (11) for the
simplified model with only the Jz0z0 , Jx0y0 , and Jy0z0 terms; symbols
are DMRG results for the full model, see Appendix A 2 for details.

given by

δγ ≈ −Jx0y0 Jy0z0

J2
z0z0

, (9)

which is supported by our DMRG calculations [67], with the
details for both deferred to Appendix A 2.

We can further assert that the higher-order corrections to
the tilt angle also require both staggered terms, because they
have to cancel their symmetry-related staggered form as in
Eq. (9). Moreover, the higher-order corrections to Eq. (9) need
to carry odd powers of each of the staggered terms because
they generate different number of spin flips, as can also be
verified numerically; see Appendix A 2.

Thus, from the quasiclassical perspective, the choice of
Jx0y0 = 0 made in Refs. [43,44] automatically renders all
quantum corrections to the classical Ising axis angle γ̃ equal
to zero, leaving it equal to the experimental value γ by con-
struction. For the parametrizations of the exchange matrices in
Eqs. (2) and (5), the choice Jx0y0 = 0 provides another relation
between the components of the exchange matrices that reads

tan γ = Jab

Jbc
= − λzJz±

2λ±J±±
. (10)

Altogether, for the nearest-neighbor model written in the
laboratory reference frame {x0, y0, z0}, this results in the four-
parameter exchange matrix given in Eq. (7).

Last, one can use the perturbative consideration for the tilt
angle in Eq. (9) together with the numerically precise DMRG
calculations to quantify the potential values of the “residual,”
mutually compensating Jx0z0 and Jx0y0 terms in the quantum
S = 1/2 model of CoNb2O6, if these terms are allowed to
deviate from zero. A straightforward derivation gives the re-
lation between such terms that would leave the Ising axis
direction intact,

Jx0z0 = Jx0y0

(
Jy0z0

Jz0z0

)
, (11)

which explicates the different order of their corresponding
effects on the spin orientation in the quasiclassical expansion.
We note that this result is obtained for a simplified model as
is Eq. (9).

In Fig. 4, we show this dependence for the choice of Jy0z0

and Jz0z0 values that correspond to CoNb2O6; see Sec. II E
below. It is plotted together with the DMRG results for the

full model using the best-fit parameters discussed in the next
section. According to Ref. [43], the Jx0y0 term in CoNb2O6

should be small as it produces the momentum space period-
icity of the domain-wall excitations in the ordered phase that
is different from the observed one. As is shown in Fig. 4, this
should render the limit on the residual Jx0z0 to nearly zero,
thus providing a further partial exoneration to the approach of
Refs. [43,44].

E. Best-fit parameters

An extensive comparison of the experimental data with the
numerical modeling carried out in Ref. [44] has resulted in the
set of the best-fit parameters for CoNb2O6. Translating them
to the notations of our Eq. (7), the nearest-neighbor exchanges
are

Jx0x0 = −0.57(2) meV, Jy0y0 = −0.67(2) meV,

Jz0z0 = −2.48(2) meV, Jy0z0 = −0.56(1) meV. (12)

We note that in Refs. [43,44] a different parametrization
has been used for the two diagonal exchanges: Jx0x0 =
Jz0z0 (λs + λa) and Jy0y0 = Jz0z0 (λs − λa).

For completeness, we also translate these numerical values
to that of the exchange parameters in the original crys-
tallographic {a, b, c} frame in Eq. (2) and to the “icelike”
parametrization of Eq. (5); see Appendix A 1. For the “ice-
like” form (5), the best-fit parameters {J,�, J±±, Jz±, λ±, λz}
are given by

J = −1.34(1) meV, � = 0.78(1), J±± = −0.55(1) meV,

Jz± = 1.37(2) meV, λz = 0.26(1), λ± = 0.55(1), (13)

where the last two parameters, λz and λ±, quantify the sub-
stantial degree to which the zigzag chain differs from the
hypothetical honeycomb lattice, where λz = λ± = 1. Clearly,
the diagonal XXZ exchanges are ferromagnetic, and the val-
ues of J±± and Jz± underscore the pronounced anisotropic
nature of CoNb2O6. Interestingly, the value of � < 1 im-
plies that in this parametrization, CoNb2O6 can be regarded
as an easy-plane anisotropic-exchange magnet, thus estab-
lishing a connection to the other members of the cobaltate
family [36,37,68]. Moreover, the dominant Jz± and smaller
J±± anisotropies are reminiscent of the other transition-metal
anisotropic-exchange materials, such as α-RuCl3 [27].

As is stated in Ref. [44], the nearest-neighbor model (1)
with the exchange matrix in Eq. (7), needs to be supplemented
by the next-nearest-neighbor XXZ term

Ĥ2 =
∑

i

{
J2
(
Sx0

i Sx0
i+2 + Sy0

i Sy0
i+2

) + J2z0 Sz0
i Sz0

i+2

}
, (14)

providing a consistent quantitative agreement with the ex-
perimental data for the excitation spectrum of CoNb2O6 in
different regions of its phase diagram and for the fields ap-
plied in the transverse and longitudinal directions. The best
parameter choice for the next-nearest-neighbor part of the
Hamiltonian (14) is

J2 = 0.077(3) meV, J2z0 = 0.19(1) meV,

gx0 = 3.29(6), gy0 = 3.32(2), gz0 = 6.90(5), (15)
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where we have also listed the principal moments of the g-
tensor. Below, we will use the best-fit parameter values in
Eqs. (12) and (15) to compare our results with the neu-
tron scattering data in the paramagnetic phase of CoNb2O6

[42,43]. We will also follow prior works [44] in a simplifying
assumption that the g-tensor is diagonal in the laboratory
frame.

We also point out that one may need to include small in-
terchain couplings if considering the full 3D spectrum, or use
an effective longitudinal field to account for their confining
effect in the ordered phase [41,43–45]. However, in this work,
we focus on the spectrum in the field-induced paramagnetic
phase of CoNb2O6, in which spins are aligned in the trans-
verse (b = y0) direction, making the effect of the interchain
couplings negligible.

III. SELF-CONSISTENT SPIN-WAVE THEORY

In this section, we briefly outline the steps of the 1/S
spin-wave expansion as applied to the paramagnetic phase
of CoNb2O6, demonstrate the problem of the unphysical di-
vergences in it, and describe the self-consistent Hartree-Fock
method that regularizes them.

A. Critical field and Hamiltonian in local axes

The paramagnetic phase in CoNb2O6 is induced by a
transverse magnetic field. To model it, the six-parameter spin
Hamiltonian Ĥ1 + Ĥ2 from Eqs. (1), (7), and (14) has to be
augmented by the transverse-field term

Ĥ⊥ = gy0μBB
∑

i

Sy0
i , (16)

with the field B along the high-symmetry y0(b) axis. Using the
classical energy consideration detailed in Appendix B with
exchanges and relevant g-tensor component from Eqs. (12)
and (15) gives the classical critical field for the transition to
the paramagnetic phase

Hc = 2S
(
Jy0y0 − Jz0z0 + J2 − J2z0

)
, Bc ≈ 8.8(1) T, (17)

where the field in the energy units, H = gy0μBB, is intro-
duced. For the sake of the future discussion, we note that this
critical field is considerably larger than the one found by the
DMRG in the 1D model, B1D

c ≈ 4.5 T, see Sec. IV, suggesting
strong renormalization due to quantum effects.

For the spin-wave expansion in the paramagnetic phase, we
perform a rotation from the laboratory {x0, y0, z0} to the local
reference frame {x, y, z}, depicted in Fig. 2(c), aligning the
local quantization axis z with the direction of the field. This
leads to the cyclic permutation of the spin components(

Sx0
i , Sy0

i , Sz0
i

)
lab = (

Sy
i , Sz

i , Sx
i

)
loc. (18)

After the transformation (18), it is convenient to divide the
Hamiltonian into two parts, referred to as the even and
the odd, to separate even and odd powers of the bosonic
operators in the subsequent spin bosonization. Using the
Hamiltonian in Eqs. (1), (7), (14), and (16), the even term

reads

Ĥeven =
∑

i

{
Jz0z0 Sx

i Sx
i+1 + Jx0x0 Sy

i Sy
i+1 + Jy0y0 Sz

i Sz
i+1

+ J2z0 Sx
i Sx

i+2 + J2
(
Sy

i Sy
i+2 + Sz

i Sz
i+2

) − HSz
i

}
, (19)

while the odd part is given by

Ĥodd = Jy0z0

∑
i

eiQri
(
Sx

i Sz
i+1 + Sz

i Sx
i+1

)
. (20)

In the latter, the factor eiQri = (−1)i replicates the staggered
structure of the Jy0z0 term, where Q = 2π ĉ/c is the reciprocal
lattice vector of the zigzag chain, c is its lattice constant, and ĉ
is the unit vector along the c axis in Fig. 2(a). As is discussed
below, the relevant unit cell is smaller, with the lattice constant
c0 = c/2 and the reciprocal lattice vector G = 2Q.

Clearly, in the absence of the odd part (20), there would be
no memory of the zigzag structure left in the spin model, as
the even part (19) describes a “simple” Ising-like chain with
the transverse field term and second-neighbor exchanges, but
no bond-dependent terms. Since (19) yields the linear spin-
wave theory, one can anticipate that it will have only a single
bosonic branch, with no zone-folding in the reciprocal space
from the zigzag structure of CoNb2O6.

However, the odd part of the model (20) arises precisely
from such bond-dependent terms. Importantly, in the param-
agnetic phase, it contributes only to the nonlinear, anharmonic
coupling of the spin flips, bringing about an important Q-shift
of the two-magnon continuum that couples to the single-
magnon branch. This feature of the spin model of the zigzag
chains in CoNb2O6 has been recognized and thoroughly
discussed in Ref. [43] as crucial for explaining puzzling kine-
matics of the observed magnon decays.

We also note that a similar structure of the theory was
recently discussed in Ref. [50] in the context of the easy-plane
honeycomb-lattice model with bond-dependent exchanges,
underscoring the connection of the present consideration to
a broader class of models and materials with spin-orbit-
generated anisotropic exchanges.

B. Linear spin-wave theory

The harmonic, or linear spin-wave theory (LSWT) order of
the 1/S expansion about the classical ground state is obtained
via the standard Holstein-Primakoff (HP) bosonization of spin
operators in the local reference frame: Sz

i = S − ni and, to the
lowest order, S+

i ≈ √
2Sai.

In the field-polarized paramagnetic phase of CoNb2O6

considered here, it is only the even part of the Hamiltonian
(19) that contributes to LSWT. As is discussed above, this
part of the Hamiltonian is invariant to the translations by
c0 = c/2, that is, half of the primitive lattice vector of the
zigzag chain. In other words, spin states on all sites of the
chain are equivalent and only one bosonic species needs to
be introduced. Using the HP bosonization in Eq. (19) and the
standard Fourier transformation

ai = 1√
N

∑
k

eikri ak, (21)
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where N is the number of lattice sites in the chain, we obtain
the LSWT Hamiltonian

Ĥ(2) =
∑

k

{
Aka†

kak − Bk

2
(a†

ka†
−k + H.c.)

}
, (22)

where Ak and Bk are

Ak = H − 2S
(
Jy0y0 + J2

) + SJk+, Bk = SJk−, (23)

with

Jk± = (
Jx0x0 ± Jz0z0

)
γ

(1)
k + (

J2 ± J2z0

)
γ

(2)
k , (24)

and the nearest- and next-nearest-neighbor hopping am-
plitudes γ

(n)
k = cos(nkcc0), where n = 1(2), kc = kĉ is a

projection of the momentum k on the chain direction, and
c0 = c/2, with c being the lattice constant of the zigzag chain,
as before; see Fig. 2(a) and Appendix B for more details and
Ref. [41] for similar expressions.

