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Exactly solvable dynamics and signatures of integrability
in an infinite-range many-body Floquet spin system
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We study N qubits having infinite-range Ising interaction and subjected to a periodic pulse of an external
magnetic field. We analytically solve the cases of N = 5 to 11 qubits, finding its eigensystem, the dynamics of
the entanglement for various initial states, and the unitary evolution operator. These quantities shows signatures
of quantum integrability. For the general case of N > 11 qubits, we provide a conjecture on quantum integrability
based on the numerical evidence such as degenerate spectrum, and the exact periodic nature of the time-evolved
unitary evolution operator and the entanglement dynamics. Using linear entropy, we show that for the class of
initial unentangled state, the entanglement periodically displays maximum and zero values.
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Introduction. Classical and quantum systems with long-
range interactions have played an important role in our
understanding [1–14]. They have been found to be useful
for quantum technology applications such as quantum heat
engine [15], quantum computing [16,17], ion traps [18], etc.
The generalized Higgs mechanism was used recently to un-
derstand such systems [14]. There are several experimental
systems where these interactions are present, for example,
cold atoms in cavities [19], polar molecules [20], dipolar
quantum gases [21,22], and Rydberg atoms [23]. They have
been found to be efficient for quantum computing and quan-
tum simulation tasks as they can realize highly entangled
states [24–27]. These systems have given rise to new phases
of matter [28] and a measurement-induced phase transition
[29–31]. Studies have shown that one can view them as
short-range interacting systems in higher dimensions [32,33].
Recent work has studied quantum many-body scars in them
[34]. Various studies have also addressed entanglement in
such systems [35–37]. The propagation of multipartite entan-
glement and quantum scrambling in them is also addressed
[38], which can be measured in experiments [39]. The bound
on the scrambling in such all-to-all interaction models is well
understood [40–42]. It is known that the semiclassical limit
for these systems can be obtained [43,44]. Thus, one can
study the effects of the underlying classical correlations on
the quantum correlations [38,45–52].

The interaction in the long-range system decays as a power
law with distance (1/rα), where α characterizes the given
system. For van der Waals interactions in Rydberg atoms,
α = 6, for polar molecules and magnetic atoms (dipole-
dipole interaction), α = 3, for monopole-dipole, α = 2, and
for monopole-monopole or Coulomb-like, α = 1, whereas for
atoms coupled to cavities, α = 0 [20,25,26,53–58]. The case
α = 0 corresponds to the class of infinite-range or all-to-all
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interaction physical systems. This kind of interaction is very
useful for the construction of robust and high-fidelity geomet-
ric quantum logic gates [59].

In this work, we consider a system of qubits in magnetic
field with periodic application (or kicking) of uniform infinite-
range Ising interaction (α = 0). Thus, the energy is not
conserved due to periodic kicking. In such models, the Hamil-
tonian can also be reduced to total spin operators [38,45–
47,60–65]. In fact, there is a one-to-one correspondence
between all-to-all Ising interacting qubits and total spin opera-
tors. It is used depending on the problem under consideration.
Specifically, the qubit representation is useful for studying
quantum correlations, whereas the total spin operators help
in understanding the semiclassical limit. Such Hamiltonians
with and without energy conservation are studied from the
direction of integrability-chaos transition in Refs. [66] and
[67], respectively.

In this paper, we study a model consisting of N qubits
kept in an external magnetic field and subjected to periodic
global pulses of uniform infinite-range Ising interaction. We
show that the system shows quantum integrability [68–71]. Its
signatures can be seen in spectral statistics being Poissonian
or degenerate spectrum or level crossings, exact periodicity of
the time-evolution operator, etc. [68,69,71–76]. It should be
noted that Refs. [68,69,71] consider a parameter-dependent
family of quantum integrable Hamiltonians, whereas we get
integrability only at a special case. And we expect these gen-
eral signatures to remain intact for our case too. Our model
has a connection to the nearest-neighbor Ising interaction
model and a special case of the quantum chaotic kicked top
(QKT) (to be discussed below). The QKT has been imple-
mented in various experimental beds for values of N up to
six [45,77,78]. For larger values of N of the order of 100,
the use of ion traps [8,10] has been proposed in Ref. [79].
Once our model is mapped to the QKT, it is shown to dis-
play integrability only up to four qubits [63], whereas for
large N , it is not understood whether or not the integrability
persists.
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In our present work, we first analytically solve the model
for the cases of five to 11 qubits. We analytically obtain
the eigenvalues, eigenvectors, and entanglement and operator
dynamics exactly. We show the time-periodic nature of both
the entanglement and the operator itself.

