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We study magnetic properties of the half-filled Hubbard model on the two-dimensional Hy, hexagonal golden-
mean quasiperiodic tiling. The tiling is composed of large and small hexagons, and parallelograms, and its
vertex model is bipartite with a sublattice imbalance. The tight-binding model on the tiling has macroscopically
degenerate states at E = 0. We find the existence of two extended states in one of the sublattices, in addition to
confined states in the other. This property is distinct from that of the well-known two-dimensional quasiperiodic
tilings such as the Penrose and Ammann-Beenker tilings. Applying the Lieb theorem to the Hubbard model on
the tiling, we obtain the exact fraction of the confined states as 1/27t2, where 7 is the golden mean. This leads to
a ferromagnetically ordered state in the weak coupling limit. Increasing the Coulomb interaction, the staggered
magnetic moments are induced and gradually increase. Crossover behavior in the magnetically ordered states is

also addressed in terms of perpendicular space analysis.
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I. INTRODUCTION

Quasiperiodic systems have attracted considerable inter-
est since the discovery of the Al-Mn quasicrystal [1]. Their
properties are of equal interest, in part driven by the obser-
vation of behavior traditionally observed in periodic systems.
For example, electron correlations in quasicrystals have been
actively studied after quantum critical behavior was ob-
served in the Au-Al-Yb quasicrystal [2]. Similarly, long-range
correlative states have been reported despite the lack of peri-
odicity inherent in these materials: such as superconductivity
in the Al-Zn-Mg quasicrystal [3], and ferromagnetically or-
dered states in the Au-Ga-R (R = Gd, Tb, Dy) quasicrystals
[4,5]. These studies have stimulated, and continue to mo-
tivate theoretical investigations on electron correlations and
the spontaneously symmetry breaking states in quasicrystals
[6-24]. For example, magnetically ordered states in the
Hubbard model on quasiperiodic bipartite tilings have been
studied, including the Penrose [8,25], Ammann-Beenker
[7,26-28], and Socolar dodecagonal [29]. One of the common
properties among the majority of these studies is the existence
of strictly localized states with E = 0 (i.e., confined states) in
the noninteracting case [25,27-33]. This leads to interesting
magnetic properties in the weak coupling limit.

Recently, we introduced a family of golden-mean hexag-
onal and trigonal aperiodic tilings produced using a gener-
alization of de Bruijn’s grid method [34]. In this work, we
showcased the structural properties and substitution rules of
two special cases of this family. These are the Hyy and H 11
tilings, where the subscript refers to the tunable grid-shift
parameters used in their construction (for more details, see
Ref. [34]). These tilings hold distinct structural properties
compared to the Penrose, Ammann-Beenker, and Socolar
tilings: not only do they share rotational symmetries associ-
ated with periodic systems, but they also possess a sublattice
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imbalance due to their vertex structure. However, they are
still rooted in the physical world of experimentally observed
trigonal and hexagonal quasiperiodic systems [35-38].

It is therefore desirable to study magnetic properties on
quasiperiodic systems with sublattice imbalances, in order
to systematically understand and compare correlated electron
behavior across the widest range of relevant quasiperiodic
tilings. In fact, we have already shown the effect that an
imbalance has on the magnetic states on one of the special
cases from the hexagonal family; the H I hexagonal golden-
mean tiling realizes a ferrimagnetically ordered state in the
ground state [39], which is in contrast to that in the Penrose
[25], Ammann-Beenker [27], and Socolar dodecagonal tilings
[29] where antiferromagnetically ordered states are realized
without a uniform magnetization.

In this paper, we discuss the relevant properties of the Hy
tiling structure and then study the macroscopically degenerate
states with E = 0 in the tight-binding model, which should
play an important role for finding magnetic properties in the
weak coupling limit. We clarify that two extended states ap-
pear in one of the sublattices, while confined states appear
in the other. Furthermore, we obtain the exact fraction of the
confined states in terms of Lieb’s theorem [40], considering
magnetism in the weak coupling limit. We also discuss how
magnetic properties are affected by electron correlations in
the half-filled Hubbard model.

The paper is organized as follows. In Sec. II, we introduce
the half-filled Hubbard model on the Hy, hexagonal golden-
mean tiling. Then we study the macroscopically degenerate
states with £ = 0 in Sec. III. By means of the real-space
Hartree approximations, we clarify how a magnetically or-
dered state is realized in the Hubbard model in Sec. IV.
Finally, crossover behavior in the ordered state is addressed
by mapping the spatial distribution of the magnetization to
perpendicular space. A summary is given in the last section.

