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Three-sublattice antiferro-type and ferri-type skyrmion crystals
in magnets without the Dzyaloshinskii-Moriya interaction
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We numerically investigate the stability of the skyrmion crystals in a system without the Dzyaloshinskii-
Moriya interaction by focusing on the role of magnetic frustration arising from the multi-sublattice degree of
freedom. By analyzing an effective three-sublattice spin model with the antiferromagnetic exchange interaction
between different sublattices and the momentum-resolved exchange interaction between the same sublattice
based on the simulated annealing, we find that various skyrmion crystal phases with sublattice-dependent
skyrmion numbers are stabilized with and without an external magnetic field depending on the model parameters:
two ferro-type skyrmion crystal phases with the skyrmion numbers of one and two, two ferri-type skyrmion
crystal phases, and one antiferro-type skyrmion crystal phase. Our results indicate that the multi-sublattice degree
of freedom brings a further intriguing possibility of inducing exotic skyrmion crystal phases.
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I. INTRODUCTION

A magnetic skyrmion crystal (SkX) with nontrivial topo-
logical properties has been extensively studied since its direct
experimental observation in 2009 [1,2]. Although it was
originally discovered in noncentrosymmetric magnets [1–4],
where the competition between the ferromagnetic exchange
interaction and the Dzyaloshinskii-Moriya (DM) interac-
tion [5,6] plays an important role [7–10], its appearance
in centrosymmetric magnets has been clarified through the
observations for various bulk materials, such as Gd2PdSi3

[11–14], Gd3Ru4Al12 [15,16], GdRu2Si2 [17–22], and EuAl4

[23–26]. Simultaneously, a variety of SkXs without relying
on the DM interaction have been theoretically studied for
various lattice structures [27], such as square [28–31], tri-
angular [32–37], and cubic lattices [38]. Since the SkX in
centrosymmetric magnets without the DM interaction tends
to have a short magnetic modulation period, it has a great
advantage to energy-efficient devices based on high-density
topological objects, which is promising for future spintronics
applications.

Meanwhile, exploring further intriguing topological mag-
netic states is one of the challenging issues in condensed
matter physics [39]. In this context, a plethora of spin textures
have been proposed and investigated, such as a meron-
antimeron crystal [40–42], skyrmionium [43,44], hedgehog
[45–48], and hopfion [49–51]. Among them, we focus on the
role of the multi-sublattice degree of freedom under lattice
structures in the stabilization of topological magnetic states.
The most typical example is an antiferro-type SkX (AF-SkX)
in two-sublattice systems, where the skyrmion number cor-
responding to the topological charge exhibits the opposite
sign between two sublattices so that it is canceled out in
the whole system [52–55]. The realization of the AF SkX
has been clarified in the presence of an external staggered
magnetic field [54], uniform out-of-plane magnetic field [56],

and uniform in-plane magnetic field [57]. Especially, not only
the AF SkX but also the ferri-type SkX (Ferri-SkX) with the
different skyrmion numbers for different sublattices have been
found in itinerant honeycomb magnets with the two-sublattice
structure [56]. Based on these observations, a natural question
arises: is it possible to realize the AF SkX in odd-number
sublattice systems, e.g., the three-sublattice system? Although
the three-sublattice SkX have been investigated in various
theoretical models [58–62], no SkX with different skyrmion
numbers at each sublattice but without the skyrmion number
in the total system was reported except for a trilayer model
with a layer-dependent DM interaction [63].

In the present study, we investigate the stabilization of the
three-sublattice AF SkX in magnets without the DM interac-
tion. By performing the simulated annealing for an effective
spin model with the momentum-resolved interaction between
the same sublattice and antiferromagnetic interaction between
the different sublattices, we construct a ground-state phase
diagram in the fundamental three-sublattice magnetic system.
We find that the AF-SkX phase appears for the intermediate
magnetic field, where two out of three sublattices exhibit the
spin textures with the skyrmion number of +1 (−1), while the
remaining sublattice shows that with the skyrmion number of
−2 (+2) so as to vanish the skyrmion number in the whole
system. Furthermore, we find rich SkX phases with different
skyrmion numbers depending on the inter-sublattice antiferro-
magnetic interaction and the magnetic field: two types of the
ferro-type SkX (F-SkX) and two types of the Ferri-SkX. Our
results indicate that materials with multi-sublattice structures
can host exotic topological spin textures that are distinct from
those in the single-sublattice ones.

