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Skyrmion-based chaotic oscillator driven by a constant current
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As an intriguing and useful nonlinear behavior, chaos has recently received increasing attentions in the field
of spintronics with the aim of designing novel devices for practical applications. In the present work, we
demonstrate a chaotic oscillation of a ferrimagnetic skyrmion through numerical simulations. In contrast to
the previous proposals of magnetic-soliton-based chaotic oscillators, the chaos of our ferrimagnetic skyrmion is
driven solely by a constant current, instead of a time-dependent one. The occurrence of the chaotic oscillation
is found to benefit from the strong nonlinearity of the magnetization dynamics in a ferrimagnet with a relatively
weak antiferromagnetic exchange coupling and a low magnetic damping. Our results reveal the potentials of
ferrimagnetic skyrmion oscillators in studying chaotic physics and related applications.
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I. INTRODUCTION

Chaos, referred to as the unpredictable long-term behavior
in a deterministic system, has remained an active research
topic in the fields of mathematics, physics, chemistry, and
biology since its discovery in the late nineteenth century [1].
Recently, practical applications of chaotic dynamics, such
as random number generator [2], logic gates [3], and weak
signal detection [4,5], have been proposed and attracted in-
creasing research interest. As potential candidates for such
applications, chaotic spin nanooscillators based on uniform
magnetization dynamics [6,7] or the motion of magnetic soli-
tons, such as domain walls [5,8–10], vortices [11–13], and
bimerons [14], have been studied.

In general, the realization of a chaotic spin oscillator re-
quires a phase space of at least three dimensions, namely,
with three or more individual state variables to describe the
dynamics of the system [15,16]. Since the dynamics of a
single macrospin in a static field can be described sufficiently
by the evolution of two orientation angles, the chaotic behav-
ior in uniform magnetization dynamics is achieved only if
additional degrees of freedom are involved by, for instance,
applying time-dependent currents [17,18], injecting feed-
back currents [19,20] or constructing a device with coupled
macrospins [21–23]. In the case of magnetic solitons, simi-
larly, extra variables are also commonly introduced through
time-dependent currents/fields to trigger chaotic dynamics
because the moving status of typical magnetic solitons is
usually indicated only by two variables, e.g., the position and
the azimuthal angle of textured spins for a one-dimensional
domain wall [8–10] and the two-dimensional location of the
guiding center for a vortex [11,12]. Interestingly, as reported
recently, a large driving current applied to a vortex could
successively flip the magnetization at the vortex core, which
thus possesses a new degree of freedom and results in chaotic
dynamics [13].
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An interesting question is then whether it is possible or
how to generate a chaotic motion of a magnetic soliton by a
constant current without change in its magnetic texture. In this
work, we demonstrate the chaotic dynamics of a ferrimagnetic
skyrmion under a constant driving current, by systematically
analyzing the spectral function, Lyapunov exponents, and
return maps of the skyrmion motion from micromagnetic sim-
ulations and the numerical solution of the phenomenological
Thiele equation. The occurrence of the chaotic motion is
attributed to the expansion of the phase space by including
the skyrmion velocity for a comprehensive description of the
motion of our massive ferrimagnetic skyrmion. We investi-
gate the dependence of the chaos on different parameters and
reveal that a weak exchange coupling between the antiparal-
lelly aligned spin sublattices, which leads to a large effective
skyrmion mass, and a low magnetic damping are preferred.

II. MODEL AND METHODS

Figure 1 shows a schematic of our ferrimagnetic skyrmion
oscillator with a current injector on top of a synthetic
ferrimagnetic working layer. The two ferromagnetic sublay-
ers of the working layer are antiferromagnetically coupled
via the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
[24,25]. The current injector constructed by a spacer and a
fixed layer provides current-induced spin transfer torques [26]
to trigger the skyrmion dynamics in the working layer.

