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We study the tuning effect of a transverse magnetic field on the confinement of spinons in the infinite
XXZ spin-1/2 chain. The spinon confinement in this model takes place in the gapped antiferromagnetic
phase upon application of a staggered longitudinal magnetic field. The tuning transverse magnetic field has
mutually orthogonal uniform and staggered components. The energy spectra of the two-spinon bound states (the
“mesons”) in the confinement regime are analytically calculated in this model using two different perturbative
schemes. The first one applies in the extreme anisotropic (Ising) limit and employs the inverse anisotropy
constant as a small parameter. The second perturbative scheme, which applies at any anisotropy in the gapped
antiferromagnetic domain, exploits the integrability of the XXZ spin chain at zero magnetic field. The small
parameters in the second technique are the components of the transverse, and staggered longitudinal magnetic
fields. It is shown that the weak transverse magnetic field mixes the transverse and longitudinal meson modes,
and leads to an avoided crossing of their energies upon increase of its strength. The explicit formulas for the
two-spinon contribution to the dynamical structure factors of local spin operators are obtained as well in this
model in the weak confinement regime for wave vectors close to the points k = 0 and π .
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I. INTRODUCTION

The phenomenon of confinement is commonly associated
with high energy physics [1]. The problem of a consistent de-
scription of the quark confinement in hadrons in the frame of
quantum chromodynamics (QCD) in four-dimensional space-
time remains to be one of the most long-standing challenging
problems in theoretical physics. The difficulty of this problem
stems from the intrinsic nonperturbative nature of the quark
confinement, and from the lack of clear understanding of its
physical mechanism in QCD in four dimensions.

Confinement of elementary excitations takes place also in
certain two-dimensional quantum field theories (QFT) and
spin-chain models. It is worth to note, that the confine-
ment in such models is provided by a rather simple and
well understood mechanism, which cannot be responsible for
the color confinement in the four-dimensional QCD. Nev-
ertheless, studying the confinement in the two-dimensional
space-time can give a useful insight into some aspect of
the quark confinement in the high energy physics, see, e.g.,
Refs. [2,3]. Note also, that the two-particle bound states of
the two-dimensional QFT and spin-chain models in the con-
finement regime are often referred to as “mesons,” due to the
analogy with QCD.

It was shown by ’t Hooft in 1974 [3] that the quarks
in two-dimensional QCD with an infinite number of colors
are confined forming the mesons, whose masses are exactly
determined by the Bethe-Salpeter equation.

In 1978, McCoy and Wu [4] studied the effect of uniform
magnetic field h on the particle content of the Ising field theory
(IFT) in the two-dimensional space-time. At zero magnetic
field h = 0, this relativistic field theory has two degenerate
vacua in the ferromagnetic phase due to spontaneous breaking
of the Z2 symmetry, and kinks interpolating between these

vacua as elementary excitations. McCoy and Wu showed in
Ref. [4], that the magnetic field h > 0 explicitly breaking
the Z2 symmetry of the model Hamiltonian, induces a linear
attractive potential acting between neighboring kinks, which
were initially free at h = 0. The strength of the linear at-
tractive potential U (x) = f |x| is characterized by the positive
“string tension” f ∼ h. Treating the two kinks as nonrelativis-
tic fermions with dispersion law

ω0(p) = m0 + p2

2m0
, (1)

McCoy and Wu obtained [4] for the masses of the “lightest
mesons” (the energies of the two-kink bound states with zero
total momentum) at small h > 0 the simple formula:

En = E0 + αzn, with n = 1, 2, 3 . . . , (2)

where E0 = 2m0, α = f 2/3m−1/3
0 , and the numbers −zn are the

zeros of the Airy function, Ai(−zn) = 0.
To our knowledge, the first study of the confinement of

magnetic excitations in the spin-chain models was reported
by Shiba [5] in 1980. He considered the antiferromagnetic
XXZ spin-1/2 chain model in the presence of a staggered
longitudinal magnetic field in the limit of the strong uniaxial
anisotropy, and calculated the energy spectra of the two-kink
bound states (“the Zeeman ladder”) by means of a strong-
coupling expansion. Shiba also suggested, that the effective
staggered field, that induces the kink confinement, can arise at
low temperatures in the quasi-one-dimensional (1D) uniaxial
antiferromagnetic crystals due to a weak interchain interaction
in the three-dimensionally ordered antiferromagnetic phase.
Note that since the kinks in the antiferromagnetic XXZ spin
chain carry spin ±1/2, they are also often called “spinons.”
We shall use both terms as synonyms.
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The spinon confinement provided by the outlined above
physical mechanism was observed later in inelastic neutron
scattering [6,7] and terahertz spectroscopy [8,9] experi-
ments in the quasi-1D spin-1/2 antiferromagnetic compounds
BaCo2V2O8 and SrCo2V2O8 with Heisenberg-Ising (XXZ)
anisotropy. However, though Shiba’s theory based on a strong-
coupling expansion gives a useful starting point for the
understanding of some qualitative features of the spinon con-
finement in such magnetic crystals, it could not provide a
quantitative description of the observed energy spectra of
the spinon bound states, since the uniaxial anisotropy in the
studied compounds is rather moderate. This is why the exper-
imentally observed energy spectra of the spinon bound states
in the confinement regime were usually interpreted in terms
of the simple phenomenological McCoy-Wu formula (2) with
fitting parameters E0 and α, or compared with the results of
direct calculations of the energy spectra in the appropriate
spin-chain model by means of different numerical techniques
[6–8,10].