The rest of the paper is organized as follows. In Sec. II,
we introduce an effective spin model and the method
based on the simulated annealing. Then, we show the mag-
netic phase diagram in Sec. III. We discuss the detailed
spin and chirality textures in the obtained phases including
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the AF-SkX. A summary of the results is presented in
Sec. IV.

II. MODEL AND METHOD

In order to investigate the instability toward the AF SkX
in the three-sublattice system, we consider an effective spin
model on a lattice consisting of three sublattices A–C under a
trigonal lattice structure, which is given by

H =
∑

η

Hintra
η + Hinter + HZ, (1)

where

Hintra
η = 2

∑
ν

[
−JSηQν

· Sη−Qν
+ K

N
(SηQν

· Sη−Qν
)2

]
, (2)

Hinter = J inter
∑
〈i, j〉

Si · S j, (3)

HZ = − H
∑

i

Sz
i . (4)

The first term in Eq. (1), Hintra
η , represents the Hamiltonian

for sublattice η = A–C, which includes the bilinear and bi-
quadratic exchange interactions with the coupling constants
J and K , respectively, in momentum space; SηQν

is the spin
moment at the Qν component for sublattice η; SηQν

is related
to the real-space spin Si at site i by the Fourier transformation;
we fix the spin length as |Si| = 1. N represents the total
number of spins in each sublattice. We consider the dom-
inant interactions in momentum space by choosing several
Qν in the Brillouin zone; we take the contributions from the
symmetry-equivalent wave vectors by assuming the threefold
rotational symmetry in the system: Q1 = (π/3, 0, 0), Q2 =
(−π/6,

√
3π/6, 0), and Q3 = (−π/6,−√

3π/6, 0) (we set
the lattice constant as unity as will be discussed below),
and the prefactor 2 in Eq. (2) represents the contribution
from −Q1, −Q2, and −Q3. The simplification to extract the
dominant interactions in momentum space is justified when
the ground-state spin configurations are calculated, since the
contributions to the ground-state internal energy are well
dominated by specific wave vectors. Microscopically, this
Hamiltonian in Eq. (2) is derived as an effective spin model
of the Kondo lattice model in the weak-coupling regime,
where the bare susceptibility of itinerant electrons shows
maxima at Q1–Q3 [64,65]; the first term corresponds to the
lowest-order contribution in the perturbation expansion, i.e.,
Ruderman-Kittel-Kasuya-Yosida interaction [66–68], and the
second term corresponds to the second-lowest-order contribu-
tion, the latter of which tends to induce various multiple-Q
instabilities when its sign is positive [64,69,70], such as the
double-Q SkX found in GdRu2Si2 [19,21] and triple-Q vortex
crystal in Y3Co8Sn4 [71]. In the real-space picture, the first
term is described by the two-site two-spin interactions, and
the second term is described by the multisite multispin inter-
actions. We set J as the energy unit of the model Hamiltonian
H and treat K > 0 as the phenomenological parameter.

The second term in Eq. (1), Hinter, denotes the inter-
sublattice Hamiltonian. We consider the antiferromagnetic
exchange interaction (J inter > 0) for all pairs of differ-
ent nearest-neighbor sublattices by implicitly considering a

(a)

sublattice A

sublattice B

sublattice C

…

sublattice A

…

sublattice C

(b)

A

B C

FIG. 1. Examples of three-sublattice structures with sublattices
A–C: (a) trilayer and (b) trigonal structures. a and c are the length
of each bond. J inter stands for the exchange interaction between the
different sublattices.