This nature is in accordance with the results from
Refs. [73,80–82], where the quantum integrable kicked Ising
model for a range of parameters is considered [83,84]. This
is an important observation as our model falls in the same
category of integrability class as that of these models [refer
to Eq. (3)] [85]. Thus, we can use these signatures to quantify
integrability in our model too.

In Refs. [73,80–82], using numerical and analytical stud-
ies, it is found that the integrable periodically kicked spin
chains with Ising interaction show a time-periodic nature of
the entanglement for various initial states. In Ref. [82], it is
shown that the integrable systems display the time-periodic
nature of the entangling power of the Floquet operator,
whereas in Ref. [73], the time-periodic nature of the Floquet
operator itself is observed, which implies its time-periodic
entangling power. In our work, we show a result for the
general value of N , analytically for five to 11 qubits and
numerically for N > 11, that the Floquet operator itself is time
periodic, implying the time-periodic nature of the entangling
power. Another signature of integrability can be observed
from the degeneracy in the spectra of the Hamiltonian [68,71].
It means the system eigenvalues are lacking the repulsion
among themselves. Similarly, in Ref. [73], a highly degenerate
spectra is observed in the periodically driven Ising system
which is also integrable. Thus, we can conclude that a system
with Ising-like interaction shows quantum integrability if its
spectra are degenerate; the entanglement and the evolution
operator dynamics are time periodic.

For the general case of N > 11 qubits, we provide numer-
ical evidence of the integrability using the degeneracy in the
spectra, the periodic nature of entanglement dynamics, as well
as the corresponding Floquet operator itself.

Model. The model Hamiltonian is given as follows:

H (t ) =
N∑

l<l ′=1

σ z
l σ z

l ′ +
∞∑

n=−∞
δ(n − t/τ )

N∑
l=1

σ
y
l , (1)

where τ is the period with which the magnetic field along
the y axis is periodically applied (second term). The strength
of the field is set equal to that of the Ising interaction (first
term). In our model, the Ising interaction is uniform and all
to all. The model is also permutation symmetric under the
exchange of spins and thus the Hilbert space dimension is
N + 1. Its special case, the one with only nearest-neighbor
(NN) interaction, has been extensively studied [73,80,81,86–
88]. In Ref. [81], τ = π/4 is shown to generate nonlocal Bell
pairs (maximum entanglement between two qubits) and mul-
tiqubit entanglement. Here, we also restrict ourselves to the
same τ . In fact, we find that the model is quantum integrable
only for τ = π/4, whereas for other values, it is not (discussed
below). Scrambling in models similar to ours has been studied
in Refs. [40–42,89–91]; the one in Ref. [41], which is studied
from the perspective of holographic duality, is very similar to
ours. All these models are energy conserving ones, whereas
ours is not.

The Hamiltonian in Eq. (1) also has a connection with the
model of quantum chaotic kicked top (QKT) [44,92,93]. Its
Hamiltonian is given by

HQKT (t ) = p

τ ′ Jy + k

2 j
Jz

2
∞∑

n=−∞
δ(t − nτ ′). (2)

It is a time-dependent Hamiltonian where the first term rep-
resents a rotation and the second one is the torsion applied at
periodic δ kicks. Here, Jx,y,z are components of the angular
momentum operator J. For a given spin of the top j, the
top can be decomposed in N = 2 j spin-half particles [60,61].
Here, the time between periodic kicks is τ ′, p measures ro-
tation about the y axis, and k controls the degree of chaos in
the classical limit. It can be seen that HQKT (t ) has total spin
operators. Various entanglement content has been studied in
this model in recent times [45–49,52,62,63,78,92–99]. Partic-
ularly, it is important to note that for a given initial quantum
state, the quantum correlations are periodic in k with period
2 jπ [93].

