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Unveiling stable one-dimensional magnetic solitons in magnetic bilayers
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We propose a novel model which efficiently describes the magnetization dynamics in a magnetic bilayer
system. By applying a particular gauge transformation to the Landau-Lifshitz-Gilbert (LLG) equation, we
successfully convert the model into an exactly integrable framework. Thus the obtained analytical solutions
allow us to predict a one-dimensional magnetic soliton pair existing by tuning the thickness of the spacing
layer between the two ferrimagnetic layers. The decoupling-unlocking-locking transition of soliton motion is
determined at various interaction intensity. Our results have implications for the manipulation of magnetic
solitons and the design of theoretical magnetic soliton-based distance detection prototype.

DOLI: 10.1103/PhysRevB.109.014414

I. INTRODUCTION

The intricate interplay of multiple interactions in mag-
netic materials generates a large class of localized spin
textures—magnetic solitons [1-7]. These solitons exhibit dis-
tinct and varied configurations in different dimensions and
hold great promise as candidates for the next generation of
magnetic storage devices [8,9]. Instead of static magnetic in-
teractions, dynamic magnetic interactions [10—12] have been
recently predict and observed by the current-induced torque
or nonequilibrium spin pumping [13—19]. Within the dynamic
coupling magnetic interaction, two magnets can be coherently
and tunable coupled at the macro distance, presenting a novel
avenue for the coherent transfer of magnon excitation between
distinct magnetic systems [19,20]. Furthermore, these devel-
opments raise also an intriguing question of the existence and
regulation of attractive magnetic solitons in magnetic bilayer
structures [21-23].

Extensive efforts have been dedicated to the quest for stable
magnetic solitons in theory, experiments, and micromagnetic
simulations [24-29]. Theoretically, the dynamics of magnetic
solitons are described by the Landau-Lifshitz-Gilbert (LLG)
equation [18,30]. Numerous analytical studies have delved
into the original LLG equation that describes single-layer
magnets [1,31-36]. As for one-dimensional systems, dynamic
multisoliton solutions and topological solitons have been ob-
tained [1,37-40]. These resulting analytical solutions have
offered valuable guidance for corresponding experimental and
applied research endeavors [41-45]. However, this collab-
orative synergy between theoretical and experimental work
is lacking in multilayer ferromagnetic systems. One signifi-
cant factor is that the dynamic coupling magnetic interaction
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not only unveils a host of fresh physical phenomena but
also amplifies the complexity of solving the coupled LLG
equation from a theoretical standpoint. The lack of compre-
hensive analytical solutions for the coupled system hinders
progress, necessitating time-consuming and labor-intensive
experiments and simulations, without the guidance of a solid
theoretical framework.

In this paper, we establish an exchange-coupled
ferromagnetic/normal/ferromagnetic ~ (F/N/F)  bilayer
structure as a model system. From the coupled LLG equations
governing the magnetization dynamics in the ferromagnetic
bilayers, a theoretical model at small amplitude approxi-
mation is developed. A gauge transformation is proposed
allowing us to convert the problem into an integrable model,
which is applicable when the intermediate layer thickness is
appropriately chosen. Thereafter, the exact solution of the
governing equation is achieved, and the analytical magnetic
soliton solutions are subsequently obtained. By adjusting
the strength of dynamic magnetic coupling, we find that
the magnetic soliton pairs in the ferromagnetic bilayer
undergo a decoupled-unlocking-locking transition. We also
examine the influence of Gilbert damping in materials on the
design of practical devices. These results illustrate practical
ways to control the one-dimentional magnetic solitons,
in which three motion states are successfully released:
antiparallel moving, splitting oscillation, and the locking
soliton pair.