The LSWT Hamiltonian (22) is diagonalized by a text-
book Bogolyubov transformation, ak = ukbk + vkb†

−k, with
u2

k + v2
k = Ak/εk, 2ukvk = Bk/εk, and magnon energy

εk =
√

A2
k − B2

k. (25)

The excitation gap of the LSWT spectrum (25) at the � point
(k = 0) is given by

�0 =
√

(H − Hc)
[
H + 2S

(
Jx0x0 − Jy0y0

)]
, (26)

vanishing at the critical field Hc in Eq. (17), as expected. Given
the low spin-symmetry of the model, the spectrum in Eq. (25)
has a relativistic form near �, with εk ∝ |k| at H = Hc, the
behavior that will be important for the unphysical divergences
discussed below.

C. Nonlinear spin-wave theory and divergences

The 1/S expansion of the Hamiltonian in Eqs. (19) and
(20) beyond the LSWT yields two anharmonic terms, cubic
and quartic, describing three- and four-magnon interaction,
respectively. The cubic anharmonicity comes from the odd
part of the model (20) and carries an important umklapp-like
Q-shift of the momentum in the one-to-two-magnon coupling,
similar to the other models with the staggered structure of
the cubic terms studied in the past; see Refs. [50,69,70]. The
quartic term is from the even part of the model (19), in which
higher 1/S-terms of the HP bosonization of spins are kept.

Diagrammatically, these interactions result in a loop expan-
sion, with the lowest-order diagrams shown in Figs. 5(a)–5(c).
In a strict 1/S sense, their contributions to the magnon excita-
tion spectrum are of the same order. Three more diagrams with
the same number of loops, corresponding to the anomalous
self-energies, are not shown as they yield corrections of the
higher 1/S-order [71].

Deferring some essential but technical details concerning
three-magnon vertex symmetrization to Appendix B, the two
self-energies in Figs. 5(a) and 5(b) are the decay and the
source ones, respectively,


(3)(k, ω) = 
(d )(k, ω) + 
(s)(k, ω). (27)

While both come from the same cubic anharmonicities, it is
the decay diagram that is relevant to the description of some of

FIG. 5. (a) Decay, (b) source, (c) Hartree-Fock, and (d) self-
consistent Hartree-Fock self-energies.

the most dramatic modifications that may occur in the magnon
excitation spectra, such as the anomalous broadening due to
quasiparticle breakdown [27,46,49], strong renormalization
due to avoided decays [72,73], and threshold singularities
[46,74]. These effects occur when the single-particle and two-
particle spectra overlap, with the lower dimensions of the spin
system [75], symmetry of the spin model [49], and favorable
kinematics [46,48,76] all playing a significant role in the
resultant magnitude of these effects.

All these phenomena manifest themselves quite spectacu-
larly in the CoNb2O6 excitation spectrum in the transverse-
field-induced polarized phase [42,43], owing to the 1D nature
of the zigzag chains, low spin-symmetry leading to a direct
one-to-two-magnon coupling (20), and a favorable overlap
with the Q-shifted two-magnon continuum, also allowing for
the field-variation of it, the features thoroughly discussed in
Ref. [43].

Therefore, analytical insights by the 1/S nonlinear SWT
(NLSWT) into the magnon interactions can be expected to
shed further light on the important aspects of the decays,
level repulsion, and singularities in the excitation spec-
tra of CoNb2O6, related zigzag chain materials, and other
anisotropic-exchange magnets. However, this expectation is
undermined by the unphysical divergences in NLSWT at the
critical field, characteristic to anisotropic models [50,53].

The problem can be seen in the strict 1/S expansion for the
magnon spectrum, in which corrections to the LSWT energy
(25) are given by the on-shell (ω = εk) self-energies from
Figs. 5(a)–5(c),

ε̃k = εk + δε
(3)
k + δε

(4)
k , �k = −Im[
(3)(k, εk )],

δε
(3)
k = Re[
(3)(k, εk )], δε

(4)
k = 
HF (k), (28)

where ε̃k is the renormalized spectrum, �k is the decay-
induced broadening, 
(3)(k, ω) from Eq. (27) is discussed
above, and the ω-independent Hartree-Fock self-energy

HF (k) is shown Fig. 5(c), see Appendix B 3.

Figure 6 shows the NLSWT result of such a 1/S-
renormalization of the magnon spectrum (28), calculated
using the best-fit model for CoNb2O6 from Eqs. (12) and (15)
and for the field just above the classical value of the critical
one in Eq. (17), H = 1.01Hc, all for S = 1/2. An artificial
broadening of 10−3 meV was used in calculating 
(3)(k, εk )
(27). Also shown are the LSWT single-magnon branch (25)
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FIG. 6. Magnon spectrum in the LSWT (25) and NLSWT (28)
1/S-approximations, two magnon continuum (shaded area), and 1/S
decay rate �k for H = 1.01Hc, best-fit parameters for CoNb2O6, and
S = 1/2. Arrows indicate the unphysical divergences and physical
threshold singularities; see the text.

together with the Q-shifted two-magnon LSWT continuum,
black dashed line and the shaded area, respectively.

As is expected, significant singular modifications of the
spectrum close to the decay threshold boundaries, which cor-
respond to the crossing of the single-magnon branch with
the edges of the two-magnon continuum, are present in the
NLSWT spectrum in Fig. 6. The decay-induced scattering
rate �k, divergent at the same thresholds k∗ and G − k∗, with
G = 2Q, is also shown. This is in accord with the similarly
stark modifications of the magnon spectra in a variety of other
models [70,71]. Not only do they demonstrate the anoma-
lous broadening and strong repulsion of the single-magnon
spectrum from the two-magnon continuum within the limited
capacity of the naïve perturbation theory, but they also signify
a breakdown of the 1/S expansion in the vicinity of the decay
thresholds and call for a more consistent treatment of these
effects, going beyond the 1/S-approximation to regularize the
associated divergences [46,48,49,71]. We offer further analy-
sis of these physical threshold singularities in Sec. IV.

However, this discussion of the physical aspects of the
interacting magnon spectrum is completely undermined, as
the results in Fig. 6 are dominated instead by the nearly
divergent behavior of the spectrum near the � point, which
is far away from the decay thresholds. Therefore, it should
not be affected by the anharmonicities and should correspond
to a minimum of the magnon mode in the ferromagnetically
dominated model.

This behavior is due to the 1/S expansion, which can also
be seen as an expansion in 1/εk. Because of the closing of the
excitation gap in Eq. (26), the 1/S corrections to the magnon
energy in Eq. (28) diverge as 1/|k| at H → Hc.

While clearly unphysical, this failure of the NLSWT in
the proximity of the field-induced transition with vanishing
excitation gap is not unexpected, as it is characteristic of the
models with the lower spin symmetry, such as anisotropic-
exchange ones [50,53].

To analyze the technical anatomy of this failure, it is in-
structive to consider the Hartree-Fock self-energy in Fig. 5(c).
To derive it from the quartic terms in Eq. (19), one decou-
ples the four-boson combinations from the 1/S expansion
down to the two-boson ones using the real-space HF averages

{〈a†
i ai〉, 〈a†

i a j〉, 〈a†
i a†

j〉, . . . }, which can be straightforwardly
evaluated from the Bogolyubov parameters of the LSWT; see
Appendix B for the explicit expressions and technical steps
[70,71].

As a result, the quartic terms are reduced to the LSWT form
of Eq. (22), only with the 1/S corrections δAk and δBk instead
of the Ak and Bk terms in Eq. (23). Then, the 1/S expansion
yields

δε
(4)
k = 
HF (k) = AkδAk − BkδBk

εk
, (29)

which is explicitly divergent in 1/εk at Hc due to the gapless
mode at the � point. One should note that in the highly
symmetric spin-isotropic models such an expansion is benign,
because δAk and δBk follow the same k-dependence as the
LSWT Ak and Bk terms, canceling the divergence for the
vanishing εk [56,77,78].

It is important to observe that the strong divergence
in Eq. (29) originates from the strict use of the 1/S-
approximation that can be straightforwardly avoided by
replacing Ak → Ak + δAk and Bk → Bk + δBk in the renor-
malized spectrum, an approach used in a variety of models
[50,79]. In our case, the solution is more subtle, first because
of the cubic terms, but also because of the 1D character of the
problem, which leads to the logarithmically divergent real-
space HF averages for the gapless spectrum. Nevertheless,
such an approach hints at the self-consistent regularization
scheme, which does not only remove the singularity at H →
Hc, but also allows us to access the field range that is in-
accessible to the standard spin-wave theory. This method is
discussed next.

D. Self-consistent Hartree-Fock method

For the CoNb2O6 model discussed in this work, there is
a clear hierarchy of the exchange terms, with the dominant
Ising exchange Jz0z0 ; see Eq. (12). Moreover, since the stag-
gered Jy0z0 term enters only via the higher-order anharmonic
coupling, one can expect that its contribution to the magnon
spectrum away from the threshold singularities is perturba-
tively small, 
(3)(k, ω) ∼ O(J2

y0z0
/Jz0z0 ), while the role of the

problematic correction from the quartic terms is 
HF (k) ∼
O(Jz0z0 ). This suggests the following two-step regularization
procedure.

At the first stage, we neglect the contribution of the cubic
terms and perform a self-consistent calculation of the renor-
malized eigenvalues ε̄k and eigenstates ūk and v̄k of the SWT
using an iterative procedure with the quartic-term contribu-
tion, referred to as the self-consistent Hartree-Fock (SCHF)
method. It goes beyond the standard SWT by combining dif-
ferent orders in 1/S [54–56], as is depicted in Fig. 5(d), which
emphasizes the self-consistency in the inner line of the HF
self-energy. The self-consistency loop is depicted as follows:

{HFs} �⇒ {δĀk, δB̄k}
⇑ ⇓

{ε̄k, ūk, v̄k} ⇐� {Āk, B̄k}
. (30)

The set of the real-space HF averages, denoted as {HFs}, is
used to obtain the quartic-term contributions to the harmonic
theory, δĀk and δB̄k, as is described in Appendix B 3. They
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FIG. 7. Same as in Fig. 6. LSWT (25), NLSWT (28), and
SCHF + 
 (3) (31) magnon spectra for H = 1.01Hc.

result in the modified, but an LSWT-like eigenvalue problem
of the same form as in Eq. (22) with Āk = Ak + δĀk and B̄k =
Bk + δB̄k, which, in turn, leads to the new set of the energies
ε̄k and Bogolyubov parameters ūk and v̄k, with the latter used
as an input for the HF averages. The cycle is continued until
numerical convergence in the HF averages is reached.

With the additional important technical details and step-by-
step implementation described in Appendix B 4, the following
point should be made. Since the described approach regular-
izes the energy gap in the magnon spectrum, the gap remains
finite at the nominal LSWT critical field Hc. Because of
that, the SCHF method also allows us to extend our study
to the field values below Hc, the feat which is unattainable
by the standard 1/S SWT approaches. For that, we perform
the SCHF calculations at a field H > Hc, and then use the
outcome for the converged HF averages at a higher field as
an input for the next SCHF calculation for a continuously
decreasing field. The stability and consistency of this proce-
dure is verified by varying the initial field, the step in the field
decrease, and other iterative parameters; see Appendix B 4.

Finally, the magnon energy spectrum is obtained by re-
instating the cubic terms (27). Importantly, all Bogolyubov
coefficients that enter decay and source vertices as well as the
magnon energies in the loops of the diagrams in Figs. 5(a) and
5(b) (see Appendix B 3) are replaced with their regularized
values obtained within the SCHF method described above.
Then, the regularized on-shell (ω = ε̄k) magnon energy is
given by

ε̃k = ε̄k + δε̄
(3)
k ,

δε̄
(3)
k = Re[
(3)(k, ε̄k )], �̄k = −Im[
(3)(k, ε̄k )]. (31)

The success of the described regularization procedure in re-
moving the unphysical singularity at the critical field and
in describing the physical spectrum of CoNb2O6 is demon-
strated in the next section. We also note that in the results
for the dynamical structure factor discussed below, the full
ω-dependence of the cubic self-energies in Eq. (27) is used.
In the following, we refer to the method outlined here as the
SCHF + 
(3).