trilayer triangular system in Fig. 1(a); we set a = c = 1
for simplicity. This interaction is also represented by the
momentum-resolved interaction in Eq. (2) by performing
the Fourier transformation, which is given in the bilinear
form like SAQν

· SB−Qν
. It is noted that the model with the

interactions in Eqs. (2) and (3) is mapped onto that in a
different three-sublattice system; a two-dimensional trigonal
lattice in Fig. 1(b) is geometrically equivalent to the trilayer
lattice in Fig. 1(a) within the nearest-neighbor inter-sublattice
interaction; it is noted the lattice structure in Fig. 1(b) is
also equivalent to the breathing kagome structure within the
nearest-neighbor inter-sublattice interaction. They are distin-
guished by considering further-neighbor interactions in Hinter

and magnetic anisotropic interactions in Hintra
η , which are not

taken into account in the present model in order to focus on the
role of the competition between K and J inter [63,72,73]. Thus
the model in Eq. (1) is the most fundamental model to describe
the multiple-Q instabilities in a three-sublattice system. The
last term in Eq. (1), HZ, represents the Zeeman coupling in the
presence of an external magnetic field along the z direction.

We calculate the magnetic phase diagram at low temper-
atures by means of the simulated annealing for the model in
Eq. (1) on the trilayer triangular lattice with the total num-
ber of spins 3N for N = 122 under the periodic boundary
conditions in all three directions. The following results are
not altered for larger system sizes, such as N = 602, since
we consider the interactions at commensurate ordering wave
vectors in Eq. (2). The details of the simulated annealing
are as follows: First, we choose a random spin configuration
at high temperatures as the initial temperature T0 = 0.1–1.0.
Then, we gradually reduce the temperature with a cooling rate
Tn+1 = αTn until the temperature reaches the final temperature
at T = 0.001, where Tn is the temperature in the nth step
and α = 0.99999 − 0.999999. While decreasing the temper-
ature, we perform standard Metropolis local updates in real
space at each temperature. We totally perform 105–106 Monte
Carlo sweeps for annealing and measurements at the final
temperature. To evade a metastable solution near the phase
boundaries, we also perform the simulations by starting from
the spin configurations obtained at low temperatures.
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FIG. 2. Real-space spin configurations of the single-Q conical
state at K = 0, J inter = 0.85 and H = 1 for sublattice A (top), sub-
lattice B (middle), and sublattice C (bottom). The arrows represent
the xy components of the spin moment and the color shows the z
component.

The magnetic phases obtained by the simulated annealing
are classified into their spin and chirality textures. In the spin
textures, we calculate the spin structure factor per layer η as

Sα
η (q) = 1

N

∑
i, j∈η

Sα
i Sα

j eiq·(ri−r j ), (5)

where α = x, y, z. We also calculate magnetic moments at the
Qν component as

mα
ηQν

=
√

Sα
η (Qν )

N
. (6)

The total spin component of mα
ηQν

is defined as mηQν
=√

(mx
ηQν

)2 + (my
ηQν

)2 + (mz
ηQν

)2. The net magnetization per

(b)

(a)

FP

3Q

3Q

3Q

3Q

F-SkX 

F-SkX

F-SkX 

F-SkX 

Ferri-SkX 

Ferri-SkX 

AF-SkX

AF-SkX

Ferri-SkX II

3Q II

FIG. 3. (a) Magnetic phase diagram with varying the inter-
sublattice interaction J inter and the external magnetic field H at
K = 0.3, which is obtained by performing the simulated annealing.
F-SkX, AF-SkX, Ferri-SkX, 3Q, and FP represent the ferro-
type skyrmion crystal, antiferro-type skyrmion crystal, ferri-type
skyrmion crystal, triple-Q state, and fully polarized state, respec-
tively. (b) Enlarged figure of (a).

layer is given by

Mα
η = 1

N

∑
i∈η

Sα
i . (7)

In the chirality texture, the spin scalar chirality is repre-
sented by

χ sc
η = 1

N

∑
R∈η

χR, (8)