©2024 American Physical Society
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FIG. 1. (a) The Hy hexagonal golden-mean tiling. Open (filled)
circles at the vertices indicate the w (b) sublattice in the system. The
numbers in the open circles indicate the indices in the w sublattice
(see text). (b) Large hexagon, parallelogram, and small hexagon.
ey, - -+ , es are the projection of the fundamental translation vectors
in six dimensions, n = (1,0, 0, 0,0, 0), ---, (0,0,0,0,0, 1).

II. MODEL AND HAMILTONIAN

We study the Hubbard model on the Hyy hexagonal golden-
mean tiling, which is given by the following Hamiltonian:

H=—t) (clcjo+He)+ U nmyniy, 1)

@ij)o i

where c¢;, (c;) annihilates (creates) an electron with spin
o (=1, |) at the ith site and n;, = cj'ac,-a. t is the nearest-
neighbor transfer integral and U is the on-site Coulomb
interaction. For simplicity, we have assumed that the mag-
nitude of the hopping integral is uniform in the system. The
chemical potential is always u = U /2 when the electron den-
sity is fixed to be half-filling. In Appendix A, we briefly
describe some properties of the Hy, hexagonal golden-mean
tiling relevant for our work. As shown in Fig. 1(a), the vertex
system of the tiling is bipartite since it is composed of poly-
gons with even edges (hexagons and parallelograms). We refer
the sublattice composed of A, B, C (D, E, F, G) vertices as
“b (w) sublattice.”

To discuss magnetic properties in the Hubbard model, we
make use of the real-space mean-field theory. This method
has an advantage in treating large clusters, which is crucial
to clarify magnetic properties inherent in the quasiperiodic
systems. Here, we introduce the site-dependent mean field
(ni») and the mean-field Hamiltonian is then given as

HMF = —t Z (CLCJ'(7 + HC) +U Znia (ni(7> . (2)

@ij).o i,o
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FIG. 2. Density of states of the tight-binding model on the Hy
hexagonal golden-mean tiling with N = 1767 438. The inset shows
the integrated density of states.

For given values of (n;,), we numerically diagonalize the
Hamiltonian HM¥, update (n;,), and repeat this proce-
dure until the result converges. The uniform and staggered
magnetizations m* are given as

mE = fymy £ fomy, A3)
1

ma = 5 ;m )

m; = %((”n) — (), (5)

where f, is the fraction of the « sublattice, which is explicitly
given in Appendix A. N, (m,) is the number of the sites (the
average of the magnetization) in the « sublattice. m; is the
local magnetization at the ith site.

Here, we discuss electronic properties in the noninteracting
case (U = 0), where the model Hamiltonian is reduced to the
tightbinding model. Diagonalizing the Hamiltonian for the
system with N = 1767438, we obtain the density of states
as

p(E) = }VZME — ), (©6)

where N (= )_, N,) is the number of the sites in the whole
system and ¢; is the ith eigenenergy. The results are shown
in Fig. 2. We find the §-function peak at E = 0, suggesting
the existence of macroscopically degenerate states. In fact, the
clear jump singularity appears at £ = 0 in the integrated den-
sity of states. These states should be important for magnetic
properties in the weak coupling limit. In the next section, we
discuss the macroscopically degenerate states with £ = 0.

III. MACROSCOPICALLY DEGENERATE STATES

Here, we focus on the degenerate states with £ = 0 in the
tight-binding model. Since the Hy hexagonal golden-mean
tiling is bipartite, these states should exist in both sublattices.
First, we focus on the w sublattice composed of D, E, F, and
G vertices. It is clarified that the number of the degenerate
states in the sublattice is at most two, which will be proven
in Appendix B. This proof is based on the fact that there
exist no tiles with zero amplitudes. Since all tiles have finite
amplitudes in either corner site, this should indicate the
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W

FIG. 3. Two extended states in the w sublattice. Open (filled)
circles represent the w (b) sublattice. 1, w<, and w?} at the vertices
represent the amplitudes of the extended state |\W..).

existence of extended states. To clarify this, we consider
the detail of the w sublattice. Figure 1(a) shows that the
w sublattice can be divided into three groups (w;, wj, ws),
which are shown as the numbers in the open circles. Each
site in the b sublattice connects to three nearest-neighbor sites
belonging to each of the w;, w,, and w3 sublattices. Again,
this is proven in Appendix C. Therefore, two states |\W.) are
the exact eigenstates with £ = 0 in the w sublattice, where
the amplitudes are given as

(i1 W) = 1, (i3V1) =01, (7)

where i, (n = 1,2, 3) is the site index in the w, sublattice
and |i,) is the local state at the i,th site. wy (= exp[£2mi/3])
is a solution of the equation x> +x 4 1 = 0. Since finite
amplitudes appear in the whole system, these states can be
regarded as the extended states, which is explicitly shown
in Fig. 3. Therefore, we can say that there exist only two
extended states with E = 0 in the w sublattice.