In the recent paper [11], we described analytic perturba-
tive calculations of the meson energy spectra in the gapped
antiferromagnetic XXZ spin-chain model at any value of the
easy-axis anisotropy in the weak confinement regime, which
is realized in this model in the presence of a weak staggered
magnetic field hz parallel to the magnetic easy axis z. Prelim-
inary results of this work were published in Ref. [12]. Two
different perturbative techniques have been used in Ref. [11].
Both techniques exploit the integrability of the XXZ spin-1/2
chain model in the deconfined phase at hz = 0 and use the
staggered magnetic field hz > 0 in the confinement regime as
a small parameter.

The first more rigorous and systematic technique is based
on a perturbative analysis of the Bethe-Salpeter equation,
which was derived for the XXZ spin-chain model in Ref. [11].
For the IFT, the analogous Bethe-Salpeter equation was ob-
tained and studied previously by Fonseca and Zamolodchikov
[13,14].

The second so-called semiclassical technique is not rigor-
ous, but rather heuristic and intuitive. It can be viewed as a
generalization of McCoy and Wu’s scenario of confinement to
systems, in which the kinks in the deconfined phase (i) have
a nonquadratic dispersion law, and (ii) are not free, but can
interact at short distances. Initially this technique was intro-
duced in Refs. [14,15] in order to interpret the mass spectrum
of heavy mesons in the Ising field theory. Later the semiclas-
sical technique was successfully applied to the calculation of
the meson energy spectra in different two-dimensional QFT
and spin-chain models exhibiting confinement [12,16–21]. As
in the McCoy and Wu picture, the two kinks forming a meson
are treated in this approach as classical particles, that move
along the line and attract one another with a linear potential.
However, the kinetic energy of these classical particles is now
not quadratic in their momenta, but is given by the kink disper-
sion law in the deconfined phase. The meson energy spectrum
in this approach is determined by means of the semiclassical
quantization from the Bohr-Sommerfeld quantization rule. If
the kinks interact at short distances already in the deconfined
phase, their pair interaction is accounted for their nontrivial
two-particle scattering phase, which is added in this approach

to the left-hand side of the Bohr-Sommerfeld quantization
condition.

It was shown in Ref. [11], that to leading order in the
staggered magnetic field hz, the two perturbative techniques
outlined above lead to the same result for the meson energy
spectra in the antiferromagnetic XXZ spin-chain model.

In this paper, we continue to study kink confinement in
the gapped antiferromagnetic XXZ spin chain induced by
the longitudinal staggered magnetic field. Here we address
the problem of the effect of a weak external transverse mag-
netic field on the energy spectrum and spin polarization of
the meson states. Our interest in this subject is motivated
by recent experimental studies [8–10,22–28] of the influence
of external magnetic fields on the magnetic properties of
the quasi-1D antiferromagnetic compounds BaCo2V2O8 and
SrCo2V2O8. Besides a number of phase transitions triggered
by strong enough magnetic fields, a substantial modification
of the magnetic excitations induced by the weak external
magnetic fields was observed. It turns out, that the weak
longitudinal and transverse uniform external magnetic fields
act in a very different way on the meson energy spectra in the
confinement regime. It was reported in Refs. [8–10], that the
weak longitudinal (parallel to the Ising axis) magnetic field
leads to a simple Zeeman splitting of the meson energies,
which is linear in the applied field. In contrast, the variation
of the meson energy spectra with the applied transverse mag-
netic field measured in BaCo2V2O8 in the inelastic neutron
scattering [10] and terahertz spectroscopic experiments [27]
displays a rather peculiar nonlinear dependence. In particular,
it was observed in Ref. [10], that the transverse and longitudi-
nal meson modes, which are characterized at zero transverse
magnetic field by the z projection of the spin s = ±1, and
s = 0, respectively, hybridize upon increase of the applied
transverse field. Avoided crossing of the energy curves of
different meson modes with increasing transverse field was
detected as well.