IV. RESULTS

In this section we present the outcome of the self-consistent
method advocated above, demonstrating its power in regu-

FIG. 8. Magnon gap �0 vs B by LSWT (25), NLSWT (28),
SCHF + 
 (3) (31), and DMRG for the best-fit model of CoNb2O6,
compared to experimental gaps (solid points) [80]. The DMRG and
classical critical fields, B1D

c and Bcl
c , and the region inaccessible by

standard SWT (gray shaded area) are highlighted, see text.

larizing the unphysical divergences and ability to extend the
theory beyond the restrictive classical boundaries. We also
compare our results for the dynamical structure factor in the
field-induced paramagnetic phase with the inelastic neutron
scattering data of Refs. [42,43].

A. Regularization of the unphysical divergences

The success of our method (31) in regularizing the un-
physical divergences discussed in Sec. III C is demonstrated
in Fig. 7, where the magnon energy spectrum by the SCHF +

(3) for H = 1.01Hc and the best-fit model of CoNb2O6 is
shown together with the LSWT (25) and NLSWT (28) re-
sults from Fig. 6. In the regularized spectrum in Fig. 7, the
offending divergent behavior of the NLSWT near the � point
is gone, and one is able to focus on the physical effects of
magnon interaction in the decay-related phenomena.

The second achievement is the following. The 1D crit-
ical field calculated by DMRG for the CoNb2O6 model,
B1D

c ≈ 4.52(1) T, is close to the experimentally estimated
one, B1D

c,exp ≈ 5 T [40], both much smaller than the classical
critical field, Bcl

c ≈ 8.8 T, obtained for the best-fit parameters
in Eq. (17). For B < Bcl

c , the paramagnetic phase is not a
minimum of the classical energy and cannot be studied by
means of the 1/S expansion, because the LSWT Hamiltonian
(22) is not positive-definite, with its spectrum (25) becoming
imaginary in some regions of k.

Figure 8 shows the magnon excitation gap �0 at the � point
as a function of the field for the best-fit model of CoNb2O6

obtained by different methods. The vanishing of this gap
corresponds to a phase transition from the paramagnetic to
the ordered phase at T = 0. The red horizontal line on top of
the figure and the gray shaded area emphasize the difference
between the classical and experimental results for it. Accord-
ing to the LSWT, the gap vanishes at the classical critical field
(17), and it diverges in the NLSWT 1/S-approximation. The
SCHF + 
(3) method regularizes this divergence at Bcl

c and
allows us to extend the study of the magnon spectrum into the
field region below the classical boundary to the paramagnetic
phase. These results also shows an excellent agreement with
the experimental data for the gap at 7, 8, and 9 T [80], high-
lighting the quantitative accuracy of our approach.
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FIG. 9. Magnon spectrum by the SCHF (31) with and without
the cubic self-energy 
 (3)(k, ε̄k ) for the best-fit model of CoNb2O6

and B = 7 T (H = 0.8Hc). The intensity plot is the two-magnon DoS
calculated using the SCHF energies ε̄q.

Last but not the least, Fig. 8 shows the results of the DMRG
simulations for the gap in the same model, which agree closely
with both experimental data and results of the self-consistent
theory, except for the close proximity of the critical field.
With the details of the DMRG calculations deferred to Ap-
pendix C, it should be noted that the DMRG critical field for
the single-chain 1D model is B1D

c = 4.52(1) T, also below the
experimental value. This is because the 3D interchain terms
play important role near the transition; see Refs. [44,45].

Deviation of the SCHF + 
(3) from the DMRG results is
of a different, but related nature. While remarkably successful
otherwise, the self-consistent method is not entirely consistent
for the gap approaching zero. The SCHF method naturally
prevents the gap from closing, because the HF averages would
diverge logarithmically for the gapless spectrum due to the
1D character of the model. The finite critical field in the
SCHF + 
(3) method is due to the non-self-consistent pertur-
bative treatment of the cubic term 
(3), and the value of the
critical field it yields at approximately 3.4 T is not physically
meaningful.

Notwithstanding these minor limitations and concerns, one
should not lose the sight offered by Fig. 8, which demon-
strates the ability of our approach to provide quantitatively
meaningful description of the magnetic excitations for a wide
field range in the paramagnetic phase of CoNb2O6. This is de-
spite strong quantum fluctuations, anisotropic exchanges, and
low dimensionality of the problem, the factors that make the
standard SWT fail. Not only does the SCHF + 
(3) method
regularize the unphysical divergences, but it also preserves
the physical features of the threshold singularities, which are
discussed next.

B. Decay threshold singularities

While the main results and comparison with the ex-
perimental data for the dynamical structure factor will be
discussed in the next section, we would like to briefly recall
the origin and the nature of the decay-related phenomena in
the magnon spectra; see also Refs. [46,69,71].

In Fig. 9 we show the magnon spectrum ε̄k obtained by
SCHF method discussed in Sec. III D, together with ε̃k from

Eq. (31) that includes contribution of the on-shell cubic self-
energy 
(3)(k, ε̄k ), for the best-fit model of CoNb2O6 and
H = 0.8Hc (B ≈ 7 T), well below the classical critical field
Hc. The two-magnon density of states (DoS), D(2)(k, ω) =
1
N

∑
q δ(ω − ε̄q − ε̄k−q+Q), for the SCHF energies ε̄q, is

shown as an intensity plot.
As one can see in Fig. 9, the contribution of the cubic

term 
(3)(k, ε̄k ) to the magnon spectrum away from the cross-
ings with the two-magnon continuum is indeed small, as is
anticipated in the discussion of the SCHF + 
(3) approach
in Sec. III D. In fact, the cubic term vanishes entirely at
k = Q, owing to the staggered structure of the corresponding
spin-exchange terms (20), which, in turn, is translated into
the antisymmetric structure of the cubic vertices, see Ap-
pendix B 3.

The divergent behavior exhibited by the on-shell SCHF +

(3) spectrum near the crossing with the two-magnon
continuum at k∗ and equivalent points, referred to as the
decay threshold boundaries [46], is due to a resonance-like
coupling of the single-magnon branch with the two-magnon
continuum, which is provided by the cubic terms. Since the
lowest two-magnon energy must necessarily correspond to a
minimum of Ek,q = ε̄q + ε̄k−q+Q at any given k, it follows
that the corresponding two-magnon DoS must be singular at
that minimum in 1D, as one can observe in Fig. 9; see also
Appendix C 2. It also follows that one can expand the denom-
inator of the decay part of the on-shell self-energy, ε̄k − Ek,q,
near such a minimum in the proximity of the threshold k∗
for small �k = k − k∗. Because the decay vertex has no
symmetry constraints at a generic k∗ and must generally be
finite, one can obtain the asymptotic behavior for the real and
imaginary parts of the on-shell self-energy on the two sides of
the threshold

Re[
(3)(k, ε̄k )] ∝
{−1/

√|�k|, for �k < 0,


 + γ�k, for �k > 0,

�̄k ∝
{

0, for �k < 0,

1/
√

�k, for �k > 0,
(32)

where 
 > 0 is the cutoff parameter and γ is a constant.
The inverse square-root singularities in Eq. (32) are from
the 1D Van Hove singularity at the edge of the two-magnon
continuum that gets imprinted on the single-magnon spectrum
via the anharmonic coupling. These asymptotic results explain
the behavior observed in Fig. 9 and should be contrasted with
a typically weaker singularities in the higher dimensions and
for the more symmetric models [46,71].

Note that, given the relative simplicity of the magnon
dispersion in the paramagnetic phase of CoNb2O6, the two-
magnon energy, ε̄q + ε̄k−q+Q, can be well-approximated as
an energy of two particles with the nearest-neighbor hop-
ping, ε̄q ≈ E0 + J1γ

(1)
q , total momentum k, and the Q shift,

straightforwardly yielding the bow-tie form of the continuum
with zero width at the � point; see Fig. 9. In that case, the min-
imum of the two-magnon energy corresponds to the energy
of two magnons with equivalent momenta, Emin

k,q∗ = 2ε̄q∗ with
q∗ = (k − Q)/2, for any k. This latter condition also holds
for most k for the true form of ε̄q; see Appendix C 2.

However, because of the further-neighbor exchanges and
a relativistic form of the magnon dispersion, there is more
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structure in the two-magnon continuum in the vicinity of the
� point, providing the bow-tie region with a finite width and a
richer set of the Van Hove singularities visible in Fig. 9. Since
they are far away from the physical decay thresholds, we re-
frain from discussing them here and delegate a more detailed
analysis of the two-magnon kinematics to Appendix C 2.

As is discussed above, the perturbative consideration of the
decay diagram within the on-shell approach offered by Fig. 9,
Eq. (31), and Eq. (32) signifies a breakdown of the perturba-
tion theory in the vicinity of the decay thresholds and calls for
a more consistent treatment of these effects to regularize the
associated divergences. Qualitatively, upon a self-consistent
treatment of the higher-order contributions, which is typically
difficult to implement, these singularities are expected to lead
to the anomalous broadening, renormalization of the magnon
spectrum, and the so-called termination points [71,74].

One of the less-sophisticated regularizations, which, nev-
ertheless, avoids the divergences of the on-shell approach, is
based on a straightforward use of the explicit ω-dependence
in the cubic self-energy in Eq. (27). It corresponds to the
one-loop approximation for the single-magnon Green’s func-
tion G(k, ω) and its spectral function A(k, ω), which is
able to yield the quantitatively faithful description of the
quasiparticle-like and incoherent parts of the single-magnon
spectrum [71,72,75]. Since the spectral function is directly
related to the dynamical structure factor S(k, ω), measured in
the inelastic neutron-scattering experiments, we will use this
approach as is discussed in the next section.

C. Dynamical structure factor

The general form of the dynamical structure factor (DSF)
for the neutron scattering is [44]

S (k, ω) =
∑
α,β

gαgβ

(
δα,β − kαkβ

k2

)
Sαβ (k, ω), (33)

with the momentum and energy transfer k and ω, axes of the
reference frame α and β, g-tensor components gα , and the
spin-spin dynamical correlation function

Sαβ (k, ω) = 1

π
Im

∫ ∞

−∞
dt eiωt i

〈
T Sα

k (t )Sβ

−k(0)
〉
. (34)

For the field-induced fluctuating paramagnetic state of
CoNb2O6, with the choice of the local {x, y, z} or laboratory
{x0, y0, z0} axes in Fig. 2(c), only diagonal components of
Eq. (34) are considered [44]. Two of them are in the ac plane
normal to the field, one along the Ising axis, Sxx (Sz0z0 ), and
one perpendicular to it, Syy (Sx0x0 ) [41]. One more component
is along the field, Szz (Sy0y0 ).

In the studies of the CoNb2O6 spectrum in the polarized
phase that are discussed in Refs. [41,43,44], the momentum
transfer is not aligned exclusively along the chain direction c,
see Fig. 2(a), but has other components. In our consideration,
which is focused on the single spin-chain model, the addi-
tional momentum component along the b axis is important
because it is able to detect the zigzag structure of the chain.