II. MODELING

We consider a magnetic bilayer system as illustrated in
Fig. 1, which consists of two coupled ferromagnetic (FM)
films and a nonmagnetic interlayer with thickness of s. The
FM layers are assumed to be parallel to each other with equal
thicknesses d; = d» = d. The dynamics of the unit magneti-
zation vector m; in the parallel-coupled ferromagnetic layers

©2024 American Physical Society
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FIG. 1. Sketch of the ferromagnetic/normal/ferromagnetic thin-
film bilayer system. The magnetic soliton excitations propagate
along x axis. As a reference, the top (bottom) FM layer is labeled
i = 1( = 2). Their corresponding thicknesses are represented by
d; and d,, respectively. Parameter s denotes the thickness of the
nonmagnetic interlayer.

can be described by the Landau-Lifshitz-Gilbert equation
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where y; is the gyromagnetic ratio, «; > 0 denotes Gilbert
damping parameter of each FM layer, M, ; is the saturation
magnetization, and J represents coupling strength between m;
and m; with 7, j = 1, 2. We assume magnetic textures vary

slowly compared to the spin-coherence length A, = 7/ |k; -

k}| (here kﬁ denotes the Fermi-spanning wavevectors),
which is smaller than a nanometer for 3d metals. Thus the dy-
namic exchange coupling is considered occurring for x; = x;
only. Moreover, the effective field of the two FM layers can be
obtained from the free-energy density of the system as H.;; =

Mlo (;SHE] We assume the total energy incorporates the contri-
butions from the Zeeman energy due to an applied magnetic
field Hy = (0, 0, h), the exchange interaction parametrized
by an exchange constant A;, and the perpendicular mag-
netic anisotropy energy. Thus, it takes the form Heﬁ =Hy +
(2A; /M, ))V>m; + (2K; /M, ;)(m; - n)n, where n = (0, 0, 1) is
the unit vector directed along the anisotropy axis. We ne-
glect the long-range dipole interaction (this neglect may
be justified, e.g., on the assumption K; > 4w where the
exchange interaction is dominant [1]). For simplicity, we
transform the coupled LLG Eq. (1) to the dimension-

less form 38“;" =-m; X a;zml km; X (m; -n)n —J'm; x

m;, by rescaling the space and time into ¢ =A_! - x, T =

y oMy - t. Here Ao, = V2A;/(uoM ) is the exchange length,
and «k = 2K;/(noM?;) and J' = J/(,uosMSZJ) denote the di-
mensionless easy-axis anisotropy constant and dimensionless
coupling strength, respectively. Table I summarizes the real-
istic physical constants and parameters used for the structure
under our consideration.

TABLE I. The physical constants and parameters used.

Physical constants/parameters Symbol Value Unit
Gyromagnetic ratio y 1.76 x 10" %
Saturation magnetization M 5.8 x 10° %
Exchange stiffness A 13x107" 4
Magnetic anisotropy K 5x10° &
Magnetic permeability in vacuum Lo 47 x 1077 %
Damping parameter o 0.01 ~ 0.05

While the original Landau-Lifshitz equation in one di-
mension is integrable, the integrability of the coupled
Landau-Lifshitz equation that describes magnetic bilayer sys-
tems remains an open question. Take into account the fact that
the magnitude of the magnetization ml.2 = 1 at temperature
well below the Curie temperature, we reasonably intro-
duce a stereographic transformation ®; = m; + lm (m ) =

1 — |®;|*. Furthermore, let us consider small dev1at10ns
of magnetization m; from the equilibrium direction (along
the anisotropy axis), which corresponds to (m)‘)2 + (my )2 &
(m )2 (or |D; |> « 1) and therefore m ~1—|D; |2 /2. As a
result neglecting the Gilbert dampmg, the dynamics of the
variables ® = (®, ;)7 can be expressed as

. J'
i®, —2ad — (K|<I>1|2 + 5|<I>z|2><1>1

+ A@] —J/(DZ = O, (28.)

. J 2
Py — 2aPy; — 5|<D1| + k| D2|" ) P2

1+ AD, —J D, =0, (2b)

where a = A;, A =J' + h+ 2k. The significant observation
in this paper is that by maintaining a certain separa-
tion between two ferromagnetic layers (s = J/2K), for the
Co/Cu/Co structure, the value of the thickness of the
nonmagnetic layer is about 2 nm, it becomes possible to
introduce a gauge transformation ®;, = \%2(\1116"(’””2")r +

W,/ (1H097) 1o transform the dynamic model Eq. (1) into
an integrable frame in absence of damping. Finally, Egs. (2)
are transformed into the Manakov equation with arbitrary
constant coefficients:

Wi, —2aWie — k(W ]> + W0 =0,  (3a)

W, — 2aWar, — k(|W* + W)W, =0.  (3b)

Numerous solutions of this equation can be constructed using
the methods of exactly integrable systems. Then, one can
also easily obtain the formulations of three components of
magnetization by the inverse transformation from Egs. (2).