By contrast, there are the other macroscopically degener-
ate states in the b sublattice. We construct a simple form,
considering their linear combinations, as discussed in previ-
ous papers [25,30,31]. The states can be represented to be
exactly localized in a certain region and can be regarded as
confined states. These are in contrast to the extended states
in the w sublattice. Five simple examples of the confined
states W, Wy, ---, and W5 are explicitly shown in Fig. 4.
According to Conway’s theorem, a certain diagram appears
repeatedly in the quasiperiodic tiling, in general. This means
that each confined state exists with a finite fraction in the
tiling. The diagram for the site structures of ¥; and W,, which
is shown in Fig. 4, always appears around the F vertex due
to the matching rule of the tiles. Therefore, the fractions for
these confined states are given by the fraction of the F vertex,
h=fH=1/ (477). On the other hand, the site structures for
W3, Wy, and W5 do not always appear around the LH and SH
tiles, and A vertices, respectively. Taking the tiling structure
into account, we obtain the fractions of W3, W4, and W5 as
fr=@P +t%/4, fa=3/47", and f5s = (0 —z7')/4,
respectively. In the tight-binding model on the Hy, hexagonal
golden-mean tiling, there are many kinds of confined states

(2| V1) = wy,

lpl A 1 1 1 LIJZ
1
'1 .'1 1 ® -1
1 41 A 1
1 4
a4 1
¥, Y,
1
1 A
4. 1 4.4 1 1
fay s 4 1 4
A4 14 1
lIJS
4 11 4
1 2 1
44 1 1 1 -
A 4 A A
1 4 4 4 1 1
4 4 8 4 A4
1 1
12 1414 21
1 1
11

FIG. 4. Five confined states in the b sublattice around the vertex
or tile with a locally rotational symmetry. Open (filled) circles rep-
resent the w (b) sublattice. The numbers at the vertices represent the
amplitudes of the confined states.

(not shown) and therefore the fraction of the confined states
f€ is bounded by f€ > 33 | f; ~ 0.120.

Next, we try to directly obtain the exact fraction of the
confined states, making use of magnetic properties at half-
filling [39]. According to Lieb’s theorem, the ground state of
the half-filled Hubbard model has a total spin Sioy = NA/2 =
N/(41?) for arbitrary U, where A(=f}, — f,,) is the sublat-
tice imbalance. In the weak coupling limit, the magnetically
ordered state originates only from the macroscopically de-
generate states with £ = 0. Two extended states in the w
sublattice should be negligible in the thermodynamic limit.
Therefore, magnetic properties little depend on these states
and mainly depend on the confined states in the b sublattice.
Thus, the uniform magnetization can be given as m* = f€/2,
where fC is the fraction of the confined states. From these two
equations, we obtain the exact fraction of the confined states
as

€= 1 0.190 ®)
T 272 B

This is consistent with the numerical results f¢ =
336288/1767438 ~ 0.190 for the finite cluster with
N =1767438.
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FIG. 5. Spatial pattern for the magnetizations in the Hubbard
model on the Hy, hexagonal golden-mean tiling when (a) U/t =
1.0 x 1077 (essentially the same as U/t — 0) and (b) U/t = 1. The
area of the circles represents the magnitude of the local magnetiza-
tion. Red (blue) filling represents positive (negative) sign.

We wish to note that in the Hyy hexagonal golden-mean
tiling the extended states appear in addition to the confined
states. The extended states are also found in the tight-binding
model on the H%% hexagonal tiling, although this was not

discussed in our previous work [39].