A. Equation of motion

The motion of the massive ferrimagnetic skyrmion can
be derived by the Landau-Lifshitz-Gilbert equation [27] (see
Appendix A for the details) and described by the phenomeno-
logical Thiele equation [28–31]

meff r̈c = G × ṙc − �ṙc + F j, (1)

where the guiding center of the skyrmion is defined as

rc = −1/(4πQ)
∫

r[n · (∂xn × ∂yn)]dxdy, (2)
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FIG. 1. Sketch of our ferrimagnetic skyrmion oscillator with a
synthetic ferrimagnetic working layer and a current injector. The
dynamics of the skyrmion in the working layer is driven by the
spin-polarized current from the fixed layer of the injector.

with n being the local Néel vector and the topological charge
Q = −1/(4π )

∫
n · (∂xn × ∂yn)dxdy [32–34]. The effective

mass meff of a symmetric texture in Eq. (1) is expressed as

meff = (μ0ρ)2dxx/(−8JRKKY), (3)

where the structure factor dxx = ∫
∂xn · ∂xndxdy [35] and

the staggered two-dimensional spin density ρ = t tM t
s/γ

t +
tbMb

s /γ b with t t(b), M t(b)
s , and γ t(b) being the thickness, the

saturation magnetization, and the gyromagnetic ratio of the
top (bottom) sublayer, respectively. Here, μ0 and JRKKY stand
for the vacuum permeability constant and RKKY coupling co-
efficient, respectively. The first term on the right-hand side of
Eq. (1) corresponds to the Magnus force with the gyrovector

G = 4πQμ0σez, (4)

which is proportional to the net two-dimensional spin density
σ = t tM t

s/γ
t − tbMb

s /γ b. In the friction term, the dissipation
coefficient is expressed as [30]

� = μ0dxx
(
αtt tM t

s/γ
t + αbtbMb

s /γ b
)
, (5)

where αt(b) is the magnetic damping constant of the top
(bottom) sublayer. The last term in Eq. (1) denotes the
current-induced driving force

F j = −( jh̄P/e)u, (6)

where ui = ∫
A(n × mF) · ∂indxdy with the polarization

vector mF along the −z direction and the subscript A
indicating an integral over the area of working layer
underneath the current injector. Here, j is the constant
intensity of the applied current, h̄ the reduced Planck constant,
P the spin polarization efficiency, and e the elementary charge.

Equation (1) can be rewritten into four first-order dif-
ferential equations of individual variables (x1, x2, x3, x4) =
(rcx, ṙcx, rcy, ṙcy),

ẋ1 = x2, (7)

ẋ2 = − G

meff
x4 − �

meff
x2 + Fjx(x1, x3)

meff
, (8)

ẋ3 = x4, (9)

ẋ4 = G

meff
x2 − �

meff
x4 + Fjy(x1, x3)

meff
, (10)

which satisfies the prerequisite of chaos in the case where the
current-induced force F j depends nonlinearly on the skyrmion
location rc [15].

FIG. 2. (a) The effective mass meff as a function of the RKKY
coupling coefficient JRKKY and (b) the radial (Fjr) and azimuthal
(Fjθ ) components of the current-induced force as functions of the
skyrmion locations (rc) extracted from micromagnetic simulation. In
(a), the curve and the symbols plot Eq. (3) for a static skyrmion with
dxx ≈ 18.7 and Eq. (12) for a moving skyrmion around a circular
orbit, respectively. In (b), the symbols and the curves correspond to
the plot of Eq. (6) and the fitting from Eq. (13), under the driving cur-
rent with the diameter of the circular current injector and the current
density being Dj = 30 nm and j = 40 MA/cm2, respectively.

To justify the occurrence of the chaos, the Lyapunov expo-
nents of the four variables are defined as [14,18,36]

ηi = lim
t→∞

1

t
ln

‖δxi(t )‖
‖δxi(0)‖ , (11)

where ‖δxi(0)‖ and ‖δxi(t )‖ stand for the differences between
two simulated trajectories of very close initial state and the
values at time t , respectively. The chaotic character is then
reflected by the positive value of one or more Lyapunov ex-
ponents, which indicates that two trajectories of very close
initial conditions will separate exponentially in time and the
dynamics become unpredictable.