II1. RESULTS

A. Magnetic soliton solutions

Inspired by the nondegenerate optical solitions proposed
by S. Stain et al. [46] in Manakov systems, here we obtained
the new type of soltions in magnetic system, which is absent
in theoretical predictions for magnetic materials. In this con-
text, degenerate means that the fundamental soliton nature is
characterized by a single wave number in all the components.
From an applied perspective, the multihump characteristics
of nondegenerate solitons will serve to enhance data flow in
magnetic transmission applications. On the other hand, the
energy-sharing collision properties of degenerate magnetic
solitons also hold the potential for constructing logic gates and
applying them in spintronic electronic switching devices.

The nondegenerate magnetic soliton solutions of Eq. (3)
can be constructed with the help of the Hirota bilinear for-
malism [46—-48] and Darboux transformation [49]. Here, the
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exact first-order nondegenerate soliton solution reads (see
Supplemental Materials [50] for detailed derivation of first-
and second-order nondegenerate magnetic solitons)
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Here n, = ki¢ — 2iak12t and & =1[;¢ — 2iallzr are the trav-
eling wave forms of each solitary wave. This first-order
nondegenerate soliton solutions are characterized by four ar-
bitrary complex parameters, describing the velocity and the
amplitude of the magnetic soliton in both FM layers, as well
as the nonlinear interaction of magnetic solitons between two
FM layers.

The derived solutions Eq. (4) represent several categories
of magnetic solitons in this magnetic bilayer system. In par-
ticular, in the special case when k; = [, the nondegenerate
soliton solution Eq. (4) degenerates into the standard bright
soliton form

aje’

V= —
P 4 emtmiR’

i=1,2, (6)
where ef = k(lan1|*> + |a2]?)/[4alk, + kT)Z]. Through an-
alyzing all these solutions, it becomes apparent that the
magnetic bilayer system possesses diverse spin textures, man-
ifested as dynamical magnetic solitons. With this theoretical
prediction, in the following, we try to discuss the possible
generation mechanisms and the practical applications by these
magnetic soliton pairs in magnetic bilayer structures.

B. Linear stability analysis

It has been confirmed that, from the analytical solution
above, there are magnetic solitons allowed in this system, then
another important aspect to be considered is their stability
characters. For practical applications of magnetic solitons as
memory units or driven objects in spintronics, it is crucial to
maintain stability of solitons in the presence of interference.
The stability property is usually analyzed by way of linear
stability analysis [51-53]. For this purpose, we consider the
solitary wave solutions of the form W, , = ¥} 2 exp(ibt), with
b being propagation constant, then Eq. (5) becomes

—bWi, —2aV,, — k(W] + W)W =0,  (7a)
—bW}, —2a¥},, — k(W) + W) W) = 0. (7b)

To analyze the linear stability of the solitary wave, we
perturb the relevant wavefunction as W; = {W, + [vi(¢) +
wi(0)]er + [vF(¢) — wi(¢)]er T}e™, here W, being the

general complex-valued unperturbed wavefunction calculated
from Eq. (3), v; and w;(i = 1, 2) are small perturbations for
a given eigenvalue A. Inserting this perturbed solution in
Eq. (3) and linearizing thereafter, we obtain the following
linear-stability eigenvalue problem:

iL-W=1-W, (®

where matrix W = (v|, wy, v2, w)T denotes the normal-
mode perturbations. The matrix L contains the magnetic
soliton solution W representing the linear stability operator.
The matrix elements and calculation details of matrix L are
presented in Supplemental Materials [50].