For the special case of parameters p = π/2, k = jπ (=
Nπ/2), τ ′ = 1 and using many-qubit transformation Jx,y,z =∑2 j

l=1 σ
x,y,z
l /2, where σ

x,y,z
l are the standard Pauli matrices,

it can be shown that HQKT (t ) has a close resemblance or
mapping with H (t ) from Eq. (1). Due to this mapping, our
model can also be shown to have a connection with the
integrable Lipkin-Meshkov-Glick (LMG) model [100]. The
Floquet operator corresponding to Eq. (1) for τ = π/4 is as
follows:

U = exp

(
−i

π

4

N∑
l<l ′=1

σ z
l σ z

l ′

)
exp

(
−i

π

4

N∑
l=1

σ
y
l

)
. (3)

It gives the evolution of states just before a kick to just before
the next one. In Ref. [63], a small number of qubits (N = 3
and 4) is extensively studied for these parameters.

In this work, our initial states are the standard SU(2) co-
herent states on the unit sphere, with spherical coordinates
(θ0, φ0) and given by [101,102]

|θ0, φ0〉 = ⊗N [cos(θ0/2)|0〉 + e−iφ0 sin(θ0/2)|1〉]. (4)

These are then evolved using the Floquet operator U , and
their entanglement dynamics as a function of time is studied.
For this study, we use linear entropy [103] and concurrence
[104,105] as measures of entanglement. For the analytical
solution, we use the following standard basis permutation
symmetric space by generalizing the one given for three and
four qubits in Ref. [63]. It is based on the commutation re-
lation [U ,⊗N

l=1σ
y
l ] = 0, proved in the Supplemental Material

[106]. Thus, the general basis for the odd number of qubits is

|φ±
q 〉 = 1√

2

( |wq〉 ± i(N−2q) |wq〉
)
, 0 � q � N − 1

2
. (5)

For the even case,

|φ±
r 〉= 1√

2

[ |wr〉 ± (−1)(N/2−r) |wr〉
]
,

0 � r � N/2 − 1

and |φ+
N/2〉=

⎛
⎝1/

√(
N

N/2

)⎞
⎠ ∑

P

( ⊗N/2 |0〉 ⊗N/2 |1〉)P, (6)
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where |wq〉 = (
1/

√(N
q

))∑
P (⊗q |1〉 ⊗(N−q) |0〉)P and

|wq〉 = (
1/

√(N
q

)) ∑
P (⊗q |0〉 ⊗(N−q) |1〉)P , with both being

definite particle states [107]. The
∑

P denotes the sum
over all possible permutations. These basis states are parity
symmetric and follow ⊗N

l=1σ
y
l |φ±

j 〉 = ± |φ±
j 〉. In this basis,

U becomes block diagonal, simplifying further analysis.
We derive entanglement dynamics for the coherent states
|θ0 = 0, φ0 = 0〉 and |θ0 = π/2, φ0 = −π/2〉. In terms of
qubit representation, these coherent states are given by ⊗N |0〉
and ⊗N |+〉, respectively [63]. These states have importance
in the QKT. The first state is on the period-4 orbit, whereas

the second one is on the fixed point in the classical phase
space of the QKT [63].

Exact solution for five qubits. Using the basis in Eq. (5) for
N = 5, the unitary operator U is given by

U =
(
U+ 0

0 U−

)
, (7)

where U± are 3 × 3 dimensional matrices and 0 is a
null matrix of same dimension as U±. The U+ (U−)
are written in the positive- (negative-)parity subspaces
{φ+

0 , φ+
1 , φ+

2 } ({φ−
0 , φ−

1 , φ−
2 }), respectively, and are obtained

as follows:

U± = 1

4
e± iπ

4

⎛
⎜⎜⎝

∓1 i
√

5 ∓√
10

−i
√

5 ±3 −i
√

2

±√
10 −i

√
2 ∓2

⎞
⎟⎟⎠. (8)

The eigenvalues of U+ and U− are e
iπ
4 {1, e

2iπ
3 , e− 2iπ

3 } and e
3iπ
4 {1, e− 2iπ

3 , e
2iπ

3 }, respectively, whereas the eigenvectors of U± are
[±i/

√
5, 1, 0]T , [±i

√
5/6,−1/

√
6, 1]T , and [∓i

√
5/6, 1/

√
6, 1]T . For evolving an initial state, we need to get Un and therefore

Un
±, which is given as follows:

Un
± = (±1)ne± inπ

4

⎡
⎢⎣

[1 + 5 cos(2nπ/3)]/6 ±i
√

5[sin2(nπ/3)]/3 −√
5/6 sin(2nπ/3)

∓i
√

5[sin2(nπ/3)]/3 [5 + cos(2nπ/3)]/6 ∓i sin(2nπ/3)/
√

6√
5/6 sin(2nπ/3) ∓i sin(2nπ/3)/

√
6 cos(2nπ/3)

⎤
⎥⎦. (9)

It can be shown that the U is periodic with period 24, which is a signature of integrability (see Supplemental Material [106]). It
is now straightforward to do the time evolution of any initial state. Let us first start with |00000〉. Its nth time evolution is given
by

|ψn〉 = Un|00000〉 = Un|w0〉 = Un(|φ+
0 〉 + |φ−

0 〉)/
√

2 = (Un
+|φ+

0 〉 + Un
−|φ−

0 〉)/
√

2

= (1/2)e
inπ

4 {(1 + in)(αn |w0〉 − iβn |w1〉 + γn |w2〉) + (1 − in)(iαn |w0〉 + βn |w1〉 + iγn |w2〉)},

where αn = [1 + 5 cos(2nπ/3)]/6, βn = i
√

5 sin2(nπ/3)/3,
and γn = √

5/6 sin(2nπ/3). Using |ψn〉, one can obtain
the reduced density matrix (RDM) of a single qubit
[ρ1(n) = Tr �=1(|ψn〉 〈ψn|)] and the two qubits [ρ12(n) =
Tr �=1,2(|ψn〉 〈ψn|)]. For even time n = 2m, ρ1(2m) is diagonal
and is given as follows:

ρ1(2m) =
[
λ2m 0
0 1 − λ2m

]
, (10)

where λ2m and 1 − λ2m are its eigenvalues with λ2m = [6 +
2 cos(4mπ/3) + cos(8mπ/3)]/9, whereas for odd time n =
2m − 1, we get

ρ1(2m − 1) =
[

1/2 h2m−1

h2m−1 1/2

]
, (11)

where h2m−1 = (2/9) sin2[(2m − 1)π/3]{2 + cos[2(2m − 1)
π/3]−√

3 sin[2(2m−1)π/3]}. Its eigenvalues are λ2m−1 and
1 − λ2m−1, with λ2m−1 = (1/18)(9 − {27 − 17 cos[2(2m −
1)π/3]−10 cos[4(2m−1)π/3] − 17

√
3 sin[2(2m − 1)π/3] +

10
√

3 sin[4(2m − 1)π/3]}1/2). These eigenvalues give the
linear entropy using 2λn(1 − λn) which is plotted in Fig. 1. It
can be shown from the expressions and the figure that it has
a periodic nature with period six. This periodic nature is also

observed in previous works on integrable systems involving
periodically kicked spin chains in Refs. [73,80,81]. In the
context of QKT, time periodicity has been reported earlier
for N = 2 [93], N = 3, and N = 4 for special values of k
in Eq. (2) [63]. We analytically prove that the entanglement
content is the same for consecutive odd and even values of n
(see Supplemental Material [106]).

Similarly, we evolve the | + + + ++〉 state and obtain
the linear entropy at the nth time. The eigenvalues of RDM
ρ1(n) are λn and 1 − λn, where λn = [3 − 2 cos(2nπ/3) −
cos(4nπ/3)]/9. The linear entropy using 2λn(1 − λn) is plot-
ted in Fig. 1. Its again periodic in time with period three.
Using ρ12, it is shown that the pairwise concurrence is zero
for all n for both of the initial states and is shown in the
same figure (see Supplemental Material [106]) (see, also,
Refs. [108,109] therein). This shows that the entanglement is
of multipartite nature.