χR = Si · (S j × Sk ), (9)

where χR represents the local scalar chirality at the position
vector R, which is located at the centers of upward and down-
ward triangles with the vertices i, j, and k within the same
sublattice in the counterclockwise order. By using χR, the
skyrmion number per layer is calculated as

nη

sk = 1

4πNm

〈∑
R∈η

�
η

R

〉
, (10)
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FIG. 4. H dependence of [(a) and (b)] the magnetization Mz
η,

[(c) and (d)] the scalar chirality χ sc
η , and [(e) and (f)] the

squared momentum-resolved magnetic moment (mηQν
)2 for sublat-

tices η = A, B, and C at J inter = 0.05. (b), (d), and (f) represent
the enlarged figures of (a), (c), and (e) in the low-field region, re-
spectively. The vertical dashed lines in (b), (d), and (f) represent the
phase boundaries between different phases, where the corresponding
phases are presented above in (b).

where Nm is the number of the magnetic unit cell and �
η

R is
the skyrmion density for layer η [74]:

tan

(
�

η

R

2

)
= χR

1 + Si · S j + S j · Sk + Sk · Si
. (11)

For example, the SkX with the vortexlike winding of spins
around the skyrmion core leads to nη

sk = −1, while the anti-
SkX with the anti-vortex-like winding of spins leads to
nη

sk = +1.

III. RESULTS

There are three independent parameters in the model in
Eq. (1): K , J inter, and H . First, let us discuss the result at
K = 0. In this case, the ground state becomes the single-Q
state irrespective of J inter and H . We show the spin configu-
rations for sublattices A–C at J inter = 0.85 and H = 1 as an
example in Fig. 2. Here and hereafter, we copied the 12 × 12
spin configurations in each layer, which was obtained by the

 0.0
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 0.20
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FIG. 5. The same plot as Fig. 4 with J inter = 0.6.

simulated annealing, so as to satisfy the periodic boundary
condition for better visibility. The spin configurations in all
the layers show the single-Q conical spiral structure with the
Q3 component, although the phase among the spiral waves is
different from each other; the spins at the same xy position
from the 120◦ antiferromagnetic structure so that the energy
by the interlayer antiferromagnetic exchange J inter is mini-
mized. In the end, there is no multiple-Q instability in the
absence of K .

Next, let us consider the effect of K . Figure 3(a) shows the
magnetic phase diagram obtained by the simulated annealing
for nonzero K = 0.3. Depending on J inter and H , a variety of
multiple-Q states are stabilized in the phase diagram. There
are totally eight phases, among which five types of the SkX
phases are obtained; see also Fig. 3(b), which is an enlarged
figure of Fig. 3(a). We discuss the behaviors of the spin and
chirality quantities for obtained phases by referring their H
dependence in Figs. 4 and 5 and real-space configurations in
Figs. 6–11. In Figs. 4 and 5, we show the data by appropriately
sorting (mα

ηQν
)2 for better readability. Meanwhile, we show the

raw data for the real-space spin and chirality configurations
obtained by the simulated annealing in Figs. 6–11.

When H = 0, the ground state becomes the nsk = 2 F-SkX
phase for small J inter, as shown in Fig. 3(b). The real-space
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FIG. 6. Real-space spin (left panel) and scalar chirality (right
panel) configurations of the nsk = 2 F-SkX with (nA

sk, nB
sk, nC

sk ) =
(2, 2, 2) at J inter = 0.05 and H = 0.1 for sublattice A (top), sublattice
B (middle), and sublattice C (bottom). In the left panels, the arrows
represent the xy components of the spin moment and the color shows
the z component.