In general, two separate regions can be defined based on
the linear-stability spectrum. The nondegenerate soliton wave
is linearly unstable when the spectrum contains eigenvalues
with positive real parts, which gives an exponential growth
rate of perturbations. While the linear spectrum of the soliton
solution is regarded as stable if the spectrum contains purely
imaginary discrete eigenvalues [51]. It is noteworthy that
delving into the subtleties of the applicability of linear approx-
imations calls for the use of the renowned Lyapunov criterion
[54]. The whole spectrum of the linear-stability operator L are
numerically solved by the Fourier collocation method.

To verify the predictions of the linear stability analysis
obtained from the numerical solution of the spectral problem
Eq. (7), we proceed to numerically simulate the nonlinear
propagation of the magnetic solitons. The evolutions of stable
nondegenerate magnetic solitons and unstable nondegenerate
magnetic solitons are illustrated in Fig. 2. The initial condi-
tions for both simulations are taken in the form of a soliton
solution perturbed by a 10% random noise. The upper pan-
els of Fig. 2(a) depict the stability regions in the parameter
space [Im(k;), Re(l;)] of the magnetic soliton and provide an
exemplary illustration of a stable soliton solution. The center
panel plots the shape of m* component in two ferromagnetic
layers at + = 0 and ¢t = 30. The whole stability spectrum of
this nondegenerate soliton is shown in the upper-right corner
panel. It can be seen that this flat-bottom-double-hump mag-
netic solitons propagates stably and the flat-bottom structure
in the first FM layer is maintained, which complies with the
results of the linear stability analysis. On the other hand,
Fig. 2(b) shows the unstable propagation of the asymmetric
single-double-hump soliton. Stronger instabilities cause the
splitting and diffusion of the solitons at relatively short times.
We also conducted numerical simulations of 2D perturbation
propagation of magnetic solitons in finite-width bilayer thin
films. The results align with the predictions from linear stabil-
ity analysis, and these findings are presented in the Appendix.

C. Coupling and Gilbert-damping

The successful stabilization of magnetic soliton pairs
enlightens us to design potential magnetic soliton-based spin-
tronic devices. In what follows, we chose degenerate magnetic
solitons as our test subjects for two reasons: Firstly, degen-
erate solitons have simpler profiles, providing convenience
for experimentally generating magnetic solitons through
local external magnetic fields. Secondly, degenerate mag-
netic solitons exhibit enhanced resistance to external noise.
Here, we numerically investigate the propagation behavior of
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FIG. 2. Propagations of stable and unstable nondegenerate magnetic solitons. (a) Left panel: Stability regions in the parameter space
[Im(k;), Re(l,)]. Center panel: m* profiles of symmetric flat-bottom-double-hump magnetic soliton at# = 0 and ¢ = 30. Right panel: eigenvalue
spectrum. Bottom panel: stable propagations of magnetic soliton in two FM layers. (b) Left panel: Stability regions in the parameter space
[Re(k;), Re(l;)]. Center panel: m* profiles of asymmetric double-hump-double-hump magnetic soliton at # = 0 and ¢ = 30. Right panel:

eigenvalue spectrum. Bottom panel: unstable propagations of magnetic soliton in two FM layers.

stable magnetic solitons in FM bilayers with various coupling
strengths (which corresponds to thickness of the nonmagnetic
spacer).

Our first step is to construct a stable magnetic soliton in
each layer, with opposing velocities. When the two ferromag-
netic layers are far apart from each other, their interaction
becomes very weak, and the two layers are decoupling (J' =
0). In this situation, the magnetic solitons are governed by
two separate scalar nonlinear Schrodinger (NLS) equations. In
other words, the initial state in this case consists of two inde-
pendent scalar magnetic solitons. The two solitons propagate
in opposite directions respectively, as depicted in Figs. 3(a)
and 3(b). As the two magnetic layers approach each other,
the magnetic solitons start to couple, transitioning into the
unlocking region. Magnetic solitons within two magnetized
layers, possessing opposing momenta, mutually attract one
another and exhibit a propensity to draw in the other toward
their respective directions [as shown in Figs. 3(c) and 3(d)].
This observation can be explained as follows. As the thickness
of the intermediate layer reduces, the long-range dynamic
interaction between the two FM layers, induced by adiabatic
spin pump, starts to come into play. The dynamic magnetiza-
tion, which arises from the moving magnetic solitons in the
ferromagnetic layer, causes the formation of nonequilibrium
spin flow between the two layers. This interlayer dynamic
coupling vies with the Heisenberg exchange interaction within
the layers, culminating in the emergence of two oscillatory
branches of magnetic solitons within each layer. Each branch
bears a share of energy, as depicted in Figs. 3(c) and 3(d).
The energy ratio between these two branches is correlated
with the intensity of the coupling interaction. We highlight
that as the two ferromagnetic layers continue to approach, the
interlayer dynamic interaction will exceed a certain threshold,
which becomes sufficient to rapidly synchronize the motion of
magnetic solitons and balance the spin current. Two solitons