Assuming the momentum transfer in the bc plane and
keeping only diagonal components in the DSF, the general

expression in Eq. (33) is simplified to

S (k, ω) = g2
z0

(1 − λ̃ cos2 γ )Sxx(k, ω)

+ g2
x0

(1 − λ̃ sin2 γ )Syy(k, ω) + g2
y0
λ̃Szz(k, ω),

(35)

where we use the shorthand notation λ̃ = k2
c /(k2

c + k2
b ) and

the angle γ is between the Ising and c axes, as before, with
the transfer momentum k in the local frame

k = kbb̂ + kcĉ = kbẑ + kc(cos γ x̂ − sin γ ŷ); (36)

see Fig. 2. As is discussed in Ref. [43], the nonzero b-
component of the momentum in Eq. (36) is responsible for
the secondary Q-shifted signal in the structure factor from the
doubling of the unit cell [41,43,44]. The general form of the
diagonal components of the dynamical correlation function is
given by

Sαα (k, ω) = cos2(kbb) S̃αα (k, ω)

+ sin2(kbb) S̃αα (k + Q, ω), (37)

where b is the width of the zigzag chain in the b direction, see
Fig. 2(a) and Ref. [41], and S̃αα (k, ω) is the correlation func-
tion that depends only on the momentum in the c direction,
k = kcĉ. We note that in Eq. (37) the main signal is associated
with the first term and the secondary, “shadow” signal, with
the Q-shifted one.

The S̃xx and S̃yy components of the structure factor are
the transverse ones and can be straightforwardly related to the
single-magnon spectral function [41,72] as

S̃αα (k, ω) = Fαα (k)A(k, ω), (38)

where the kinematic form factors

F xx
k = S

2
(ūk + v̄k )2, F yy

k = S

2
(ūk − v̄k )2, (39)

produce the k-dependent modulation of the single-magnon
spectral peaks throughout the Brillouin zone.

The DSF can also be expected to exhibit significant decay-
related features, such as incoherent parts of the single-magnon
spectrum and strong renormalizations, due to the cubic self-
energy (27) in the single-magnon spectral function A(k, ω) =
− 1

π
Im[G(k, ω)], where

G(k, ω) = 1

ω − ε̄k − 
(3)(k, ω) + i0+ , (40)

is the Green’s function in the SCHF + 
(3) approach.
The DSF component along the field, S̃zz, corresponds to

the longitudinal fluctuations, which account for the direct two-
magnon continuum contribution to it,

S̃zz(k, ω) =
∑

q

F zz
q,k δ(ω − ε̄q − ε̄k−q),

F zz
q,k = 1

2
(ūqv̄k−q + v̄qūk−q)2. (41)

Note that in contrast to the two-magnon continuum in the
anharmonic coupling, this continuum is not umklapp-shifted
by the momentum Q.
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FIG. 10. Intensity plots of the dynamical structure factor S(k, ω) in the paramagnetic phase of CoNb2O6 for the field 7 T (a), (c) and 9 T
(b), (d), best-fit parameters (a), (b), and adjusted λs (c), (d). In each plot, experimental data adapted from Ref. [43] are shown in the left panel,
theoretical results are in the middle panel, and the two are overlaid in the right panel. Artificial broadening of 10−3 meV for the self-energy
(27) and 5 × 10−2 meV for the Green’s functions (40) and (41) were used. Dashed lines show the bottom of the two-magnon continuum and
the arrows indicate the Q-shifted shadow modes (37).

For comparison with experiments in Ref. [42], in Fig. 10
we illustrate our calculations, where we combined all con-
tributions to the structure factor as given by Eq. (35), and
used a momentum transfer in the bc plane with kb/kc = 0.3
to have a finite contribution from the shadow mode. We also
used artificial broadenings of 10−3 meV in the self-energy

(3)(k, ω) (27) and 5 × 10−2 meV in the Green’s functions
(40) and (41).

Figure 10 displays our main results. It shows the compi-
lations of the DSF intensity maps by the inelastic neutron
scattering, adapted from Ref. [43], with the DSF intensities
obtained by the theoretical SCHF + 
(3) approach described
above. Each plot consists of the experimental data in the left
panel, theoretical results in the middle panel, and the two
results overlaid in the right panel, where we have exploited the
symmetry of them about the � point. The comparison is pre-
sented for the field 7 T in Figs. 10(a) and 10(c) and for 9 T in
Figs. 10(b) and 10(d), respectively. The upper row, Figs. 10(a)
and 10(b), shows theoretical results for the best-fit model of
CoNb2O6, see Sec. II E, while the lower row, Figs. 10(c) and
10(d), has one parameter from that set modified. The same
comparison with the experimental data for 8 T is given in
Appendix C 3.

One can see that the theoretical results for the best-fit
model (upper row of Fig. 10) already yield if not an ideal,
but a close quantitative agreement with the experimental data
on the gap and magnon bandwidth with no adjustment to the
parameters. We note that the mismatch in the energies at the Q
point might in part be related to the effect of the weak 3D in-
terchain coupling, which affect the experimental data, but are
not included in our model. The lower row of Fig. 10 shows that
an even closer agreement can be reached by a modest change
of a single parameter in the model, λs = (Jx0x0 + Jy0y0 )/2Jz0z0 ,

used in the parametrization of Ref. [44], see also Sec. II E, to
which the maximum of the magnon band is most sensitive.
Changing it from the best-fit value of λs = 0.251 to λs = 0.2
improves the agreement with our theory. This is not to chal-
lenge the comprehensive multi-dimensional best-fit strategy
of Ref. [44], but to highlight, once again, that a self-consistent
approach can turn a theory plagued with unphysical diver-
gences into a reliable, nearly quantitative tool.

Turning to the other features of the theoretical results
shown in Fig. 10, it is clear that the off-shell ω-dependent
cubic self-energy successfully regularizes the threshold sin-
gularities discussed in Sec. IV B, and, indeed, provides a
quantitatively faithful description of the quasiparticle-like and
incoherent parts of the single-magnon spectrum. On the inner
side of the two-magnon continuum, the magnon spectral lines
acquire a substantial broadening in a close agreement with the
experimental data, see also the plot for 8 T in Appendix C 3.

On the outer side of the continuum, a direct intersect of
the magnon mode with the continuum is avoided via a strong
renormalization of the magnon energy, creating a gaplike
splitting and a characteristic loss of the spectral weight of the
magnon line. Although the quantitative agreement with the
experimental data on the size of the gaplike feature and its
evolution with the field is rather spectacular, the theoretical
results contain more details, with the remnant of the magnon
mode following the bottom of the two-magnon continuum for
an extended range of the momenta. While a recent proposal
suggests that in 1D such an edge-mode should survive for all
the momenta [75], this conclusion is an artifact of the one-loop
approximation for the magnon self-energy, which is also em-
ployed in our study. In reality, it is expected that the magnon
mode should meet the continuum at the so-called termina-
tion point [46,71,74], the result that requires a self-consistent
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treatment of the higher-order diagrams in the theory, which is
not attempted here.

Because of the constraint provided by the quantitative ac-
cord of the experiment and theory on the size of the gaplike
splitting in the spectrum, an additional comment can be made
on the potential value of the “residual” Jx0y0 term in the ex-
change matrix (6), discussed in Sec. II D 2 and Appendix A 2.
This term does not modify the even part of the spin Hamil-
tonian (19), but contributes to the cubic coupling from the
odd part (20). Because of the staggered nature of this term,
the structure of the decay vertex is not expected to modify,
leading to an enhancement of the decay self-energy accord-
ing to 
(3)(k, ω) ∝ J2

x0y0
+ J2

y0z0
. Since the best-fit parameters

without the Jx0y0 -term provide a close quantitative description
of the decay-related features described above, see Fig. 10, one
can conclude that the Jx0y0 term must be small compared to
Jy0z0 . This observation supports the approach of Refs. [43,44]
and our discussion in Sec. II D 2.

In Fig. 10, in both theoretical and experimental results, one
can also observe the Q-shifted “shadow” mode in addition
to the main contribution from the single-magnon excitations
[41,43,44]. As is discussed above, it originates from the
nonzero component of the transfer momentum along the b
axis. In the theory results in Fig. 10, one can also observe a
continuum-like contribution from the longitudinal component
of the structure factor (41), with its role being generally minor.

V. LONGITUDINAL FIELD EFFECTS

Up to this point, our study of the CoNb2O6 excitation
spectrum in the paramagnetic phase concerned the transverse
direction of the field. Now we focus on the effects of an
additional longitudinal field component. In this consideration,
we use the same spin Hamiltonian Ĥ1 + Ĥ2, Eqs. (1), (7), and
(14), with the transverse-field term Ĥ⊥ = gy0μBB⊥

∑
i Sy0

i ,
Eq. (16), now augmented by the longitudinal-field term

Ĥ‖ = gz0μBB‖
∑

i

Sz0
i . (42)

with the field component B‖ along the Ising z0 axis; see Fig. 2.
We are interested in the regime of the weak longitudinal
fields, B‖ � B⊥, with excitations remaining spin-flip-like and
magnon description of the their spectrum still adequate.

Although symmetry-wise the classification of the type of
the symmetry-breaking provided by the longitudinal field in
Eq. (42) in the case of the zigzag model of CoNb2O6 is more
delicate, relating it to the glide-symmetry breaking [43], the
main effect is the same as in the paradigmatic Ising model
[81,82]. The quantum phase transition of the transverse-field
Ising-like model ceases to exist and turns into a crossover,
with a finite excitation gap at the former transition point.

The second effect of the symmetry-breaking longitudinal
field is specific to the zigzag chain model, and it is intimately
tied to the presence of the staggered bond-dependent Jy0z0

terms, allowed by the same glide symmetry. Because of the tilt
of the spin-quantization axis induced by the longitudinal field
in the paramagnetic state, the two-site unit cell of the zigzag
structure becomes explicit in the model of spin flips, doubling
the unit cell of the “simple” Ising chain that sufficed until now.
The description of the excitation spectrum in this more general

case requires two distinct branches of spin excitations within
the reduced Brillouin zone of the zigzag chain.

Importantly, these two excitation branches will be split by
a band gap. As we argue below, one can expect strong modifi-
cations of the two-magnon DoS as a result of these changes in
the single-magnon spectrum, inducing richer varieties of the
Van Hove singularities that are potentially observable. Below,
we quantify both effects using the LSWT formalism.

A. Excitation gap and band gap

In the tilted field with a small longitudinal component away
from the transverse y0 axis toward the Ising z0 axis, the spin-
quantization axis will tilt by the angle θ in the y0z0 (zx) plane,
see Fig. 2(c), found from the minimization of the classical
energy, see Appendix D for details,

H⊥ sin θ − Hc sin θ cos θ − H‖ cos θ = 0, (43)

where H⊥ = gy0μBB⊥ and H‖ = gz0μBB‖ are the transverse
and longitudinal fields, respectively, in the energy units, and
the classical critical field Hc is from Eq. (17).

Here, we focus on the case of the transverse field value
equal to the critical field, H⊥ = Hc, and study the dependence
of the spectrum gap and the band gap on the longitudinal
field, as both gaps vanish at H‖ = 0. For H‖ � H⊥ = Hc,
Eq. (43) can be solved by expanding in the small canting
angle, yielding

θ = (2H‖/Hc)1/3. (44)

Note that this fractional power law is reminiscent of that
of the canting angle due to staggered Dzyaloshinskii-Moriya
interaction in the isotropic square-lattice antiferromagnet near
saturation field [83].

The LSWT consideration of the 1/S expansion of the
model with the longitudinal field involves a somewhat cum-
bersome diagonalization of the 4 × 4 Hamiltonian for the two
bosonic species, deferred to Appendix D, which gives explicit
expressions of the energies of the two magnon branches. In
the presence of the longitudinal field, excitation gap �0 at the
� point and the band gap �b at the Q/2 point open up, as is
discussed above; see Fig. 11(a) for a comparison to the H‖ = 0
case.

Using the canting angle (44) for small fields, one can obtain
asymptotic expressions for the gaps,

�0 ≈ α0H1/3
‖ , α0 ≈

√
3

2
Hc

(
2

Hc

)1/3

,

�b ≈ αbH1/3
‖ , αb ≈ 2S

∣∣Jy0z0

∣∣( 2

Hc

)1/3

, (45)

which follow the same fractional power law versus field, see
Appendix D for the exact proportionality coefficients and
Fig. 11(b), which shows a comparison of the asymptotic re-
sults (45) with the full LSWT results for the best-fit model of
CoNb2O6.