spin configurations in each sublattice are shown in the left
panel of Fig. 6, where all the layers exhibit noncoplanar spin
configurations. As shown in Figs. 4(e) and 4(f), this state has
equal intensities at Q1, Q2, and Q3 in magnetic moments; this
state corresponds to a triple-Q state. The difference between
them is found in the positions of the vortex core, which are
located around Sz

i = +1 in the left panel of Fig. 6 so that
the energy by the antiferromagnetic interlayer exchange in-
teraction is gained. Reflecting the noncoplanar spin textures,
there is a net scalar chirality, as shown in Figs. 4(c) and 4(d),
and the right panel of Fig. 6; the skyrmion number nη

sk for
layer η is quantized as +2. This is also understood from the
vorticity around the vortex core at Sz

i = +1 in a real-space
picture (Fig. 6), where the in-plane spin components rotate
two times around the core. Since all the layers exhibit the
skyrmion number of two, we call this state nsk = 2 F-SkX.
It is noted that the state with (nA

sk, nB
sk, nC

sk ) = (−2,−2,−2) is
degenerate with that with (nA

sk, nB
sk, nC

sk ) = (2, 2, 2).
The appearance of the nsk = 2 F-SkX is attributed to

the positive biquadratic interaction K , which tends to favor
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1

-1
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1

-1

0

1
 (sublattice B)
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0

1

(sublattice C)

-1

0

1

-1

0

1

 (sublattice A)
Ferri-SkX 

FIG. 7. Real-space spin (left panel) and scalar chirality
(right panel) configurations of the nsk = 2 Ferri-SkX state with
(nA

sk, nB
sk, nC

sk ) = (2, 2, −2) at J inter = 0.6 and H = 0.1 for sublattice
A (upper panel), sublattice B (middle panel), and sublattice C (lower
panel). In the left panels, the arrows represent the xy components of
the spin moment and the color shows the z component.

multiple-Q states compared to the single-Q spiral state. In-
deed, this state remains stable for infinitesimally small J inter;
the model is connected to the single-layer triangular-lattice
model for J inter → 0, where the instability toward the nsk = 2
SkX was reported in itinerant electron models, such as the
Kondo lattice model [75–78] and the Hubbard model [79].
Since the model Hamiltonian has rotational symmetry in spin
space, the helicity and vorticity of the SkX are arbitrary
taken; the SkX with nsk = +2 has the same energy as that
with nsk = −2, whose degeneracy is lifted by considering an
additional anisotropic exchange interaction originating from
the spin–orbit coupling [80]. Similar SkXs with nsk = +2
have been also found in the model with anisotropic exchange
interactions [81–84].

By increasing J inter, the nsk = 2 F-SkX turns into the
nsk = 2 Ferri-SkX, as shown in the phase diagram in Fig. 3(b).
The real-space spin and chirality configurations of the nsk = 2
Ferri-SkX are shown in the left and right panels of Fig. 7,
respectively. In contrast to the nsk = 2 F-SkX, the sign of the
skyrmion number for one of three layers is reversed in order

014415-5



SATORU HAYAMI PHYSICAL REVIEW B 109, 014415 (2024)

-1

0

1

-1

0

1

-1

0

1
 (sublattice B)

-1

0

1

(sublattice C)

-1

0

1

-1

0

1

 (sublattice A)
AF-SkX 

FIG. 8. Real-space spin (left panel) and scalar chirality (right
panel) configurations of the AF-SkX state with (nA

sk, nB
sk, nC

sk ) =
(1, −2, 1) at J inter = 0.6 and H = 0.6 for sublattice A (top), sub-
lattice B (middle), and sublattice C (bottom). In the left panels, the
arrows represent the xy components of the spin moment and the color
shows the z component.

to further gain the energy by J inter; see the case with nC
sk = −2

in Fig. 7. Thus the alignment of the skyrmion number as
(nA

sk, nB
sk, nC

sk ) = (+2,+2,−2) or (−2,−2,+2) corresponds
to the ferri-type one; the total skyrmion number is smaller than
that in the nsk = 2 F-SkX. Similarly, the total scalar chirality
becomes small compared to that in the nsk = 2 F-SkX, as
shown in Figs. 5(c) and 5(d). Reflecting the different skyrmion
numbers, three-sublattice spin configurations are not equiva-
lent to each other; the intensities for the triple-Q structures are
anisotropic for two out of three sublattices, while those are
almost isotropic for the remaining one, as shown in Figs. 5(e)
and 5(f).