Exact solutions for six to 11 qubits. Following the similar
procedure from the previous part, we solve for the cases from
N = 6 to 11. We tabulate the explicit analytical expressions
for the linear entropy for the initial states: ⊗N |0〉 and ⊗N |+〉
(refer to Table I). It must be noted that these expressions,
including those for the N = 5 case, are true for any n ∈ R.
But the signatures of quantum integrability can be obtained
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FIG. 1. Correlations using linear entropy (circles) and concur-
rence (squares) are plotted for (a),(b) even and (c),(d) odd number
of qubits for various initial states.

by restricting n to positive integers only. The data points in all
the figures of this paper are for n ∈ N+. For these cases also,
entropy is the same for the consecutive odd and even values
of n [63].

From these expressions, we find them to be periodic in
time. We show that the time period T for an odd and even
number of qubits for the initial states ⊗N |0〉 (⊗N |+〉) is 6(3)
and 4(2), respectively (see Fig. 1). We also show that the dy-
namics of the corresponding Floquet operator and its powers
show a periodic nature in time, i.e., Un+T1 = Un, where n � 1
and T1 is the period. For even N , T1 = 8, while for N = 5, 7,

9 and 11, T1 = 24, 12, 24 and 12, respectively. We have found
the eigensystem analytically and observe that the spectrum is
degenerate (see Supplemental Material [106]).

Results for general N. With our method, in principle, one
can get the eigensystem and entanglement dynamics analyt-
ically for any finite N . But obtaining a general solution as
a function of N is mathematically challenging, which can
be observed from Ref. [80], where only the nearest-neighbor
interaction is considered. Thus, we resort to numerical simu-
lations and find various signatures of integrability for N > 11.
For this purpose, we use the same signatures obtained for
N = 5 to 11 and claim integrability for any N > 11 and τ =
π/4. To our surprise, we find the same signatures (depending
only on the parity of N) as shown in Fig. 1. A similar N
independence was observed in Ref. [80] for the case of the
integrable kicked-Ising model in zero external magnetic field.
When field is present in the NN interaction model, the time
period shows dependence on N [73,81,82]. We also study
the operator dynamics numerically. To quantify the periodic
nature of time-evolved U , we find its deviation from the origi-
nal operator itself using δ(n) = ∑

p,q |Un
p,q − Up,q|/2N . It is

zero for any n > 1 if and only if Un = U , thus confirming
the time-periodic nature of U . Numerically it is observed that
division by 2N ensures the average of δ(n) is one. The results
are plotted in Fig. 2 for even N . We find that for τ = π/4 and
N up to 400, the time evolution of U is periodic (checked for
n as large as 5000), whereas for τ �= π/4, it is not. For odd N
(results not plotted here), we find similar periodicity, but with
different periods T1 = 12 or 24. These periods are the same
as that of our analytical ones for N = 5, 7, 9, and 11. An-
other signature of integrability is found from the eigenangle
spectrum of U at τ = π/4. We find it to be highly degenerate,
taking values from the set {0,±π/4,±π/2,±3π/4,±π} for

TABLE I. The linear entropy [S(n)] for different initial states and number of qubits, N .

N The S(n) for initial state ⊗N |0〉 The S(n) for initial state ⊗N |+〉

6 S(n) = 1
512

{[
1 − cos

(
nπ

2

) + sin
(

nπ

2

)]2[
284 + 229

(
cos

(
nπ

2

)
− sin

(
nπ

2

)) − 96 sin(nπ ) − 9
(

cos
(

3nπ

2

) + sin
(

3nπ

2

))]} S(n) = 1
2

{
1 − 1

4 [1 + cos(nπ )]2
}

7 S(2m − 1) = 1
2

{
1 − 1

81 sin2
(

π (2m−1)
3

)[ − 4
√

3 cos
[

π (2m−1)
3

]
+ √

3 cos(π (2m − 1)) + 6 sin
(

π (2m−1)
3

) + sin((2m − 1)π )
]2}

S(2m) = 1
81

{[
7 + 2 cos

(
4mπ

3

)][
12 + 5 cos

(
4mπ

3

) + cos
(

2mπ

3

)]
sin2

(
2mπ

3

)}
S(n) = 1

2

{
1 − 1

81

[
3 + 5 cos

(
2nπ

3

) + cos
(

4nπ

3

)]2}

8 S(n) = 1
2048

{[
1 − cos

(
nπ

2

) + sin
(

nπ

2

)]2[
1212 − 448 sin(nπ )

+ 1005
(

cos
(

nπ

2

) − sin
(

nπ

2

)) − 49
(

sin
(

3nπ

2

) + cos
(

3nπ

2

))]}
.