thereby get trapped in a stationary position see Figs. 3(e)
and 3(f)]. This dynamic region of soliton immobilization is
henceforth referred to as the locking region. These simulation
results in the wider range of J' are summarized in Fig. 3(g),
which clearly shows the decoupling-to-unlocking-to-locking

decoupling unlocking locking
- 1
I — 0
10 -1
0 2

(g) 0 5 10 15 20

FIG. 3. The decoupling, unlocking, and locking regions of mag-
netic soliton motion. (a), (b) Propagations of mj and m§ with
dimensionless coupling strength J' = 0. (c), (d) Propagations of m
and m5 with dimensionless coupling strength J' = 10. (e), (f) Propa-
gations of m{ and m5 with dimensionless coupling strength J' = 15.
(g) Phase diagram for the tristate transition by adjusting the interlayer
coupling strength.
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FIG. 4. The effect of Gilbert damping on the motion of magnetic
soliton in unlocking phase. (a) Propagations of m{ with dimension-
less coupling strength J' = 10, damping constant « = 0.05, L
represents the maximum distance at which the signal attenuates to an
unrecognizable state. (b) Dependence of the maximum distance L.«
for damping constant «. (c) Sketch of maximum separation distance
between identifiable magnetic soliton signals.

—>

transition. The black and red lines in the figure represent the
minimum values of soliton signals received by the signal-
receiving devices placed at both ends of the first layer FM
under different coupling strengths.

The different behaviors of magnetic solitons in FM bilay-
ers under varying coupling strengths inspire us to design a
simple prototype observing the tristates transition experimen-
tally [55,56]. Placing signal receptors on either side of the
first FM layer, we can infer the separation between the two
ferromagnetic layers based on the signals received. When they
are considerably distant, only one side of the receptor can
detect the magnetic soliton signal. As the two ferromagnetic
layers come into closer proximity, both sides of the receptor
can receive the magnetic soliton signal. However, when the
two ferromagnetic layers are in close vicinity, neither side of
the receptor registers the magnetic soliton signal. In practical
applications, the signal attenuation caused by Gilbert damp-
ing in ferromagnetic materials must be considered. Through
numerical simulation, we find that the damping effect has
a significant impact on the magnetic solitons in the unlock-
ing state. Figure 4(a) shows the propagation of magnetic
solitons in the unlocking state in the upper FM layer with
Gilbert-damping constant oy = 0.05, where L,,x represents
the maximum distance at which the signal attenuates to an un-
recognizable state (assuming that the m® component is greater
than 0.8). The dependence of L, on the damping constant «
for the FM layer is shown in Fig. 4(b). It can be observed that
opting for materials featuring low damping coefficients can
significantly increase the separation between signal receivers.

IV. DISCUSSION AND CONCLUSION

To sum up, we have derived a model at a small ampli-
tude approximation to describe the nonlinear dynamics of
magnetization in a bilayer ferromagnetic system. When the

intermediate layer takes a characteristic thickness (i.e., 2 nm),
s = J/2K for the system here, and the dynamic interaction
coupling parameter and magnetic anisotropy are taken as
2mJ/m? and 5 x 10° J/m?, it is possible to introduce a gauge
transformation to transform the equation into a fully inte-
grable constant coefficient Manakov system. The first-order
and second-order nondegenerate magnetic soliton solutions
are obtained, as well as their respective stability regions. The
numerical simulation results of magnetic soliton transmis-
sion are well consistent with the predictions given by linear
stability. These theoretical and numerical results confirm the
existence of stable one-dimensional magnetic soliton pairs in
magnetic bilayer systems. To generate such magnetic solitons
in a F/N/F bilayer system, the magnetization texture based
on the above magnetic soliton solution must be manufactured
into the two ferromagnetic layers. These excited solitons can
be achieved, for example, by a local magnetic filed or spin-
polarized electric currents.