Next, let us turn on the magnetic field H . We first discuss
the case for small J inter by taking J inter = 0.05 in Fig. 4; the
zero-field state is the nsk = 2 F-SkX. As H increases, the
magnetization Mz

η gradually increases, as shown in Fig. 4(b),
while the scalar chirality remains almost the same, as shown
in Fig. 4(d). With a further increase of H , the nsk = 2 F-
SkX is replaced by the AF-SkX at H ∼ 0.18 with jumps of
the magnetization and scalar chirality for two out of three
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0

1
 (sublattice B)

-1

0

1

(sublattice C)

-1

0

1
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0

1
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3Q

FIG. 9. Real-space spin (left panel) and scalar chirality (right
panel) configurations of the 3Q state with (nA

sk, nB
sk, nC

sk ) = (0, 0, 0)
at J inter = 0.05 and H = 0.3 for sublattice A (top), sublattice B
(middle), and sublattice C (bottom). In the left panels, the arrows
represent the xy components of the spin moment and the color shows
the z component.

sublattices, as shown in Figs. 4(b) and 4(d). The real-space
spin and scalar chirality of the AF-SkX are shown in Fig. 8,
where the skyrmion numbers for sublattices A, B, and C
are given by (nA

sk, nB
sk, nC

sk ) = (1,−2, 1). Note that the state
with (nA

sk, nB
sk, nC

sk ) = (−1, 2,−1) is degenerate with that with
(nA

sk, nB
sk, nC

sk ) = (1,−2, 1); both of them are obtained by the
simulated annealing at equal probability.

By closely looking at the spin configuration in the left
panel of Fig. 8, one finds that the skyrmion cores denoted by
Sz

i = −1 for sublattice B are surrounded by the vortex with
the winding number of +2. In contrast, the skyrmion cores
for sublattices A and C are surrounded by the anti-vortex
with the winding number of −1. Reflecting such a difference,
the skyrmion number for sublattice B is -2 times that for
sublattices A and C. Thus the total skyrmion number in the
magnetic unit cell becomes zero, which means the emergence
of the AF-SkX. Nevertheless, it is noteworthy that the total
scalar chirality χ sc

total = χ sc
A + χ sc

B + χ sc
C becomes nonzero, as

found from the data in Fig. 4(d). This might be attributed
to the nature of the discrete-lattice system. In the end, the
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FIG. 10. Real-space spin (left panel) and scalar chirality
(right panel) configurations of the nsk = 1 F-SkX state with
(nA

sk, nB
sk, nC

sk ) = (1, 1, 1) at J inter = 0.05 and H = 0.8 for sublattice
A (top), sublattice B (middle), and sublattice C (bottom). In the left
panels, the arrows represent the xy components of the spin moment
and the color shows the z component.

contribution of the topological Hall effect should be finite
even in the AF-SkX. Although the spin configuration for
sublattice B is qualitatively different from that for sublattices
A and C in the left panel of Fig. 8, both of them exhibit similar
triple-Q structures with almost the same intensity, as shown in
Figs. 4(e) and 4(f).

By further increasing H , the AF-SkX changes into the 3Q
state, whose spin and chirality configurations in real space are
shown in the left and right panels of Fig. 9, respectively. This
state is mainly characterized by the double-Q in-plane and
single-Q out-of-plane spin modulations with different intensi-
ties, as shown in Figs. 4(e) and 4(f). Although the spin texture
in the 3Q state is noncoplanar, this state does not have a net
scalar chirality in the whole system in contrast to the above
SkXs in Figs. 4(c) and 4(d); the scalar chirality oscillates
along the direction where the out-of-plane spin component
oscillates [85], as shown in the right panel of Fig. 9, and hence,
the skyrmion number becomes zero.