S(n) = 1
2

[
1 − cos2

(
nπ

2

)]

9 S(2m − 1) = {
1
2 − 8

81 sin4
( (2m−1)π

3

)[
2 + cos

( 2(2m−1)π
3

) − √
3 sin

( 2(2m−1)π
3

)]2}
S(2m) = 8

81

{[
2 + cos

(
4mπ

3

)][
6 + 2 cos

(
4mπ

3

) + cos
(

2mπ

3

)]
sin2

(
2mπ

3

)} S(n) = 1
2

{
1 − 1

81

[
1 + 2 cos

(
2nπ

3

)]4}

10 S(n) = 1 − 1
8

{
4 + [

17
32 cos

(
nπ

4

) + cos
(

5nπ

4

) + 15
32 cos

(
9nπ

4

)]2}
− sin2

(
nπ

2

)[
17

(
cos

(
3nπ

4

) + sin
(

3nπ

4

))
− 15

(
cos

(
7nπ

4

) + sin
(

7nπ

4

))]2
/4096

S(n) = 1
2

{
1 − 1

4 [1 + cos(nπ )]2
}

11 S(2m − 1) = 1
2

{
1 − 1

144 sin2
( (2m−1)π

3

)[ − 2
√

3 cos
( (2m−1)π

3

) + 8 sin
( (2m−1)π

3

)
+ 3(

√
3 cos((2m − 1)π ) + sin((2m − 1)π ))

]2}
S(2m) = 1

144

{[
11 + 6 cos

(
4mπ

3

)][
16 + 5 cos

(
4mπ

3

) + 3 cos
(

2mπ

3

)]
sin2

(
2mπ

3

)}
S(n) = 1

2

{
1 − 1

144

[
4 + 5 cos

(
2nπ

3

) + 3 cos
(

4nπ

3

)]2}
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FIG. 2. Deviation δ(n) for various values of N and τ .

even N (checked for N up to 400; refer to Fig. 3). Similarly, for
odd N , we numerically find a degenerate spectrum. Thus, with
these signatures, we can very well conjecture that the system
is quantum integrable for any N > 11 number of qubits and
the time period (τ ) of the kick such that τ = π/4.

Conclusions. Integrable models have played an impor-
tant role in advancing our understanding of physical systems
[110]. Our model of infinite range with Ising two-body inter-
action shows quantum integrability for any number of qubits.
The cases involving N = 5 to 11 qubits are dealt with an-
alytically, whereas a conjecture with sufficient evidence is
presented for any N � 11. Previous work as far as integra-
bility in our model (after mapping to QKT is concerned) was
limited only up to four qubits. We have now generalized it to
any N .
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FIG. 3. Degeneracy of the quasienergies of U .

It must be noted that our conjecture is based on the cir-
cumstantial signatures of integrability. A more rigorous proof
on quantum integrability in our case based on Bethe ansatz
[111,112] and/or obtaining a transfer matrix by solving a
Yang-Baxter relation in this case is highly warranted [69,113].
This transfer matrix can then be used to generate an infinite
number of conserved quantities to prove integrability. Recent
work involved the use of generalized Hubbard-Stratonovich
transformation to get an exact solution for quantum strong
long-range Ising chains [114]. Our model can be further in-
vestigated in this direction.

Our results (for the smaller number of qubits) can be
experimentally verified in various setups from nuclear mag-
netic resonance (NMR) [78], superconducting qubits [45], and
laser-cooled atoms [77], where the QKT is readily imple-
mented, whereas for the larger number of qubits (of the order
of 100s), one can use ion traps [8,10]. Our conjecture can be
tested in this setup as well. With our findings, a search for
similar quantum integrable spin systems can be initiated.

We are indebted to M. S. Santhanam for valuable com-
ments and suggestions on the manuscript. We thank the
anonymous referees for their valuable comments.
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