IV. MAGNETIC PROPERTIES

Here, we discuss magnetic properties in the half-filled
Hubbard model on the Hy hexagonal golden-mean tiling.
We mainly treat the systems with N = 97560 and 256 636
by means of real-space mean-field approximations. When
the system is noninteracting, the macroscopically degenerate
states appear at the Fermi level, as shown in Fig. 2. The
introduction of interaction leads to a magnetically ordered
state with finite magnetizations: the magnetization profile for
the case with U/t = 1.0 x 107 is shown in Fig. 5(a), where
red circles indicate positive magnetizations, and its size is
proportional to the magnitude. We find finite magnetizations
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FIG. 6. Distribution of the magnetizations in the Hubbard model
with N = 256 636 when (a) U/t = 1.0 x 1077 (essentially the same
asU/t — 0),(b) U/t = 1,and (c) U/t = 5. Red (blue) filling repre-
sents m; in b (w) sublattice.

only in the b sublattice, as discussed above. In particular, the
magnetizations in the A vertices are smaller than those in the
B and C vertices. This quantitative difference is clearly found
in the distribution of the magnetization in Fig. 6(a), where the
magnetizations on the A vertices are m ~ 0.1, while those on
the B and C vertices are m ~ 0.16.

This behavior can be explained by the spatial distribution
of the confined states. When one considers the local tiling
structure for the confined states Wy, W5, - - - , Ws (see Fig. 4),
the A vertices have an amplitude only in the wave function
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FIG. 7. Distribution of the local magnetizations as a function of
U/t in the system with N = 97 560. The dashed (dot-dashed) line
represents the magnetization m,, (m, ), and the dotted line represents
the total uniform magnetization.

Ws. On the other hand, multiple confined states have ampli-
tudes at B and C vertices. This should lead to a difference in
the magnetizations, namely, the confined states in the larger
regions have amplitudes in many sites and therefore have a
minimal effect on the magnetizations at the A vertices. By
contrast, we find no magnetization in the w sublattice, which
is consistent with the fact that two extended states little affect
magnetic properties in the weak coupling limit. From these
results, we can say that, in the weak coupling limit, the fer-
romagnetically ordered state is realized with the total uniform
moment mt = 1/(41?).

Increasing the interaction strength, the local magnetization
in the b sublattice monotonically increases and the magnetiza-
tions in the other sublattice are induced. The spatial structure
in the magnetization for U/t = 1 is shown in Fig. 5(b). The
magnetization m ~ —0.05 is induced in the w sublattice, as
shown in Fig. 6(b). Further increasing the interaction strength
U changes the distribution of the local magnetizations: when
U/t =5, the magnetization is almost m ~ £0.4, as shown in
Fig. 6(c).

Figure 7 shows the change in the distribution of the local
moments. When U/t < 1, the distribution is similar to that
in the weak coupling limit U/t — +0. Namely, a sharp peak
appears at m < 0 (the w sublattice), while some peaks appear
at m > 0 (the b sublattice). When U/t 2 3, distinct behavior
appears in the magnetic distribution. In the strong coupling
case, the local magnetization should be classified into some
groups. In the b sublattice with m > 0, the magnetization at
the A vertices is distinct from that at the B and C vertices, and
this behavior appears in the whole parameter space. On the
other hand, in the w sublattice with m < 0, the magnetization
is classified into three groups characteristic of the coordina-
tion number z. Namely, m ~ —0.37 for D and G vertices with
z =4, m ~ —0.36 for the E vertices, and m ~ —0.35 for the F
vertices when U/t = 5, as shown in Fig. 6(c). This is distinct
from the weak coupling case.

The crossover between the weak and strong coupling
regimes occurs around U/t ~ 2. In the strong coupling limit

(0, 1)

F

AW
E"A’

N

B

(1,0)

4 ‘V

FIG. 8. Perpendicular spaces r for the Hy, hexagonal golden-
mean tiling. Each area bounded by the solid lines is the region of one
of seven types of vertices shown in Fig. 11.

U/t — oo, the Hubbard model is reduced to the antiferro-
magnetic Heisenberg model with nearest-neighbor couplings
J =41?/U. The mean-field ground state is described by
the staggered moment m; — +1/2. This means that the
mean-field approach cannot correctly describe the reduction
of the magnetic moment due to quantum fluctuations. There-
fore, an alternative method is necessary to clarify magnetic
properties in this regime, which is beyond the scope of the
present study. Nevertheless, interesting magnetic properties
inherent in the Hyy hexagonal golden-mean tiling, e.g., the
ferromagnetically ordered state in the weak coupling limit,
can be captured even in our simple mean-field method.