The 3Q state shows the phase transition to the nsk = 1 F-
SkX as H increases, as shown in Fig. 3(b). This state consists
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(sublattice C)

 (sublattice A)
Ferri-SkX II

FIG. 11. Real-space spin (left panel) and scalar chirality (right
panel) configurations of the Ferri-SkX II with (nA

sk, nB
sk, nC

sk ) =
(2, 1, −2) at J inter = 0.6 and H = 0.2 for sublattice A (top), sub-
lattice B (middle), and sublattice C (bottom). In the left panels, the
arrows represent the xy components of the spin moment and the color
shows the z component.

of the SkX with the skyrmion number of one in each layer,
as shown in the left panel of Fig. 10. The skyrmion cores
are located at the interstitial site rather than the lattice site
[86], and their positions for different sublattices are different
from each other; the ABC stacking is realized in order to gain
the energy by J inter [87]. This state is energetically degenerate
to the state with (nA

sk, nB
sk, nC

sk ) = (−1,−1,−1). When H is
increased into the nsk = 1 F-SkX phase, the state turns into
the 3Q state again, and it continuously turns into the fully
polarized state, as shown in Figs. 4(a) and 4(c).

For large J inter, the nsk = 2 F-SkX and the 3Q state in the
low-field region is no longer stabilized; the nsk = 2 F-SkX
is replaced by the nsk = 2 Ferri-SkX, as discussed above.
In addition, the Ferri-SkX II appears in the phase diagram
between the nsk = 2 Ferri-SkX and the AF-SkX, as shown
in Fig. 5. As shown by the real-space spin configuration in
the left panel of Fig. 11, the Ferri-SkX II exhibits distinct spin
configurations for all the sublattices; the spin configuration for
sublattice A consists of the SkX with the skyrmion number of
+2, that for sublattice B consists of the SkX with the skyrmion

014415-7



SATORU HAYAMI PHYSICAL REVIEW B 109, 014415 (2024)

number of +1, and that for sublattice C consists of the SkX
with the skyrmion number of −2, where the real-space scalar
chirality distributions are shown in the right panel of Fig. 11.
Thus the skyrmion number in this state is characterized by
+1 in the whole layer, which means the emergence of a
ferri-type alignment of the SkX, although the sequence of
the skyrmion number in the three sublattices is different from
that of the nsk = 2 Ferri-SkX. The other phase sequence in
the high-field region is similar to that for small J inter except
for 0.85 � J inter � 1, where another phase denoted as 3Q II
appears in the narrow region between the AF-SkX and nsk = 1
F-SkX. This phase is characterized by an anisotropic triple-Q
structure without the skyrmion number for sublattices A–C
(not shown).

The appearance of various SkXs in the phase diagram in
Fig. 3 is attributed to the sublattice degree of freedom in the
lattice structure. For J inter = 0 corresponding to the single-
sublattice system [77], there are two types of SkXs in the
phase diagram: nsk = 2 F-SkX in the low-field region and
nsk = 1 F-SkX in the intermediate-field region. Meanwhile,
additional three types of SkXs are realized by taking into
account the interaction between different sublattices: nsk = 2
Ferri-SkX, Ferri-SkX II, and AF-SkX. In these SkXs, the
skyrmion number in each sublattice is different from each
other, which indicates that the sublattice degree of freedom
becomes a source of further rich topological spin textures as
also found in the multi-sublattice SkXs in the two-sublattice
honeycomb structure [56].

IV. SUMMARY

To summarize, we have investigated the stability of the
SkXs with an emphasis on the sublattice degree of freedom
in the lattice structure. The ground-state phase diagram was
constructed for the effective spin model on the three-sublattice
triangular lattice by performing the simulated annealing. We
have shown that two types of Ferri-SkXs and one type of AF-
SkX are stabilized by the interplay between the biquadratic
interaction and antiferromagnetic inter-sublattice interaction.
The present results indicate that further composite SkXs
consisting of sublattice-dependent skyrmion numbers are ex-
pected. One of the potential situations is a multilayer system,
where the SkX is stabilized in each layer, as demonstrated in
this study. Furthermore, the synthetic van der Waals antiferro-
magnets might be another possible candidate, which can host
various topological spin textures [88–91]. Once the interlayer
interaction is antiferromagnetic, rich Ferri- and AF-SkXs can
be realized.
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