B. Parameter evaluation

To specify the behavior of the current-induced torque
and evaluate the phenomenological parameters, meff and �,
in Eq. (1), the spatial distribution of the detailed spin tex-
ture is calculated from micromagnetic simulation software
MUMAX3 [37]. In the calculation, we introduce the ferri-
magnetic nature by using different saturation magnetizations
in the two ferromagnetic sublayers and take the geometry
and other material parameters identical for both sublayers.
Without specified otherwise, the saturation magnetizations of
the top and bottom ferromagnets are taken to be M t

s = 625
kA/m and Mb

s = 580 kA/m, respectively. The size of each
layer is 400 × 400 × 1 nm3 discretized by 1 × 1 × 1 nm3

unit cells. The material parameters fixed in all calculations
include the exchange coefficient A = 15 pJ/m, the perpendic-
ular magnetocrystalline anisotropy constant K = 0.8 MJ/m3,
the gyromagnetic ratio γ t = γ b = 2.211 × 105 m/(As), the
spin polarization efficiency P = 0.4, and the Dzyaloshinskii-
Moriya exchange coefficient D = 3.3 mJ/m2 [38].

With the static spin texture obtained from micromagnetic
simulation, we obtain Q = 1 and dxx ≈ 18.7, which lead to
G = 3.21 × 10−15 kg/s and � = 1.28 × 10−15 kg/s (with
α = 0.01), according to Eqs. (4) and (5), respectively. The
same dxx also gives the plot of meff in Eq. (3) as the solid curve
in Fig. 2(a). For comparison, one can evaluate the skyrmion
mass alternatively by considering the fact that the centripetal
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force in a stable circular motion, meff (ṙc)2/rc, should equal the
radial component of the total force, namely,

meff = −(G × ṙc + F j ) · rc/ṙ2
c , (12)

where the frictional force is discarded due to its vanishing
radial component for a circular motion. Note also that the
stable circular orbit with different values of JRKKY can be
achieved by tuning the damping constant α, which will not
affect the spin texture and the effective mass. By using the
values of driving force from Eq. (6), we plot Eq. (12) as
triangles in Fig. 2(a), which shows a nice agreement with
the results from Eq. (3), especially in the strong interlayer
coupling regime. The deviation in the weak coupling regime
could be attributed to the modification of spin texture due to
the presence of driving current.

To capture the skyrmion motion in an arbitrary trajec-
tory, one needs a quantitative description of the relationship
between the current-induced force and the skyrmion loca-
tion. Therefore, we perform a micromagnetic simulation with
the ferrimagnetic skyrmion moving in a centrifugal mo-
tion defined by a smaller Magnus force with comparable
magnetizations of the two sublayers [30], as the change
in magnetization only introduces negligible modification in
the spin texture. Specifically, we take M t

s = 570 kA/m and
Mb

s = 580 kA/m. The radial and azimuthal components of the
current-induced force from Eq. (6) are plotted in Fig. 2(b) as
functions of the skyrmion location. The smaller radial com-
ponent, compared to the azimuthal one, is because this term
comes from the small current-induced modification in the
spin texture. For the sake of convenience for further numer-
ical investigation of skyrmion dynamics based on Eq. (1), as
shown in Fig. 2(b), the simulated rc-dependencies of the two
current-induced forces are fitted separately by the following
expression with the complicated nonlinearity well described

Fjr( jθ ) =
(

4∑
n=1

knrn
c

)
/[1 + k6sinh(k5rc)], (13)

where kn are the fitting parameters. Since the current-induced
force F j is mainly determined by the magnetic texture in the
current injection area [see Eq. (6)], the injectors with different
shapes and sizes may affect the overlap between the skyrmion
texture and the injection area, which will introduce a mod-
ification in the dependence of F j on the skyrmion location.
Specifically, for circular injectors with different diameters,
the fitting of the simulated F j with Eq. (13) will give dif-
ferent values of the fitting parameters. For the injectors with
other shapes, one may need to extend the fitting formula
with higher-order rc-dependence and/or even additional de-
pendence on the azimuthal angle of rc.