Finally, we wish to demonstrate the spatial profile of the
magnetizations characteristic of the Hy hexagonal golden-
mean tiling. To this purpose, we map the tiling to perpen-
dicular space r*, where the positions in perpendicular space
have one-to-one correspondence with the positions in phys-
ical space. We have previously shown that there are four r+
windows, which can be labeled by pairs of integer heights
[34], which we relabel here. These heights correspond to
where each vertex of the tiling projects onto the body di-
agonals of the two three-dimensional cubes, which can be
formed by the six-dimensional superspace basis vectors n =
(ng, 11, - -+ ,ns) [34]. Thus, the four r* planes of the Hyy
hexagonal golden-mean tiling are described by these heights
as rt = (xt, yl) where x+ =0, 1 and yl =0, 1. The A, B,
and C vertices uniquely occupy the (0, 0) and (1, 1) planes,
with the remaining vertices occupying the remaining planes,
which is schematically shown in Fig. 8.

The magnetization profiles of the (0, 0) and (0, 1) planes in
perpendicular space are shown in Fig. 9, where we show the
absolute values of the local magnetizations. As the (1, 0) and
(1, 1) planes are equivalent, it is unnecessary to show them.
When U/t = 1.0 x 1077, the system is essentially the same
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(c) Ult =

FIG. 9. Magnetization profile in the perpendicular space for the Hubbard model with N =256 636 when (a) U/t =1.0 x 1077, (b) U/t =1,

and (c) U/t = 5.

as that with U — 0, where no magnetization appears in the
planes (0, 1) and (1, 0) for the w sublattice. This is consistent
with the fact that the extended states have little effect on the
magnetic properties in the w sublattice. By contrast, finite
magnetization appears across the entirety of the (0, 0) and
(1, 1) planes, implying that the spontaneous magnetizations
appear in the b sublattice. Therefore, we can say that the fer-
romagnetically ordered state is realized in the weak coupling
limit. We also find a spatial pattern in the B and C vertex
regions in the (0, 0) and (1, 1) planes, and a spatial pattern
with a tiny difference appears in the magnetic moments in the
A region, as shown in Fig. 10. These suggest the existence
of many kinds of confined states in relatively large regions.
This is because the overlapping structure in the confined states
should classify the vertices into hierarchical groups, which
yields a detailed structure in perpendicular space, distinct
from the simple pattern for the vertices (see Fig. 8).

0.105

0.104
0.103
0.102
0.101

0.1

FIG. 10. Magnetization profile for the A vertices in the per-
pendicular space for the Hubbard model with N = 673 873 when
U/t = 1.0 x 1077 (essentially the same as U — 0).

Upon increasing the interaction strength, all vertex sites
have magnetizations, as shown in Fig. 9(b). In the strong
coupling case, the Coulomb interactions become crucial to
stabilize the ferrimagnetically ordered states with staggered
moments. When U/t = 5, the local magnetization takes large
values. In this case, the magnitude of local magnetizations
can be classified into two groups in the b sublattice and three
groups in the w sublattice, discussed above.

Before concluding, we would like to summarize and com-
pare the magnetic properties in the Hubbard models on
the Penrose, Ammann-Beenker, Socolar dodecagonal, H 1
hexagonal golden-mean, and Hy, hexagonal golden-mean
tilings. One of the common features is the existence of con-
fined states at £ = 0 in the noninteracting case (U = 0),
which play a crucial role in stabilizing the magnetically or-
dered states in the weak coupling limit. Nevertheless, their
confined state properties are distinct from each other. The
number of types of confined states is six in the Penrose case
[30,31], while it should be infinite in the others. As for sub-
lattice structures, the H 11 hexagonal golden-mean tiling has
a sublattice imbalance, leading to a ferrimagnetically ordered
state even in the weak coupling limit [39]. In our Hy tiling,
however, there exists a sublattice imbalance such that the
confined states appear in one of the sublattices, leading to a
ferromagnetically ordered state in the weak coupling limit.
The other tilings have an equivalent sublattice structure, and
the corresponding Hubbard model shows the antiferromagnet-
ically ordered state without a uniform magnetization.

V. SUMMARY

We have studied magnetic properties in the half-filled
Hubbard model on the Hy hexagonal golden-mean tiling by
means of the real-space mean-field approach. We have found
the §-function peak in the density of states of the tight-binding
model, implying the existence of macroscopically degenerate
confined states at £ = 0. We have then clarified that two
extended states exist in the w sublattice and the confined
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states appear only in the b sublattice. For the above properties,
we have obtained the exact fraction of the confined states
as 1/272. The introduction of the Coulomb interaction lifts
the macroscopic degeneracy at the Fermi level and drives the
system to a ferromagnetically ordered state, which is a unique
property distinct from the bipartite lattices on the Penrose,
Ammann-Beenker, Socolar dodecagonal, and H%% hexago-
nal golden-mean tilings. We have clarified how the spatial
distribution of the magnetizations continuously changes with
increasing interaction strength. Crossover behavior in the
magnetically ordered states has been discussed by applying
perpendicular space analysis to the local magnetizations.
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APPENDIX A: PROPERTIES OF THE H,,
HEXAGONAL GOLDEN-MEAN TILING