We note that, according to the Ising conformal field theory
in 1 + 1 dimensions [81], the scaling of the spectrum gap with
the longitudinal field is known to obey a different fractional
power law with the exponent 8/15. Still, the expressions in
Eq. (45) highlight an important distinction of the two gaps.
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FIG. 11. LSWT results for the best-fit model of CoNb2O6 and
H⊥ = Hc. (a) Magnon spectrum for H‖ = 0 (dashed line) and H‖ =
0.02Hc (solid line), with gaps �0 and �b identified. (b) Excitation
gap �0 and band gap �b vs (H‖/Hc )1/3. Lines are the full LSWT
results (Appendix D) and dashed lines are their asymptotics from
Eq. (45).

The spectrum gap �0 is essentially the same as it would have
been for the “simple” Ising-like spin chain, as it is independent
of the bond-dependent terms. However, the appearance of the
band gap �b is precisely due to the staggered bond-dependent
Jy0z0 terms, rooted in the zigzag nature of the model.

Quantitatively, because the bond-dependent terms in
CoNb2O6 are secondary to the main Ising term, the excitation
gap �0 grows faster with the longitudinal field than the band
gap �b. Comparison of their asymptotics in Eq. (45) for the
CoNb2O6 model yields

�b

�0
≈ 2S

√
2

3

∣∣Jy0z0

∣∣
Hc

≈ 0.27. (46)

As we will see next, this result has a significant impact on the
longitudinal field range for which the overlap of the single-
magnon branches with the additional Van Hove singularities
in the two-magnon spectra is possible.

B. More threshold singularities

One of the important consequences of the magnon
band splitting is the explicit separation of the two-magnon
continuum into three continua, corresponding to different
combinations of the single-magnon species

E {μ,ν}
k,q = εμq + ενk−q, (47)

where μ(ν) = 1, 2. This splitting also necessarily creates
richer structure of the Van Hove singularities in the contin-
uum, which can affect the single-magnon spectrum via the

FIG. 12. Magnon spectrum for H⊥ = Hc, H‖ = 0.01Hc and the
best-fit model of CoNb2O6 in the repeated Brillouin zone scheme.
The intensity plot is the two-magnon DoS for the continua in
Eq. (47).

anharmonic coupling. Thus, if allowed by the two-magnon
kinematics, the longitudinal field can potentially lead to more
singularities in the magnon spectra, in addition to the ones
discussed in Secs. IV B and IV C.

In Fig. 12, we show magnon spectrum together with
the two-magnon DoS intensity plot for H⊥ = Hc and H‖ =
0.01Hc (B‖ ≈ 0.09 T) for the best-fit model of CoNb2O6,
from which one can appreciate the more intricate structure of
the field-induced Van Hove singularities in the two-magnon
continuum.

However, in practice, because excitation gap �0 grows
faster than the band gap �b (46), such a trend in the
field-induced gaps provides a rather narrow range of the
longitudinal fields for which the kinematics is favorable of
the crossing of the additional Van Hove singularities by
the single-magnon spectrum. Thus, already for H‖ = 0.01Hc

shown in Fig. 12, the magnon branch barely accesses the extra
features in the continuum, prohibiting such a crossing for the
larger fields.

In addition to the kinematics, we would also like to remark
on the effect of the small longitudinal field on the structure of
the anharmonic cubic term that is responsible for the one-to-
two-magnon coupling. There are two parts in it in the presence
of the H‖ field, one that largely retains the same form as in
the odd part of the Hamiltonian (20), originating from the
staggered exchanges Jy0z0 , while the other is due to the tilt
angle θ ∝ H1/3

‖ that allows most other exchanges to contribute
to the cubic anharmonicity; see Appendix D for some more
detail. We note that it is the latter term that was previously
considered as the main source of the decay singularities in
CoNb2O6 [42]. However, not only is it subleading in the weak
longitudinal-field regime, but it is also not staggered, resulting
in an unfavorable kinematics for the decay-related processes.

VI. CONCLUSIONS

We conclude by summarizing our results. In this study,
we have thoroughly reanalyzed the symmetry-based approach
to formulating anisotropic-exchange model of the quasi-
one-dimensional ferromagnet CoNb2O6. We have proposed
a connection of its model to the broader class of such
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models, studied for a wide variety of materials with complex
bond-dependent spin-orbit-induced exchanges. We have also
clarified the role of a phenomenological constraint that has
been used to restrict parameter space of CoNb2O6, and have
investigated the magnitude and the effects of the residual
terms, which were neglected in the previous studies, using
real-space perturbation theory and unbiased DMRG approach.

The main result of the present work is the self-consistent
study of the effects of magnon interactions in the excitation
spectrum of CoNb2O6 in the quantum paramagnetic phase.
We have proposed and applied a self-consistent Hartree-
Fock regularization of the problematic unphysical divergences
in the 1/S spin-wave expansion that is common to vari-
ous anisotropic-exchange models. Not only does this method
eliminate such unphysical singularities, but it also preserves
the integrity of the threshold phenomena of magnon decay and
spectrum renormalization that are present in both theory and
experiment of CoNb2O6.

Using the microscopic parameters proposed previously, we
have employed this approach to study excitation spectrum
in the fluctuating paramagnetic phase of CoNb2O6. For the
dynamical structure factor S (k, ω), we have demonstrated a
close quantitative agreement of our theory with the neutron-
scattering data for both the quasiparticle-like and incoherent
parts of the single-magnon spectrum, also in the field regime
that is inaccessible by the standard spin-wave theory. More-
over, our results for the spectrum gap are in a close accord
with the complimentary DMRG calculations for the same
model parameters.

These results prove the ability of our approach to provide
quantitatively faithful description of the magnetic excita-
tions in the paramagnetic phase of CoNb2O6, despite strong
quantum fluctuations, anisotropic exchanges, and low dimen-
sionality of the problem, the factors that make the standard
SWT-like approaches fail. Furthermore, it can be expected
that our approach should be able to yield further analytical
insights into magnon interactions and decay phenomena and
shed light on the important aspects of the excitation spec-
tra in the other anisotropic-exchange magnets in the higher
dimensions, where it is free from the remaining minor in-
consistencies associated with the 1D nature of the CoNb2O6

model.
Last, we have also discussed the effects of additional lon-

gitudinal fields in the paramagnetic phase of CoNb2O6. We
have demonstrated that due to the zigzag lattice structure
and affiliated bond-dependent exchanges in the model, and
due to the symmetry breaking by the longitudinal field, both
the excitation gap and the band gap develop in the magnon
spectrum. We have described how the band splitting leads
to the additional anomalies in the two-magnon continuum,
potentially resulting in extra threshold singularities in the
magnon spectra.

ACKNOWLEDGMENTS

We thank P. Maksimov for a prior collaboration on the ear-
lier attempt on this problem and for an important discussion
concerning Kitaev-like bond-dependent terms in 1D that has
led us to expand on the general anisotropic-exchange model
for the zigzag chain. We are indebted to L. Woodland and R.

Coldea for numerous conversations on the phenomenological
constrains for CoNb2O6, their implementation, and parame-
ters of the model, as well as for sharing their experimental
results, indispensable comments and useful insights, and de-
tailed editorial guidance to ensure coherence of our text and
its consistency with the experimental analysis. We thank J.
Rau and I. Lovas for helpful conversations. We are grateful
to S. Jiang for important guidance regarding DMRG. This
entire work, from conception to development, execution, and
writing, was supported by the U.S. Department of Energy,
Office of Science, Basic Energy Sciences under Award No.
DE-SC0021221. We thank Aspen Center for Physics (A.L.C.)
and KITP (A.L.C. and C.A.G.), where parts of this work
were completed. Aspen Center for Physics is supported by
National Science Foundation Grant No. PHY-2210452. KITP
is supported by the National Science Foundation under Grants
No. NSF PHY-1748958 and No. PHY-2309135.

APPENDIX A: MODEL

1. Different parametrizations

For the two parametrizations of the exchange matrix in
the crystallographic reference frame {a, b, c} in Fig. 2(a), the
original one in Eq. (2) and the one in the “icelike” language in
Eq. (5), the relations between exchanges are given by

J = Jbb + Jcc

2
, � = 2Jaa

Jbb + Jcc
,

Jz± = Jac

cos ϕα

, J±± = Jbb − Jcc

4 cos ϕα

,

λz = − (−1)αJab

Jac tan ϕα

, λ± = 2(−1)αJbc

(Jbb − Jcc) tan ϕα

. (A1)

The matrix in the laboratory {x0, y0, z0} frame is obtained by
rotating the exchange matrix in the crystallographic frame by
γ about b; see Fig. 2(b), using the rotation matrix

R̂γ =
⎛⎝cos γ 0 − sin γ

0 1 0
sin γ 0 cos γ

⎞⎠. (A2)

The explicit relation of the matrix elements of the exchange
matrix in the laboratory frame to that in the crystallographic
frame is

Jx0x0 = Jaa cos2 γ − Jac sin 2γ + Jcc sin2 γ ,

Jy0y0 = Jbb,

Jz0z0 = Jaa sin2 γ + Jac sin 2γ + Jcc cos2 γ ,

Jx0y0 = Jab cos γ − Jbc sin γ ,

Jx0z0 = Jac cos 2γ − 1
2 (Jcc − Jaa) sin 2γ ,

Jy0z0 = Jbc cos γ + Jab sin γ . (A3)

The best-fit parameters in Ref. [44] can be translated to the
exchanges in the laboratory {x0, y0, z0} frame, see Eq. (12) and
discussion in Secs. II D 1 and II E.
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Using Eqs. (A3) and (12), we obtain exchanges in the
crystallographic frame

Jaa = Jx0x0 cos2 γ + Jz0z0 sin2 γ = −1.05(1) meV,

Jbb = Jy0y0 = −0.67(1) meV,

Jcc = Jx0x0 sin2 γ + Jz0z0 cos2 γ = −2.00(2) meV,

Jab = Jy0z0 sin γ = −0.28(1) meV,

Jac = 1
2

(
Jz0z0 − Jx0x0

)
sin 2γ = −0.83(1) meV,

Jbc = Jy0z0 cos γ = −0.49(1) meV. (A4)

Finally, combining Eqs. (A1) and (A4), gives parameters in
the “icelike” parametrization in Eq. (13).

2. Out-of-plane angle

Real-space perturbation theory (RSPT) [64–66] allows
to access the effects of quantum fluctuations by expanding
around the classical ground state of the ferromagnetic Ising
chain in various spin-flip processes. To avoid unnecessary
secondary details, we consider a simplified nearest-neighbor
exchange matrix

Ĵα =

⎛⎜⎜⎝
0 (−1)αJx0y0 0

(−1)αJx0y0 0 (−1)αJy0z0

0 (−1)αJy0z0 Jz0z0

⎞⎟⎟⎠, (A5)

where Jz0z0 is the leading ferromagnetic Ising exchange and
the two staggered terms, Jx0y0 and Jy0z0 , are perturbations.
The Hamiltonian can be written in terms of the spin ladder
operators as follows:

Ĥ0 = Jz0z0

∑
〈i j〉

Sz0
i Sz0

j ,

V̂xy = iJx0y0

2

∑
〈i j〉

(−1)α{S−
i S−

j − S+
i S+

j }, (A6)

V̂yz = iJy0z0

2

∑
〈i j〉

(−1)α
{
(S−

i − S+
i )Sz0

j + (S−
j − S+

j )Sz0
i

}
,

where perturbations V̂xy and V̂yz generate double spin flips
and single spin flips, respectively. The ground state of the
unperturbed Hamiltonian in Eq. (A6) is the ferromagnetic
state |0〉 and its excited states |n〉 are the states with n spin
flips.