III. SIMULATION RESULTS

A. Chaotic skyrmion oscillation

The skyrmion trajectories with different values of the
RKKY coupling coefficient are simulated by numerically
solving the Thiele equation, i.e., Eq. (1). In this simulation, we
use the effective mass of a moving skyrmion from Eq. (12),
instead of the static mass in Eq. (3), to minimize the unex-
pected influence. The typical behaviors with a fixed damping

FIG. 3. Trajectories of the skyrmion simulated from (a)–(c) the
Thiele equation and (d)–(f) MUMAX3, with different values of RKKY
coupling coefficient. Here, we take the damping constant α = 0.01,
the diameter of the circular current injector Dj = 30 nm, and the
current density j = 40 MA/cm2. The dashed circle in each plot
stands for the boundary of the current injector.

constant α = 0.01 are shown in Figs. 3(a) to 3(c). For the case
of a strong RKKY coupling at JRKKY = −3 mJ/m2 (meff =
3.71 × 10−26 kg) in Fig. 3(a), the skyrmion moves simply
around a circular orbit, which is consistent with our previous
finding [30]. However, with a weaker RKKY coupling at
JRKKY = −0.5 mJ/m2 (meff = 1.7 × 10−25 kg), the trajectory
shown in Fig. 3(b) clearly deviates from the circular motion
and presents a regular pattern with its distance to the origin
changing with time periodically. Even more interestingly, the
skyrmion trajectory in Fig. 3(c) with JRKKY = −0.1 mJ/m2

(meff = 6.18 × 10−25 kg) does possess a chaotic-type feature
without any recognizable regularity. The results from direct
micromagnetic simulation with the same parameters are plot-
ted in Figs. 3(d) to 3(f), which show excellent agreements
with those from the Thiele equation. In addition, the micro-
magnetic simulation reveals that, even the weakest RKKY
coupling adopted in this work is sufficient to combine the
subskyrmions in the two layers, which ensures the validity
of the Thiele equation. In the limit of a vanishing RKKY
coupling strength, two subskyrmions will become separated
and display individual ferromagnetic-skyrmion-type dynam-
ics without chaotic oscillations, where Eq. (1) is no longer
applicable.

To understand the skyrmion oscillations beyond a circular
motion in Figs. 3(b) and 3(c), we calculate separately the three
force terms on the right-hand side of the Thiele equation,
Eq. (1). The Magnus force (FM), the frictional force (Fα), and
the current-induced force (F j) are illustrated by open arrows
in orange, green and red colors, respectively, in Fig. 4 for a
sequence of skyrmion positions in one period of Fig. 3(b).
When the skyrmion approaches the current injection area,
the strong current-induced force accelerates the skyrmion to
a large velocity so that the Magnus force, which is linear
in velocity, is not sufficient to provide the centripetal force
required for a stable circular motion of our massive ferrimag-
netic skyrmion. As a consequence, the skyrmion experiences a
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FIG. 4. The force analysis of the skyrmion at different locations
within one period of the trajectory in Fig. 3(b). The orange, green,
and red open arrows indicate the magnitude and direction of the Mag-
nus force (FM = G × ṙc), the frictional force (Fα = −�ṙc) and the
current-induced force (F j), respectively. The textured spins illustrate
the spatial profile of the skyrmion locating at P5.

centrifugal motion and gradually leaves the current injection
region (see P1-P4). The departure from the injection region
suppresses the current-induced force and the Magnus force
then becomes dominant and tends to reestablish a circular
motion with a radius rq = meff ṙc/G according to Eq. (12) with
F j = 0. Such a circular motion, however, cannot be sustained,
as the skyrmion velocity is reduced by the friction. As seen in
Fig. 4, the radius of the orbit gradually decreases from P4 to
P7. In the meantime, the skyrmion approaches the injection
area again and finally gets overlapped with the injector, which
reactivates the driving force. Such processes repeat and result
in the skyrmion motion presented in Fig. 3(b). The proper
choice of the parameters then drives the system further into
a chaotic motion.