Here, we will give an overview and describe the relevant
properties of the Hyy hexagonal golden-mean tiling, which
we need for our calculations. The tiling is composed of large
hexagons (LH), parallelograms (P), and small hexagons (SH).
A section of the tiling, and the schematics of its prototiles are
shown in Fig. 1. The vertex system of the tiling is bipartite,
since it is composed of polygons with even edges (hexagons
and parallelograms). For our work, we require the exact frac-
tions of tile and vertex frequencies across the tiling, which we
take directly from Ref. [34], in which we explicitly explain
our methods of derivation.

In the thermodynamic limit, the fractions of the LH, P, and
SH tiles are given as:

fin = (51 —2) ~ 0.196, (A1)
fo=2(-2t+7)~0.728, (A2)
fsu = 5 (7t = 9) ~ 0.0750, (A3)

where 7 is the golden-mean (1 4 +/5)/2. Similarly, there are
seven types of vertices: A, B, C, D, E, F, and G vertices, which
are explicitly shown in Fig. 11. Their fractions across the tiling
are given as:

1
fa = 15~ 0.0225, (A4)
3
f = 35 0.396, (AS)
473
3
fo =15 ~0177, (A6)
3
fo = — ~ 0.0676, (A7)
415

&w
o 4 Lg

FIG. 11. Seven types of vertices. Open (filled) circles at the
vertices represent w (b) sublattice (see text).

3
fe = W5 0.151, (A8)
47>
1
fr=— ~0.00861, (A9)
477
3

As the tiling is bipartite, trivially, we have two distinct
sublattices of vertices. These sublattices can be distinguished
either by their occupation of distinct subplanes in perpendic-
ular space [34], or by grouping by their coordination number.
For example, one sublattice consists of A, B, and C vertices
(coordination number of 3), while the other consists of D,
E, F, and G vertices (coordination numbers of 4, 5, 6, and
4, respectively). From here on, the sublattice including A, B,
and C vertices is denoted as the b sublattice and the other is
denoted as the w sublattice.

As we previously mentioned, this sublattice structure is in
contrast to that of the well-known bipartite tilings such as
the Penrose and Ammann-Beenker tilings, where half of the
vertices for each type exist in both sublattices. The sublattice
structure inherent in the Hy, tiling, however, leads to the
sublattice imbalance A, such that [34]:

1
A= fy=fu= 55 ~ 019, (Al1)
fo = fa+ fs + fc ~ 0.595, (A12)

Jw=Jo+ fe+ fr+ fc ~ 0.404, (A13)

where fj, and f,, are the fractions of the b and w sublattices,
respectively.

We note the following property, which is convenient for
reducing the computational cost of mean-field calculations.
In the Hy hexagonal tiling, certain tiles or vertices have a
local threefold rotational symmetry, e.g., the LH and SH tiles,
and the A and F vertices, as seen in Fig. 11. Following the
substitution rules in Ref. [34], this threefold group is changed
in a cyclical manner as: LH tile — SH tile — A vertex — F
vertex — LH tile — - - - . Therefore, the system belongs to the
point group C3, when one generates the tiling by iteratively
applying the deflation rule to an LH or SH tile as its seed,
allowing us to save computational time by applying symmetry
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(@) (b)

B q R
Z Z
r r

FIG. 12. (a) The P tile adjacent to the forbidden domain (shaded
area). (b) By taking into account the equation (B2), the forbidden
domain is expanded. See text.

operations. However, in the thermodynamic limit, the entire
system has sixfold rotational symmetry, which is seen in
Fourier space [34].

APPENDIX B: UPPER BOUND OF THE NUMBER
OF THE STATES WITH E = 0 IN THE w SUBLATTICE

We examine the number of the states with £ = 0O in the w
sublattice for the noninteracting Hamiltonian Hy. The states
with E = 0 in the w sublattice can be described as follows,

W) =" Wii), (B1)
icew
where |i) is the local state at the ith site and W; is its coef-
ficient. The equation Hy |¥) = 0 is reduced to the following
simultaneous equation:

> wi=o0, (B2)

i€(ij)
where the summation runs over all the nearest neighbors of
the jth site in the b sublattice. The number of the equations is
given by N, and the number of coefficients is given by N,,.
Although N, > N, the solutions of Eq. (B2) and their number
should not be trivial due to the quasiperiodic structure in the
tiling.