Since we are interested in the deviations of the ordered
moment from the Ising axis, the lowest-order processes that
induce a single-spin-flip state |1〉 are in question. Notably, the
single-spin-flip term acting on the ground state vanishes iden-
tically because of its staggered form, V̂yz|0〉 = 0, providing no
spin tilt along the y0 axis. The lowest nonzero contribution that
yields the single-spin-flip state is given by the second-order
process involving both single- and double-spin-flip terms in
Eq. (A6)

|0〉 V̂xy−→ |2〉 V̂yz−→ |1〉, (A7)

in which their mutually canceling staggered form is impor-
tant. Then, the fluctuating ground state due to the process in
Eq. (A7) is

|̃0〉 = |0〉 − Jx0y0 Jy0z0

√
2S

8J2
z0z0

S(1 − 1/4S)
|1〉, (A8)

which yields the angle of the spin tilt out of the y0z0 plane
along the x0 axis, δγ ≈ 〈Sx0

i 〉/〈Sz0
i 〉, for any site i

δγ = − Jx0y0 Jy0z0

4J2
z0z0

S(1 − 1/4S)
, (A9)

where we used Sx0
i = (S+

i + S−
i )/2 and neglected higher-order

corrections to the ground state from the two consecutive
double-spin-flips. The results in Eqs. (A8) and (A9) are ob-
tained for the model (A6) with arbitrary spin S, keeping
higher-order 1/S terms such as (1 − 1/4S) factors, originating
from the interaction of the nearest-neighbor spin flips. The
S = 1/2 limit of Eq. (A9) is listed in Eq. (9).

Importantly, the fluctuating ground state in Eq. (A8) con-
tinues to respect the glide symmetry and produces no tilt in
the y0 direction, 〈Sy0

i 〉 = 0.
Given the analysis leading to the second-order RSPT result

in Eq. (A9), one can argue that to produce a spin tilt, both
Jx0y0 and Jy0z0 terms are necessary in an arbitrary order of the
theory, because they have to cancel their staggered form. The
higher-order corrections to (A9) also need to carry odd powers
of each of the staggered terms because they generate different
number of the spin flips. These considerations can be expected
to remain valid for a general model in Eq. (6), which contains
other nonstaggered spin-flip terms.

As is discussed in Secs. II D 1 and II D 2 and is clear from
Eq. (A9), the spin tilt angle vanishes for the choice of Jx0y0 = 0
made in Refs. [43,44], rendering quantum corrections to the
classical Ising spin direction zero. One can verify the accuracy
of the second-order perturbative result for the tilt angle in
Eq. (A9) and elucidate the role of the higher-order fluctuations
with the help of the unbiased DMRG calculations for the
ground state.

The DMRG simulations were performed in chains of up to
5000 sites using the ITensor library [67]. We have employed
two strategies, the “scan” with a slowly varying Jx0y0 along
the chain, which provides a real-space variation of the tilt
angle, and “no-scan,” in which the tilt angle is measured in the
middle of the chain away from the edges for each individual
Jx0y0 value. Both approaches yield numerically indistinguish-
able results. Because of the Ising nature of the model, a very
good convergence is reached with low bond dimensions and
small number of the DMRG sweeps [84].

In Fig. 13(a), we show the RSPT result (A9) for S = 1/2
and for Jz0z0 and Jy0z0 from Eq. (12), which correspond to the
best-fit parameters for CoNb2O6, as a function of Jx0y0/|Jz0z0 |.
It is shown together with the DMRG results for the same S =
1/2 simplified model (A5), for which Eq. (A9) was derived. In
addition to that, DMRG results for the full model of CoNb2O6

in Eqs. (7) and (14) for the best-fit parameters from Eqs. (12)
and (15) in Secs. II E are shown.

Clearly, the numerical results for δγ vanish identically
for Jx0y0 = 0, in accord with the discussion above. For the
simplified model, the agreement of the slope of the DMRG
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FIG. 13. (a) The spin tilt angle by RSPT (A9) and DMRG vs
Jx0y0/|Jz0z0 | for the simplified and full models for the best-fit param-
eters for CoNb2O6. (b) The ratio of the DMRG and RSPT tilt angles
for the simplified model for two choices of Jy0z0 ; see the text.

tilt angle with that of the RSPT is close, but not precise, as
is also demonstrated in Fig. 13(b), which shows the ratio of
the angles. The majority of this difference can be attributed to
the next-order correction, corresponding to the fourth-order
process

|0〉 V̂xy−→ |2〉 V̂yz−→ |3〉 V̂yz−→ |2〉 V̂yz−→ |1〉, (A10)

which is O(Jx0y0 J3
y0z0

), conforming to the rules proposed for
the higher-order corrections that are discussed above.

One can verify the J3
y0z0

-order of the correction to the
slope by changing the numerical value of Jy0z0 as is shown
in Fig. 13(b). Here, the reduction of Jy0z0 by 1/2 leads to an
eightfold decrease of the correction in the DMRG result, all
in a close accord with the expectations of the odd powers of
each staggered term outlined above.

The DMRG results for the best-fit parameters in the full
model of CoNb2O6 in Fig. 13(a) show a qualitative agreement
with the perturbative result (A9) for the simplified model
(A5), but also a substantial quantitative difference. It can be
attributed to the fluctuations induced by the other spin-flip
terms present in the full model.

Lastly, as is discussed in Sec. II D 2, the phenomenolog-
ical constraint on the spin direction in the model (6) allows
the “residual” Jx0y0 and Jx0z0 terms to be present, but exactly
compensating each others’ spin tilting, leaving the physical
Ising direction intact. The perturbative result in Eq. (A9) to-
gether with the classical energy minimization result in Eq. (8)
immediately suggest an explicit connection between the two
terms: Jx0z0 = −δγ Jz0z0 , see Sec. II D 2 for more detail. The
DMRG results shown in Fig. 4 in that section, demonstrating
a relation between Jx0y0 and Jx0z0 , were calculated using the
best-fit parameters of the full model of CoNb2O6. For each
fixed value of Jx0y0 , we performed a DMRG scan versus Jx0z0

to identify the value of Jx0z0 that corresponds to an exact
compensation of the spin tilt away from the Ising axis.

APPENDIX B: SPIN-WAVE THEORY

We consider a standard Holstein-Primakoff (HP) spin rep-
resentation with the quantization axis z

Sz
i = S − ni, S+

i = ai

√
2S − ni, (B1)

where ai(a
†
i ) are bosonic operators, ni = a†

i ai, and i is the site
index. The expansion of the square roots in Eq. (B1) in powers
of ni/2S results in the bosonic Hamiltonian

Ĥ = Ĥ(0) + Ĥ(1) + Ĥ(2) + Ĥ(3) + Ĥ(4) + O(S−1), (B2)

where the nth term Ĥ(n) contains the nth power of the bosonic
operators and carries an explicit S2−n/2 factor, constituting a
1/S expansion for a given problem.

The first term Ĥ(0) in such an expansion is the classical
energy, and Ĥ(1) should vanish upon the classical energy
minimization. The quadratic term Ĥ(2) is the harmonic part
of the expansion that yields the LSWT and magnon energy
spectrum. The lowest 1/S-order corrections to the LSWT
originate from the two anharmonic terms in the expansion,
Ĥ(3) and Ĥ(4), describing three- and four-magnon interaction,
respectively.

1. Classical energy

The classical energy of the field-polarized paramagnetic
phase considered in Sec. III A is easily obtained from Eq. (19)
and is given by Ecl/N = −SH + S2(Jy0y0 + J2), with the lin-
ear Ĥ(1) from Eq. (20) vanishing because of the staggered
structure of the bond-dependent terms. This is a common
situation for collinear states that do not require energy min-
imization and cannot indicate their phase boundaries from the
classical consideration alone.

One standard approach is to proceed directly with the har-
monic term Ĥ(2), develop LSWT as in Sec. III B, and obtain
the value of the critical field from the condition of stability of
the magnon spectrum in Eq. (26).

The other approach is to consider the ordered phase of
CoNb2O6 in the transverse field in the classical limit and find
the critical field of a transition to the fully polarized state from
the minimization of its energy. In such a state spins are tilted
away from the field toward the Ising axis in the y0z0 (zx) plane;
see Fig. 2(c). Denoting this angle as θ , straightforward algebra
in Eq. (19) yields

Ecl

N
= − SH cos θ + S2

(
Jy0y0 + J2

)
− S2

(
Jy0y0 − Jz0z0 + J2 − J2z0

)
sin2 θ. (B3)

Minimizing it with respect to θ gives cos θ = H/Hc with the
critical field given in Eq. (17).

2. Linear spin-wave theory

The LSWT is based on the lowest-order expansion in
Eq. (B1) in the Hamiltonian (19), leading to

Ĥ(2) = S

2

∑
i

{
2
(
H/S − 2

(
Jy0y0 + J2

))
ni

+ ((
Jz0z0 + Jx0x0

)
a†

i ai+1 + (J2z + J2)a†
i ai+2

+ (
Jz0z0 − Jx0x0

)
a†

i a†
i+1 + (J2z − J2)a†

i a†
i+2 + H.c.

)}
,

(B4)
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Using Fourier transformation (21) gives the harmonic Hamil-
tonian in the canonical form (22). The standard Bogolyubov
transformation diagonalizes it with the uk and vk parameters
given explicitly as

uk =
√

Ak + εk

2εk
, vk = sgn(Bk )

√
Ak − εk

2εk
, (B5)

with Ak and Bk from Eq. (23) and εk from Eq. (25). The
resultant diagonal form of the LSWT Hamiltonian is

Ĥ(2) =
∑

k

{
εkb†

kbk + 1

2
(εk − Ak )

}
, (B6)

where the magnon energy in Eq. (25) can also be written as

ε2
k = [

H − 2S
(
Jy0y0 − Jx0x0γ

(1)
k + J2

(
1 − γ

(2)
k

))]
× [

H − 2S
(
Jy0y0 + J2 − Jz0z0γ

(1)
k − J2z0γ

(2)
k

)]
. (B7)

3. Nonlinear spin-wave theory

a. Cubic terms

Using the leading-order HP expansion in the odd part of
the Hamiltonian (20) leads to the cubic term

Ĥ(3) = −Jy0z0

√
S

2

∑
i

(
(−1)ini(a

†
i+1 − a†

i−1) + H.c.
)
. (B8)

The Fourier transformation (21) in Eq. (B8) yields

Ĥ(3) = Jy0z0

√
2S

N

∑
k,q

(
γ̄pa†

pa†
qak + H.c.

)
, (B9)

with p = k − q + Q and γ̄p = i sin(pc0). The Bogolyubov
transformation with symmetrization give

Ĥ(3) = 1

2!
√

N

∑
q+k+p=Q

(
�qk;pb†

qb†
kb−p + H.c.

)
+ 1

3!
√

N

∑
q+k+p=Q

(
�qkpb†

qb†
kb†

p + H.c.
)
, (B10)

with the decay and source vertices, �qk;p and �qkp,

�qk;p =
√

2S Jy0z0�̃qk;p, �qkp =
√

2S Jy0z0�̃qkp, (B11)

and the dimensionless vertices given by

�̃qk;p = γ̄k(uk + vk )(uqup + vqvp)

+ γ̄q(uq + vq)(ukup + vkvp)

+ γ̄p(up + vp)(ukvq + vkuq), (B12)

�̃qkp = γ̄k(uk + vk )(uqvp + vqup)

+ γ̄q(uq + vq)(ukvp + vkup)

+ γ̄p(up + vp)(ukvq + vkuq). (B13)

The decay and source vertices in Eq. (B10) are umklapp-like,
with the momentum conserved up to the Q-vector.