On the other hand, the intensity of the interlayer long-
range dynamic interaction, induced by adiabatic spin pump,
can be tailored by manipulating the spacing between the
two FM layers. Through the manipulation of the interme-
diate layer’s thickness, we unveiled three distinct transport
states of magnetic solitons: soliton decoupling, unlocking, and
locking. With a gradual increment in dynamic interactions,
we demonstrated the progression of magnetic soliton motion
from decoupling to unlocking, and ultimately to locking. It
is noted that the dynamic exchange coupling strength J is
related to the thickness of the spacing layer. We postulate an
inverse square root relationship between the two parameters
[19,57,58], i.e., J o 1/4/s. Through calculations based on the
parameters we have considered, it is determined that when
the thickness of the intermediate layer is less than 0.45 nm,
magnetic solitons initiate a transition towards the locking
state. Note that the thickness of this transition is related to the
selection of ferromagnetic layer and insulating spacer layer
materials. In this paper, we primarily reference the physi-
cal parameters of the Co/Cu/Co structure. Nevertheless, it
is worth noting that this specific material is not a prereq-
uisite for generating vector magnetic solitons in magnetic
bilayers. In fact, we can substitute the ferromagnetic layer
with Fe,Ni;_,Br; [59] or some magnetic garnets with strong
easy-axis anisotropy, and utilize Pt in lieu of the nonmagnetic
interlayer to enhance the coupling strength [22]. Moreover,
various material characteristics, such as the saturation mag-
netization strength M and the interface coupling of synthetic
ferromagnetic layers, can be controlled within the realm of ad-
vanced materials manufacturing and deposition technologies.
This enables the creation of magnetic bilayer systems capable
of supporting nondegenerate magnetic solitons with varying
thicknesses.

Finally, we examine the impact of Gilbert damping in
different ferromagnetic materials on this transitional pro-
cess. Our findings reveal that damping predominantly results
in the attenuation of magnetic solitons in the unlocking
state. Furthermore, we have established a correlation between
the damping coefficient and the maximum separation dis-
tance between distinguishable magnetic soliton signals. These
findings present new possibilities for developing spintronic
devices for logic computing based on magnetic solitons, and
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have ignited extensive research on these systems to refine their
design according to specific application requirements.
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APPENDIX: PERTURBED PROPAGATION IN 2D
MAGNETIC BILAYERS

In real-world scenarios, ferromagnetic thin-film materials
possess finite width. Thus it is meaningful to evaluate the
perturbed propagation of our obtained magnetic soliton pair
in 2D thin films. We performed numerical simulations to test
the stability of stable and unstable soliton solution in the 2D
medium. Encouragingly, the numerical results closely align
with the theoretical predictions, as illustrated in Fig. 5. The
top four panels depict the perturbed propagation of a stable
soliton pair in the magnetic bilayer films, where the shapes of
the soliton pair are well maintained. Conversely, the bottom
four panels show the perturbed propagation of an unstable
magnetic soliton pair. During this process, the magnetic soli-
ton pairs become unstable and eventually split after a certain
transmission distance. It is conceivable that when the thin

erturbation
— Perturbatior

FM1

40
40

— perturbation

FM1

perturbation

FM2

FIG. 5. Stable and unstable evolution of magnetic solitons in bi-
layer systems under 2D perturbations W, = 0.1 - exp(—(x/8)* — y?).
The parameters of stable magnetic soliton are chosen as o) =
0.44 4+ 0.51i, oy = 0.43 + 0.59i, k; = [; = 0.2. The parameters of
unstable magnetic soliton are chosen as «y; = 0.44 + 0.51i, pp =
0.43+0.59,k =1, =0.8.

films become sufficiently narrow, they can be approximated
as a one-dimensional scenario.
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