To further analyze the characteristic of the skyrmion tra-
jectories, we perform the fast Fourier transformation (FFT)
of the x component of rc for the three cases in Fig. 3. The
corresponding results are plotted in Figs. 5(a) to 5(c). While
the regular oscillations in Figs. 3(a) and 3(b) give single-
and multi-resonance peaks, respectively, the irregular motion
in Fig. 3(c) exhibits a noise-like characteristic in the FFT
spectrum as commonly seen in the presence of chaos [39,40].

For a more precise justification of chaotic dynamics, we
calculate the Lyapunov exponents from the definition of
Eq. (11) and show the convergence of ηi for the three states of
skyrmion motion. As shown in Figs. 5(d) and 5(e), none of the
Lyapunov exponents are positive for the regular oscillations.
In contrast, there is one of the Lyapunov exponents (the red
solid curve) keeping positive at long time scale in Fig. 5(f),
which indicates clearly the emergence of chaos.

B. Chaos for different values of skyrmion
mass and magnetic damping

The above results seem to suggest that a weak interlayer
coupling is favored for the realization of chaos. To examine
this, we systematically study the skyrmion motion in our
ferrimagnetic oscillator by continuously tuning the JRKKY.

FIG. 5. (a)–(c) FFT spectra of the x component of skyrmion
location (rcx) and (d)–(f) convergence plot of Lyapunov exponents
ηi for the three skyrmion trajectories in Fig. 3. The gray background
indicates the positive values of the vertical axis.

The simulation in this part is carried out through the Thiele
equation, where the modulation of JRKKY is equivalent to the
change of effective mass, according to Eq. (3). The largest
value of the four Lyapunov exponents, i.e., ηmax = max{ηi},
is plotted as a function of the effective mass in Fig. 6(a).
We see that the positive Lyapunov exponent as a signature of
chaos indeed appears mainly in the region of a relatively large
skyrmion mass, which corresponds to a weak RKKY coupling
[see Fig. 2(a)]. Note also that, instead of continuous parameter
region, the appearance of the positive ηmax is very sensitive to
the specific choice of meff and varies strongly even in the large
mass region. This is another common feature for the chaotic
behavior [9,11,14,39,41]. Figure 6(b) shows the dependence
of ηmax on the damping constant. As seen, a small damping
α promotes the occurrence of chaos, which is similar to the
previous finding in bimeron motion [14].

FIG. 6. (a) The largest Lyapunov exponent ηmax as a function of
the skyrmion mass meff (with α = 0.01) and (b) its dependence on the
damping constant α (with meff = 6.18 × 10−25 kg). The insets show
the evolution of ηi.

014422-4



SKYRMION-BASED CHAOTIC OSCILLATOR DRIVEN BY A … PHYSICAL REVIEW B 109, 014422 (2024)

FIG. 7. (a)–(c) The evolution of the recorded magnetizations
(minj

z ) with different values of RKKY coupling coefficient. The in-
sets are the FFT spectra of minj

z . (d)–(f) Corresponding return maps
constructed by neighboring sampling points, minj

z,i and minj
z,i+1, with a

temporal interval of 0.1 ns. Here, the adopted parameters are all the
same as those used for Fig. 3.

C. Electrical detection of chaotic oscillation

The dynamic behavior of skyrmion motion in nanooscilla-
tors can be readout electrically from the magnetoresistance
[42,43], which reflects the average magnetization within a
detection area. Taking our injector as a detector, the local
out-of-plane magnetizations averaged over the ferromagnetic
area underneath the injector, minj

z , are calculated based on the
dynamical spin texture from micromagnetic simulations for
Figs. 3(d) to 3(f).