The resulting lowest-order self-energies are


(d )(k, ω) = 1

2N

∑
q

|�q,k−q+Q;−k|2
ω − εq − εk−q+Q + i0+ , (B14)


(s)(k, ω) = − 1

2N

∑
q

|�q,−k−q+Q,k|2
ω + εq + ε−k−q+Q − i0+ . (B15)

b. Quartic terms

The four-boson terms are obtained from the higher-order
expansion in the HP transformation (B1)

S+
i ≈

√
2S
(

ai − niai

4S

)
, Sz

i = S − ni. (B16)

Using this expansion (B16), the quartic terms come from

Sx
i Sx

j → − 1
8 ((a†

i + ai )n ja j + (i ↔ j) + H.c.),

Sy
i Sy

j → − 1
8 ((a†

i − ai )n ja j + (i ↔ j) + H.c.),

Sz
i Sz

j → nin j . (B17)

The decoupling of them uses the real-space HF averages

n = 〈a†
i ai 〉 =

∑
k

v2
k, mn = 〈a†

i a j〉 =
∑

k

γ
(n)

k v2
k,

δ = 〈a2
i 〉 =

∑
k

ukvk, �n = 〈aia j〉 =
∑

k

γ
(n)

k ukvk, (B18)

with the index n = 1(2) for the nearest and next-nearest neigh-
bors, yielding

Sx
i Sx

j

(
Sy

i Sy
j

) → − 1

2

[
(mn ± �n)(ni + n j )

+ 1

4
(�n ± mn)(a†

i a†
i + a†

j a
†
j + H.c.)

+
(

n ± δ

2

)
(a†

i a j + H.c.)

+
(

δ

2
± n

)
(a†

i a†
j + H.c.)

]
, (B19)

Sz
i Sz

j → n(ni + n j ) + (mna†
i a j + �na†

i a†
j + H.c.). (B20)

Using Eqs. (B19) and (B20) in the quartic Hamiltonian from
the even part of the model (19), followed by the Fourier
transformation, gives a correction to the LSWT model

δĤ(4) =
∑

k

{
δAka†

kak − δBk

2
(a†

ka†
−k + H.c)

}
, (B21)

with

δAk = − Jx0x0

(
m1 − �1 + (n − δ/2)γ (1)

k

)
+ 2Jy0y0

(
n + m1γ

(1)
k

)
− Jz0z0

(
m1 + �1 + (n + δ/2)γ (1)

k

)
− J2

(
m2 − �2 − 2n + (n − δ/2 − 2m2)γ (2)

k

)
− J2z0

(
m2 + �2 + (n + δ/2)γ (2)

k

)
, (B22)
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FIG. 14. Representative Hartree-Fock averages vs H , LSWT
(dashed lines), and SCHF (solid lines), respectively.

δBk = − Jx0x0

(
1
2 (m1 − �1) + (n − δ/2)γ (1)

k

)
− 2Jy0y0�1γ

(1)
k

+ Jz0z0

(
1
2 (m1 + �1) + (n + δ/2)γ (1)

k

)
− J2

(
1
2 (m2 − �2) + (n − δ/2 + 2�2)γ (2)

k

)
+ J2z0

(
1
2 (m2 + �2) + (n + δ/2)γ (2)

k

)
. (B23)

Finally, using Bogolyubov transformation in Eq. (B21),
yields the ω-independent 1/S energy correction in Eq. (29).
Same results for the quartic terms can be obtained using
Dyson-Maleev spin representation [85,86].

4. Self-consistent Hartree-Fock method

Here we provide some further details on the self-consistent
HF method discussed in Sec. III D.

The set of the real-space HF averages in Eq. (B18),
{HFs} = {n, δ, m1, m2,�1,�2}, are found iteratively for each
fixed field value, starting from H0 > Hc and proceeding by
decreasing the field with a small step �H .

The initial set of the HF averages, {HFs}0
n, for a field Hn in

such a sequence of fields is taken from the final (converged)
set of the HF averages from the previous field value, {HFs}final

n−1.
The exception is the very first field H0, which we choose large
enough for the LSWT averages from Eq. (B18) to be a good
starting point, so we use {HFs}0

0 = {HFs}LSWT
0 for it.

For any field Hn, the self-consistent iterations follow the
cycle shown in Eq. (30), with the steps for each subsequent
iteration summarized as follows:

(1) At each ith step, the {HFs}i−1
n averages give the

quartic-term contributions to the harmonic theory, δĀk and
δB̄k, according to the expressions in Eqs. (B22) and (B23).
The LSWT-like eigenvalue problem of the same form as in
Eq. (22) with Āk = Ak + δĀk and B̄k = Bk + δB̄k yields the
new set of the Bogolyubov parameters ūk and v̄k.

(2) Using ūk and v̄k, a new (temporary) set of HF averages,
{HFs}it

n , is calculated using Eq. (B18).
(3) The input of the HF averages for the next iteration is

updated using
{HFs}i

n = α{HFs}it
n + (1 − α){HFs}i−1

n ,
where α � 1 ensures a smooth convergence.
(4) The cycle of steps (1) to (3) is continued until a numer-

ical convergence in the HF averages is reached by meeting
a tolerance ε between the two subsequent iterations. At this
step, the final set {HFs}final

n for the field Hn is defined. Ob-

FIG. 15. (a) Energy gap vs field by DMRG for the chains of
different length. (b) The expectation value of the spin component
〈Sz0

i 〉 in the ground state along the long chain in a DMRG scan vs
field. Vertical line indicates the critical field. Inset shows the second
derivative of 〈Sz0

i 〉 vs field.

viously, it also yields the SCHF magnon eigenenergies ε̄k
and Bogolyubov parameters ūk and v̄k used in our results in
Secs. III D and IV.

(5) For the next field Hn+1, the cycle starts at the step
(1) with the converged set of {HFs}final

n used as the initial
condition.

In this work, we have used H0 = 3Hc, �H = 3 ×
10−3 meV, α = 0.01, and ε = 10−7. The stability of this
procedure was verified by varying all of these parameters to
ensure independence of the results.

Figure 14 illustrates that the logarithmically divergent be-
havior of the HF averages gets regularized using the SCHF
method and that their calculation is successfully extended
below the LSWT value of Hc.

APPENDIX C: RESULTS

1. DMRG calculations of the gap

The DMRG simulations for the lowest energy gap in the
excitation spectrum of the best-fit model of CoNb2O6 as a
function of the field that is shown in Fig. 8 in Sec. IV were
performed in the chains of up to 500 sites. The gap was
obtained by calculating the ground state and the first excited
state using the ITensor library [67] for each value of the field.
While a good convergence was easily reached for the ground
state [84], a larger number of sweeps (about 75) were needed
to reach the same accuracy when computing the first excited
state.

Figure 15(a) shows the excitation gap in a narrow field
region near the critical field for the chains of lengths up to
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L = 1000. One can see that the finite-size effects are appre-
ciable only near the minimum of the gap. Using the 1/L
extrapolation of the data in Fig. 15(a) for small gaps, we
have verified that the L → ∞ gap vanishes at about 4.52(1)
T, the value which is also consistent with the linear |B − Bc|
extrapolation of the L = 1000 data above the critical field. It is
worth noting that in the ordered phase, the finite-size effects
lift the ground state degeneracy, with the resultant splitting
that can be confused with the actual excitation gap close to
the critical field, as both reach O(10−3) meV for L = 1000.

One can also corroborate these results for the critical
field using the ground-state DMRG calculations. Figure 15(b)
shows the DMRG scan in the ground state with a slowly vary-
ing field in a chain of 5000 sites. The expectation value of the
spin component in the Ising direction 〈Sz0

i 〉 suggests a second
order phase transition with a critical field at about 4.527(1) T.
This value is determined from the inflection point of the curve,
with the change on the sign of the second derivative shown in
the inset. This result is consistent with the value suggested by
the analysis of the gap from Fig. 15(a).

2. Two-magnon kinematics

Here we briefly discuss two aspects of the two-magnon
kinematics in the context of the 1D spin model of CoNb2O6:
the structure of the two-magnon continuum and kinematics of
the magnon decay.

a. Two-magnon continuum

At any given momentum k, the Q-shifted two-magnon
continuum is defined within the energy range

Emin
k,q∗ � Ek,q = ε̄q + ε̄k−q+Q � Emax

k,q∗ , (C1)

where the boundaries Emin
k,q∗ and Emax

k,q∗ should be found from
the extremum condition (∂Ek,q/∂q)|q∗ = 0, which translates
to the requirement on the group velocities of the two magnons
to be equal for the momentum q∗,

v̄q∗ = v̄k−q∗+Q. (C2)

Although, generally, such conditions may require a numerical
solution, one class of them, which often describes a majority
of the extrema in the two-magnon continua [46,71], is easy
to find analytically. The equivalence of the magnon velocities
in Eq. (C2) is automatically satisfied when their momenta are
identical up to a set of the reciprocal lattice vectors. In our
case, using that the smallest reciprocal lattice vector is G =
2Q, one obtains two solutions, q∗

± = (k ± Q)/2, referred to
as the “equivalent magnon” solutions below. The energies of
the two-magnon continua for them are Ek,q∗± = 2ε̄q∗± .

Given the relative simplicity of the magnon dispersion
in either the LSWT or SCHF treatment of the model for
CoNb2O6, and because of its 1D character, which permits
only maxima and minima, these two solutions indeed describe
the two edges of the two-magnon continuum and completely
exhaust the number singularities in it for most of the k values,
as one can see in Fig. 9, Sec. IV. Figure 16(a) shows the
intensity plot of the two-magnon DoS for the best-fit model
of CoNb2O6 for B = 7 T from Fig. 9, focusing instead on the
vicinity of the � point, which provides a clearer view of the
significantly richer structure of the continuum in that region.

FIG. 16. (a) The two-magnon DoS for the best-fit model of
CoNb2O6 and B = 7 T (H = 0.8Hc) as in Fig. 9, focusing on the
vicinity of the � point; dashed lines are the equivalent-magnon solu-
tions Ek,q∗± . (b) The energy of the two-magnon continuum Ek,q vs q
for several k, with the extrema corresponding to different solutions
for q∗ indicated, see text.

While additional singularities in the continuum in the 2D
and 3D cases are common and are usually associated with
the saddle points within it [46,71], the appearance of multiple
singularities for the 1D model of CoNb2O6 is somewhat of a
surprise. In Fig. 16(a), one can see that the equivalent-magnon
extrema cease to be the absolute minima and maxima of the
continuum and are overtaken by two different ones in the
proximity of the � point.

Another insight into the structure of the continuum is of-
fered by Fig. 16(b), which shows the q-cut of the two-magnon
continuum for k = 0 with the additional minima and max-
ima, demonstrating that the equivalent-magnon extremum at
q∗

± = ±Q/2 is now a local minimum.
Counterintuitively, this unusual complexity is an outcome

of the simplicity and high symmetry of the magnon spec-
trum. As is discussed in Sec. IV B, away from the small-gap
regime near the critical field, the magnon energy can be
well-described by the nearest-neighbor hopping approxima-
tion, ε̄q ≈ E0 + J1γ

(1)
q , which naturally explains the bow-tie

form of the continuum at the � point, as the nearest-neighbor
hopping terms of ε̄q and ε̄k−q+Q in the continuum (C1) cancel
precisely at k = 0.

However, the next-nearest-neighbor exchanges (24) and
relativistic form of the magnon dispersion (25) produce small,
but essential further-neighbor hoppings. Specifically, the finite
width of the continuum at the � point can only be provided by
the effective even-neighbor hoppings. One can verify that the
features shown in Fig. 16 can be closely reproduced by the

014424-20



MAGNON INTERACTIONS IN THE QUANTUM … PHYSICAL REVIEW B 109, 014424 (2024)

following approximation for the magnon energy

ε̄q ≈ E0 + J1γ
(1)

q + J2γ
(2)

q + J4γ
(4)

q , (C3)

using E0 = 2.107, J1 = −1.4, J2 = −0.0065, and J4 =
−0.01, all in meV, where γ

(n)
k = cos(nkcc0) as before.