To clarify the upper bound of the number of solutions, we
consider a certain domain, which is composed of finite tiles
connected by the shared edges. Then, we define a forbidden
domain so that ¥; = O for the vertices inside and on its bound-
ary. By taking the matching rule of tiles into account, we
sometimes find that, on a certain tile outside of the forbidden
domain and adjacent to its boundary, the amplitudes of the
vertices are zero. This allows us to redefine the forbidden
domain to include the tile. In the other words, the forbidden
domain can be regarded as to be expanded. In the following,
we demonstrate that the forbidden domain can be expanded to
the whole system and clarify the upper bound of the number
of the degenerate states with £ = 0. First, we focus on a P tile
outside of the forbidden domain and adjacent to its boundary,
as shown in Fig. 12(a). Here, we have labeled three sites in the
w sublattice as p, g, and r. The site p is located on the shared
edge, and the site g is located on the other corner of the P
tile. The site z on the shared edge in the b sublattice connects
to the nearest-neighbor sites p, ¢, and r. Since the definition
of the forbidden domain, ¥, = 0, and the site » must be on
the boundary of the forbidden domain, we obtain W, = 0.
We then obtain W, = 0 since ¥, + ¥, + ¥, = 0 [Eq. (B2)].
Therefore, each site on the P tile has no amplitude, meaning
that the forbidden domain is expanded to include the P tile,
as shown in Fig. 12(b). By taking into account the above rule,

(@) (b)

FIG. 13. (a) The LH tile adjacent to the forbidden domain
(shaded area). Two sites on the shared edge are denoted as p and
z. (b) The tiling structure when the A vertex sits on the site z. (c) The
tiling structure when the B vertex sits on the site z and the E vertex
sits on the site p. (d) The tiling structure when the B vertex sits on
the site z and the D vertex sits on the site p.

the forbidden domain can be expanded so that no P tiles touch
outside it. In the Hy hexagonal golden-mean tiling, the P
tiles densely exist with their fraction fp ~ 0.728 and some of
them are connected to each other (see Fig. 11). Therefore, the
forbidden domain should be expanded according to the above
rules.

Next, we focus on a certain LH tile outside of the forbidden
domain and adjacent to its boundary, as shown in Fig. 13(a).
We have assumed that the LH tile and forbidden domain share
the edge with the sites p and z, which belong to the w and
b sublattices, respectively. When the A vertex is located at
the site z, the local tiling structure is shown in Fig. 13(b). The
LH tile in the forbidden domain is adjacent to four P tiles and
some P tiles are also connected to each other. Therefore, the
forbidden domain should be expanded, which is shown as the
shaded area in Fig. 13(b). Furthermore, W, + ¥, + ¥, =0
according to Eq. (B2). Therefore, we conclude that the am-
plitudes of all corner sites of three LH tiles are zero and the
forbidden domain is expanded to include two LH tiles.

When the B vertex is located at the site z, it is necessary to
consider three cases according to the type of vertex at the site
p; D, E, and G vertices:

(i) The E vertex is located at the site p: the local structure
around the site p is shown in Fig. 13(c). The amplitudes of the
corner sites of the LH tile are zero since three sites belonging
to the w sublattice share the connected P tiles. Therefore, the
forbidden domain can be spatially expanded to include the LH
tile.

(ii)) The D vertex is located at the site p: the local structure
is symmetric, as shown in Fig. 13(d). At the sites g and r the
D vertex can not be found due to the matching rule of tiles,
however, E or G vertices can be. In the case of the E vertex
being located at either g or r then we essentially find the same
case as (i) and thereby the forbidden domain is expanded to
include these two LH tiles. When G vertices are located at
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FIG. 14. The tiling structures when the B vertex sits on the site
z, the D vertex sits on the site p. (a) The tiling structure when the G
vertices sit on both sites r and ¢. (b) The tiling structure when the G
vertex sits on both sites r, ¢, and s. (c) The tiling structure when the
G vertices sit on both sites r and ¢, and the E vertex sits on the site s.
The sites marked p;, p, - - -, pis5 are used for the proof (see text).