As shown in Fig. 7(a), minj
z is a constant with a value

about 0.4 for the skyrmion moving stably along a circular
orbit defined by the boundary of the injector. For the multi-
frequency regular oscillation in Fig. 3(e), its minj

z presents a
nice periodic evolution in Fig. 7(b), with a frequency comb
in its FFT spectrum presented in the inset. Contrarily, the
aperiodic characteristics for the chaotic oscillation in Fig. 3(f)
are reflected by the time evolution of minj

z and the noise-like
FFT spectrum in Fig. 7(c). This noise-like spectrum is very
similar to the FFT spectrum of skyrmion location in Fig. 5(c).
Note that the maximum of minj

z in Figs. 7(b) and 7(c) is close
to the ferromagnetic value (minj

z = 1) because the skyrmion
center is already far away from the current injection area, as
explained in Fig. 4.

By sampling the minj
z in Figs. 7(a) to 7(c) at equally spaced

intervals and taking two neighboring sampling points minj
z,i and

minj
z,i+1 as the horizontal and vertical axes, respectively, we

construct the return maps [44,45] in Figs. 7(d) to 7(f), which
exhibit distinct features for the three dynamical phases. While
the circular motion gives only a single point in its return map
[Fig. 7(d)], the periodic and chaotic oscillations possess a
closed loop without and with fluctuation in their return maps,
as shown in Figs. 7(e) and 7(f), respectively.

Finally, it is worth pointing out that, although the ran-
dom force due to the thermal fluctuation can also introduce
a similar noise-like spectrum as those in Fig. 5(c) and the
inset of Fig. 7(c), the resulting skyrmion trajectory and the

corresponding return map of minj
z differ qualitatively from

the chaotic oscillation. Details of the results are discussed
in Appendix B. Note also that the oscillation of skyrmion
around the injection area of our oscillator is thanks to
the unique ferrimagnetic properties, which is not allowed
in skyrmion-based oscillators with an unpatterned work-
ing layer of natural/synthetic (anti)ferromagnets [30]. The
possibility of constant-current-induced chaos in a confined
(anti)ferromagnetic skyrmion oscillator is left for future study.

IV. CONCLUSION

In conclusion, we demonstrated the constant-current-
induced chaotic dynamics in a ferrimagnetic skyrmion
oscillator by means of the Thiele equation and micromagnetic
simulation. The observed chaotic dynamics were further con-
firmed by the direct calculation of Lyapunov exponents and
the spectral function of the oscillation. The distinct behavior
of the chaotic oscillator is also analyzed by the return map
of the readout of the local magnetization. Our results unravel
the rich dynamics of skyrmions in a ferrimagnetic oscillator
and provide a promising method to excite chaotic oscillation
in spintronics.
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APPENDIX A: DERIVATION OF THIELE EQUATION

We derive the Thiele equation from the Landau-Lifshitz-
Gilbert (LLG) equation of the reduced magnetization (mτ )
[27]

ṁτ = − γ τ mτ × Hτ
eff + ατ mτ × ṁτ

+ γ τ H τ
j (mτ × mF) × mτ , (A1)

where the superscript τ = t (b) for the top (bottom) ferromag-
netic sublayer. γ τ and ατ are the gyromagnetic ratio and the
damping constant, respectively. Hτ

eff stands for the effective
field

Ht(b)
eff = 2JRKKY

μ0M t(b)
s t t(b)

mb(t) + Ht(b)
ex + Ht(b)

an + Ht(b)
DM, (A2)

with JRKKY, μ0, Mτ
s , and t τ being the RKKY coupling co-

efficient, the vacuum permeability constant, the saturation
magnetization and the layer thickness, respectively. Hτ

ex and
Hτ

an denote the intralayer exchange field and the magnetic
anisotropy field, respectively. The exchange field (Hτ