Using the form in Eq. (C3), a simple algebra yields the
maxima of the k = 0 continuum in Fig. 16(b) at the momenta
q∗,n

4± = ± 1
2 arccos(−J2/4J4) + nπ , explicating the essential

role of the further-neighbor terms in the additional extrema
of the continuum. For small k, the left pair of these maxima
shifts in q and up in energy linearly with k and remains the
absolute maxima for a range of k, while the right pair shifts
down in energy, becomes the local maxima, and then ceases
to be extremal at the larger k. In Fig. 16(a), they correspond
to the upper singularity, which merges with the one from the
equivalent magnons, and to the one that enters the continuum
and annihilates with the nearly flat singularity, respectively.

The last and the most curious is the “flat” singularity,
which is the absolute minimum of the continuum in Fig. 16(a)
at k = 0. The corresponding minima of Ek,q in Fig. 16(b)
can be found at q∗

0 ≈ −b0k and q∗
Q ≈ Q + b0k, where b0 =

1
2 (J1/̃J0 − 1) with J̃0 = 4(J2 + 4J4). At k = 0, one magnon
in E0,q∗ is at q∗

0 = 0 and the other is at Q, precisely at
the minimum and the maximum of the single-magnon band.
This arrangement guarantees that the velocities on both sides
of Eq. (C2) are zero, fulfilling the extremum condition. It
also explains the flatness of the singularity in Fig. 16(a), as
the continuum energy is Ek,q∗

0
≈ Ē0 + 2̃J0b2

0k2, with Ē0 =
2(E0 + J2 + J4).

This completes the consideration of the richer set of the
Van Hove singularities in the two-magnon continuum near the
� point in our model.

b. Kinematics of the two-magnon decay

Generally, a magnon with the momentum k is kinemati-
cally allowed to decay into a pair of magnons if the energy
conservation for the single-magnon energy and that of the
two-magnon continuum,

ε̄k = Ek,q, (C4)

can be satisfied for some momenta q. This condition naturally
separates the k-space into the stable one, in which (C4) cannot
be fulfilled, and the decay region, in which it is fulfilled [46].
They are easy to visualize as having or not having an overlap
of the single-magnon branch with the two-magnon contin-
uum, see Fig. 17(a), with the decay threshold boundaries
k∗ and G − k∗ separating the stable region from the decay
region.

Such a threshold, or the entry-point of the single-magnon
branch into the two-magnon continuum, is necessarily a cross-
ing of the single-magnon branch with the minimum of the
two-magnon continuum at that k∗, which, in turn, must cor-
respond to a singularity in it as is discussed above, see also
Refs. [46,71].

In the case relevant to the 1D model of CoNb2O6 discussed
in this work, the singularity associated with the minimum
of the two-magnon continuum away from the � point corre-
sponds to the equivalent-magnon solution of the extremum
condition in Eq. (C2), yielding an equation on the decay

FIG. 17. (a) Schematics of the two-magnon decay of a magnon
for k > k∗; solid line is ε̄k and shaded area is the continuum. (b) The
set of decay q-points vs k; vertical lines are marking decay thresholds
k∗ and G − k∗. Arrows indicate the shift by the reciprocal lattice
vector −G. The best-fit model parameters of CoNb2O6 and B = 7 T
(H = 0.8Hc) are used.

threshold boundary k∗,

ε̄k∗ = 2ε̄(k∗−Q)/2, (C5)

for � � k∗ � �′. While this equation can be solved numer-
ically for the actual magnon energy ε̄k of the considered
model, a simplified solution for k∗ can be derived analytically
using the nearest-neighbor hopping approximation ε̄k ≈ E0 +
J1γ

(1)
k discussed above, which closely describes ε̄k when the

gap �0 is not too small, yielding

k∗ = 2 arcsin

(√
5 + 2� − 1

2

)
, (C6)

where � = �0/|J1| = E0/|J1| − 1 is the dimensionless gap.
One should also add that the 1/

√|�k| singularities in the
on-shell magnon spectrum discussed in Sec. IV B are naturally
connected to the 1/

√|�ω| one-dimensional Van Hove sin-
gularities in the two-magnon DoS, with the latter transferred
onto the single-magnon energies via the anharmonic coupling.

The kinematic consideration of the energy conservation
in Eq. (C4) also allows to trace the evolution of the decay
surfaces, that is, the sets of the q values into which decays are
possible, as one traverses along the ε̄k curve versus k. In the
1D problem considered here, the decay surfaces are, in fact,
the pairs of the discrete q-points. At the decay threshold k∗,

014424-21



C. A. GALLEGOS AND A. L. CHERNYSHEV PHYSICAL REVIEW B 109, 014424 (2024)

FIG. 18. Same as Fig. 10 in Sec. IV C for the field B = 8 T.

they correspond to the two equivalent points q∗ and q∗ + G, as
one can see in Fig. 17(b). As a function of k, this set of pairs
of the q-points traces a continuous line of the elliptic shape
shown in Fig. 17(b), with the schematics in Fig. 17(a) illus-
trating the decay process. The best-fit parameters of CoNb2O6

and B = 7 T (H = 0.8Hc) are used in both figures.

3. Dynamical structure factor

Figure 18 presents the comparison of the experimental and
theoretical DSFs as in Fig. 10 in Sec. IV C, for the field
B = 8 T.

APPENDIX D: LONGITUDINAL FIELD EFFECTS

1. The excitation gap and the band gap

For the magnetic field tilted in the y0z0 (zx) plane, spin
components S̃i in the local reference frame, which is tilted
by the angle θ away from the y0 axis, are related to the spin
components in the laboratory frame Si by

S̃i = R̂θSi, (D1)

where R̂θ is the rotation matrix

R̂θ =
⎛⎝0 − sin θ cos θ

1 0 0
0 cos θ sin θ

⎞⎠. (D2)

The Hamiltonian in the tilted local frame is

Ĥ =
∑
〈i j〉n

S̃T
i J̃i j S̃ j −

∑
i

H̃TS̃i, (D3)

where n = 1, 2 for the nearest- and next-nearest-neighbor
bonds, respectively. The exchange matrices are

J̃i j = R̂T
θ Ĵi jR̂θ =

⎛⎜⎜⎝
J̃xx

i j J̃xy
i j J̃xz

i j

J̃yx
i j J̃yy

i j J̃yz
i j

J̃ zx
i j J̃ zy

i j J̃ zz
i j

⎞⎟⎟⎠, (D4)

with the exchange matrices Ĵi j in the laboratory frame from
Eqs. (7) and (14), and the rotated field given by

H̃ = μR̂θ ĝB, (D5)

with B = B⊥ŷ0 + B‖ẑ0 and ĝ being the diagonal g-tensor.
Naturally, the Hamiltonian can be split into the even and

odd parts, as before. At the LSWT level of approximation, we
only consider the even part that reads

Ĥeven =
∑
〈i j〉n

(
J̃xx

i j S̃x
i S̃x

j + J̃yy
i j S̃y

i S̃y
j + J̃ zz

i j S̃z
i S̃z

j

+ J̃xy
i j S̃x

i S̃y
j + J̃yx

i j S̃y
i S̃x

j

) −
∑

i

H̃ zS̃z
i . (D6)

Importantly, compared to the same LSWT consideration in
Sec. III B, the diagonal exchanges J̃xx

1 and J̃ zz
1 have now ac-

quired bond-dependent contributions from the staggered Jy0z0

terms because of the local axes tilt. Therefore, the nearest-
neighbor bonds in the Hamiltonian (D6) are not equivalent,
the unit cell now contains two spins, and two species of bosons
need to be introduced with the Holstein-Primakoff transfor-
mation that reads

S̃z
μl = S − nμl , S̃+

μl ≈
√

2Saμl , (D7)

where l and μ = 1, 2 numerate the unit cells of the zigzag
chain and the two sublattices, respectively.

The classical energy, obtained from Eq. (D6), is [up to a
constant S2(Jy0y0 + J2)],

Ecl

N
= −SH⊥ cos θ − SH‖ sin θ − S

2
Hc sin2 θ, (D8)

with Hc from Eq. (17). Minimizing Eq. (D8) with respect to θ

yields Eq. (43) in Sec. V.
After some algebra, the LSWT Hamiltonian for the two

bosonic species can be written in the matrix form

Ĥ = 1

2

∑
k

x̂†
kĤkx̂k, Ĥk =

(
Âk B̂k

B̂†
k Â∗

−k

)
, (D9)

where x̂†
k = (a†

1k, a†
2k, a1−k, a2−k ) are the bosonic vector op-

erators and the 2 × 2 matrices Âk and B̂k are

Âk =
(

Ak Bk
B∗

k Ak

)
, B̂k =

(
Dk Ck

C−k D∗
k

)
, (D10)

with

Ak = H⊥cθ + H‖sθ − 2S
(
Jy0y0 + J2

)
c2
θ

− 2S
(
Jz0z0 + J2z0

)
s2
θ + S

(
J2(1 + s2

θ ) + J2z0 c2
θ

)
γ

(2)
k ,

Bk = −SJy0z0 s2θ γ̄k + S
(
Jx0x0 + Jy0y0 s2

θ + Jz0z0 c2
θ

)
γ

(1)
k ,

Ck = −SJy0z0 s2θ γ̄k − S
(
Jx0x0 − Jy0y0 s2

θ − Jz0z0 c2
θ

)
γ

(1)
k ,

Dk = −S
(
J2 − J2z0

)
c2
θγ

(2)
k , (D11)

with the shorthand notations cθ = cos θ and sθ = sin θ .
The eigenvalue problem for Eq. (D9) can be solved analyt-

ically by diagonalizing (ĝĤk )2, with the paraunitary matrix
ĝ = [1, 1,−1,−1]. Using that Ak = A−k and Dk are real,
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B−k = B∗
k, and C−k = C∗

k , we get two branches

ε1,2k =
√

A2
k + |Bk|2 − |Ck|2 − D2

k ± 2
√
R,

R = A2
k|Bk|2 + |Ck|2D2

k − 2AkDkRe[BkC∗
k ] + Im[BkC∗

k ]2.

(D12)

From the spectrum in Eq. (D12), one can obtain expres-
sions for the excitation gap �0 and band gap �b using the
canting angle θ calculated numerically from the nonlinear
equation (43). For H‖ � H⊥ = Hc, with the approximate so-
lution for the canting angle in Eq. (44), after some algebra in
Eq. (D12), the excitation gap is

�0 ≈ α0H1/3
‖ ,

α0 =
(

2

Hc

)1/3
√

3

2
Hc

√
1 + 2S(Jx0x0 − Jy0y0 )

Hc
, (D13)

and the band gap

�b ≈ αbH1/3
‖ ,

αb = 2S
∣∣Jy0z0

∣∣( 2

Hc

)1/3
√

1 + J2 − J2z0

Jz0z0 + 2J2z0

. (D14)

Neglecting small corrections under the square roots leads to
the results in Eq. (45).

2. More threshold singularities

The anharmonic cubic coupling in the tilted magnetic field
is obtained from the odd part of the Hamiltonian, similarly to
the discussion in Sec. III A. Using Eqs. (D4) and (D5), it can
be generally written as

Ĥodd =
∑
〈i j〉n

J̃xz
i j

(
S̃x

i S̃z
j + S̃z

i S̃x
j

) −
∑

i

H̃ xS̃x
i . (D15)

There are two resulting types of the cubic coupling, one that
retains the staggered structure of such a coupling in the pure
transverse field, ∝Jy0z0 , and the other one originating from the
tilted component of the spin. In the small longitudinal field
regime, H‖ � H⊥ = Hc, the latter is subleading to the former,
∝O(Jz0z0 H1/3

‖ ), leaving cubic anharmonicity unaffected by
the field. The secondary component also corresponds to an
unfavorable kinematics for the decays, justifying neglecting it
in this regime.
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