both sites g and r, the local structure is shown in Fig. 14(a).
In this case, either E or G vertex is located at the site s. When
it is the G vertex, the local structure is shown in Fig. 14(b).
In this case, the forbidden domain is expanded to include the
LH tiles, which are shown as the hatched hexagons, and the
P tiles adjacent to them. Furthermore, the forbidden domain
is expanded to include the S tiles sharing the sites ¢ and
r. Therefore, finally, the forbidden domain is expanded to
include all the tiles shown in Fig. 14(b). On the other hand,
when the E vertex is located at the site s, the vertex structure
is shown in Fig. 14(c). In this case, one may not expand the
forbidden domain, which is shown as the shaded area, to a

FIG. 15. (a) The tiling structure when the G vertex sits on the site
p. (b) The tiling structure when the G vertices sit on both sites p and
q. The sites marked ¢, ¢, - - - , g5 are used for the proof (see text).

larger domain in terms of our simple rule. Now, we must
consider the 15 vertices in the w sublattice outside the area,
which is denoted as pi, ps, - - -, p1s. The equations (B2) are
explicitly given as

Yy, + W), =0, (B3)
v, +V¥, = 0, (B4)
lIJPIS + “I"pl =0, (BS)

since the amplitudes of the vertices on the shaded area
are zero. Thus, we obtain ¥, = ¥, =--- =WV, = 0. This
means that the amplitudes of the vertices on the LH and SH
tiles outside of the area must be zero and the forbidden domain
can be expanded to include these tiles.

(iii)) The G vertex is located at the site p: the local structure
is shown in Fig. 15(a). When the E (D) vertex sits at site g,
the local vertex structure is the same as the case (i) [(i1)].
Therefore, the forbidden domain is expanded. When the G
vertices are located at both sites p and ¢, the F vertex is
located at the site r due to the matching rule of the tiles. The
forbidden region is shown as the shaded area in Fig. 15(b).
Here, we focus on five vertices in the w sublattice outside the
shaded area, which is denoted as ¢, g2, - - - , g5, to examine
their amplitudes. According to Eq. (B2), the state with E = 0
is satisfied by the following equations,

W, + ¥, =0, (B6)

W, + W, =0, (B7)
W, + W, + ¥, =0, (B8)
Wy, + W, + W, =0, (B9)

W, + W, + ¥, =0. (B10)

Thus, we obtain ¥V, =V, =¥, =¥, =¥, =0. This
means that the amplitudes of the vertices on the LH tiles are
zero and the forbidden domain can be expanded to the LH
tiles.

From these results, we can say that the forbidden domains
can be expanded to the whole system since the S tiles are

014413-9



MATSUBARA, KOGA, AND COATES

PHYSICAL REVIEW B 109, 014413 (2024)

always isolated in the Hyy hexagonal golden-mean tiling, as
shown in Fig. 11. Namely, the amplitude of the wave function
is zero in the whole system and no degenerate states with
E =0 appear in the w sublattice under the assumption of
the existence of the forbidden domain. The assumption is
equivalent to two conditions W; = 0 imposed on the wave
function, where the ith site belongs to the w sublattice on a
certain P tile. Therefore, we can prove that the number of the
degenerate states with £ = 0 in the w sublattice is at most
two.

APPENDIX C: THREE GROUPS IN THE w SUBLATTICE

Here, we will prove that the w sublattice can be divided
into three groups w;, w, and ws, so that each site in the b
sublattice connects to three nearest-neighbor sites belonging
to each of these groups. Similar to Appendix B, we introduce
a domain so that, inside and on its boundary, the groups for
these vertices are determined. In the following, we demon-
strate that the domain can be expanded to the whole system.

We first focus on a P tile outside of the domain and adjacent
to its boundary, as shown in Fig. 12(a). When the groups for
the sites p and r are determined, the group of the site ¢ is
uniquely determined. Therefore, the domain can be expanded
to include the P tiles according to this rule.

Next, we consider the LH tile outside of the domain and ad-
jacent to its boundary, as shown in Fig. 13(a). By considering
some cases according to the type of vertex at the site p, z, etc.,
the group for each site is uniquely and trivially determined
except for two cases, which are shown in Fig. 14(c) and
Fig. 15(b). In the former (latter) case, the group for the site
p1 (g2) is uniquely determined to belong to the groups for the
site r, since the two of next nearest-neighbor sites of p; (g2)
belong to the groups for the sites p, g. And the groups for the
site pa2, p3, -+, P15 (q1, 43, 44, gs) are uniquely determined
by the above rules. Then, we can expand the domain to in-
clude the LH tiles. From these results, we can say that the w
sublattice are divided into three groups and each site in the b
sublattice connects to three nearest-neighbor sites belonging
to each of these groups.
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