DM) from
interfacial Dzyaloshinskii-Moriya interaction is described as

Hτ
DM = 2Dτ

μ0Mτ
s

[∇mτ
z − (∇ · mτ )ez

]
, (A3)

where Dτ is a coefficient and we set Dt = Db in micro-
magnetic simulations, which may be achieved, for example,
by designing the stacking configuration of multilayer film
[46]. In Eq. (A1), mF is the polarization vector and H τ

j =
jh̄P/(2μ0et τ Mτ

s ) represents the strength of spin transfer
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torque, where j, h̄, P, and e are the current density, the reduced
Planck’s constant, the spin polarization efficiency, and the
elementary charge, respectively.

For the sake of convenience in derivation, Eq. (A1) is
rewritten as

t tM t
s

γ t
ṁt = − mt × ht

eff + αt t tM t
s

γ t
mt × ṁt

+ h j (mt × mF) × mt, (A4)

tbMb
s

γ b
ṁb = − mb × hb

eff + αb tbMb
s

γ b
mb × ṁb

+ h j (mb × mF) × mb. (A5)

Here, h j = jh̄P/(2μ0e) and ht(b)
eff = hRKKYmb(t) + ht(b) with

hRKKY = 2JRKKY/μ0 and hτ = (Hτ
ex + Hτ

an + Hτ
DM)Mτ

s t τ .
The linear combinations of Eqs. (A4) and (A5) yield
the equations of motion for the net magnetization
m = (mt + mb)/2 and the Néel vector n = (mt − mb)/2
as

σ ṁ + ρṅ = − 4hRKKYn × m + ραn × ṁ

+ 2h j (m × mF) × n, (A6)

ρṁ + σ ṅ = − n × hn + ραn × ṅ

+ 2h j (n × mF) × n, (A7)

where σ = t tM t
s/γ

t − tbMb
s /γ b and ρ = t tM t

s/γ
t +

tbMb
s /γ b. The parameters ρα and hn are defined as

ρα = αtt tM t
s/γ

t + αbtbMb
s /γ b and hn = ht − hb, respec-

tively. According to Eqs. (A6) and (A7) with |m| � |n| ∼ 1
in the limit of relatively strong RKKY coupling to make the
magnetizations in the two sublayers nearly antiparallel, we
derive a closed equation for the Néel vector

ρ2

−4hRKKY
n̈ × n + σ ṅ = − n × hn + ραn × ṅ

+ 2h j (n × mF) × n. (A8)

FIG. 8. (a) Trajectory of the skyrmion Brownian motion due to
thermal effects at 30 K. The inset shows the FFT spectrum of rcx .
(b) The readout of the local magnetization in the injection area from
MUMAX3 and (c) the corresponding return map with a temporal
interval at 0.1 ns. In this calculation, the size of each ferromagnet
is set to be 200 × 200 × 1 nm3 and other parameters are the same as
those used for Fig. 3.

Using ṅ = −(ṙc · ∇ )n and n̈ = −(r̈c · ∇ )n, and spatially inte-
grating the scalar product of Eq. (A8) and (n × ∂in) [29], one
can write out the Thiele equation, Eq. (1). Here, rc denotes the
skyrmion location.

APPENDIX B: SKYRMION MOTION
WITH THERMAL EFFECTS

Figure 8(a) displays the trajectory of the skyrmion in the
presence of thermal fluctuation at 30 K, where the thermal
effects are introduced by including a stochastic field into the
Landau-Lifshitz-Gilbert equation [47]. The thermal-induced
Brownian motion of skyrmion is apparently different from the
current-induced chaotic oscillation shown in Fig. 3, although
the frequency spectra of both cases exhibit similar noise-like
characteristics. The time evolution and the return map of
the readout from the skyrmion Brownian motion are plotted
in Figs. 8(b) and 8(c), which also have different patterns,
compared to those of current-induced chaotic dynamics in
Figs. 7(c) and 7(f).
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