While the impact of a strong transverse magnetic field on
the properties of quasi-1D antiferromagnetic crystals has been
thoroughly studied in literature [26,27,29–32], the observed
effect of a weak transverse field on the magnetic excitations
in such crystals in the confinement regime is much less un-
derstood and requires theoretical explanations. The goal of
this work is to show, that the unusual features of the spin
dynamics observed in Ref. [10] in BaCo2V2O8 in the presence
of the weak transverse magnetic field can be understood in
the frame of properly modified analytic perturbation-theory-
technique developed in Refs. [11,12]. Here we apply these
techniques to the XXZ spin chain Hamiltonian in the gapped
antiferromagnetic phase perturbed not only by the staggered
longitudinal, but also by the transverse uniform and transverse
staggered magnetic fields. The necessity to account for the
effective transverse staggered field stems from the fact, that
the latter arises [10,22] in the magnetic ion chains in the
crystal BaCo2V2O8 upon application of an external uniform
transverse field due to the nondiagonal gxy component of the
Landé tensor.

As in the previous papers, [11,12], we perform perturbative
calculations of the meson energy spectra in two different
asymptotic regimes: (i) in the extreme anisotropic (Ising)
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limit and (ii) at weak magnetic fields at generic values of
the anisotropy parameter. In the second regime, the dynam-
ical structure factors (DSF) of the local spin operators are
calculated as well. The obtained meson spectra display in
both regimes qualitatively similar nonlinear dependences on
the transverse magnetic field with avoided crossings of the
neighboring in energy dispersion curves.

The rest of the paper is organized as follows. In the next
section, we describe the Hamiltonian of the XXZ spin chain
perturbed by magnetic fields of different nature: staggered and
uniform, transverse and longitudinal. We recall there also the
well-known discrete-symmetry properties of the XXZ spin
chain at zero magnetic field. Section III contains the pertur-
bative calculation of the meson energy spectra in the XXZ
spin chain in the limit of strong anisotropy � → −∞ for ar-
bitrary fixed values of the staggered longitudinal and mutually
orthogonal staggered and uniform transverse magnetic fields.

In Secs. IV–X, the anisotropy parameter is taken at a
generic value in the domain � < −1, corresponding to the
gapped antiferromagnetic phase. In these sections, exploiting
integrability of the XXZ spin chain at zero magnetic field, we
use the components of the applied magnetic fields as small
parameters in perturbative calculations, which are performed
in two steps. First, we keep the staggered longitudinal field
at zero value, and study in Secs. IV, V, and VI, the effect
of the weak transverse uniform and staggered magnetic fields
on the ground states, one-, and two-kink excitations, respec-
tively. Next, we switch on the weak staggered longitudinal
magnetic field inducing the confinement of kinks, which be-
come coupled into the meson bound states. In Sec. VII, we
describe, how the classification and symmetry properties of
the resulting meson states are effected by the presence of
the mutually orthogonal uniform and staggered transverse
magnetic fields. The meson energy spectra for this magnetic
field configuration are studied in Secs. VIII and IX by means
of the semiclassical perturbative technique [12]. The effect
of the weak transverse magnetic fields on the DSF of local
spin operators in the confinement regime is studied in Sec. X.
The obtained analytical results are compared in Sec. XI with
the results of the inelastic neutron scattering experiments on
the antiferromagnetic crystals BaCo2V2O8 reported by Faure
et el. [10]. Concluding remarks are presented in Sec. XII.
Finally, there are two Appendices. In Appendix A, we collect
the well-known explicit formulas for the two-kink scattering
amplitudes and for the two-kink form factors of the spin
operators. Appendix B contains the details of some technical
calculations relegated from Sec. IX.

II. MODEL

In this section, we introduce several Hamiltonians of the
XXZ spin-1/2 chain model, which is deformed in different
ways by external magnetic fields. The models defined by these
Hamiltonians will be studied in the subsequent sections by
means of different perturbative techniques.

The most general Hamiltonian of the infinite XXZ spin-1/2
chain in the presence of both uniform and staggered magnetic
fields can be written in the form:

HXXZ = H0 + V, (3)

where

H0 = −1

2

∞∑
j=−∞

(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1 + �σ z

j σ
z
j+1

)
, (4)

V = −
∞∑

j=−∞

∑
a=x,y,z

[(−1) jh1a + h2a]σ a
j . (5)

Here the index j enumerates the spin-chain sites, σ a
j are the

Pauli matrices, a = x, y, z, and � is the anisotropy parameter.
The “−” sign in front of the right-hand side in (4) is the subject
of convention, since it can be changed to “+” by a certain
unitary transformation of the Hamiltonian, see Eqs. (259)
and (262) below. In our choice of this sign we follow the
convention widely accepted in the literature devoted to the
algebraic approach to the XXZ spin-chain model, see, e.g.,
Refs. [33,34]. The anisotropy constant will be taken through-
out this paper in the interval � < −1, and parametrized in the
usual way:

� = (q + q−1)/2 = − cosh η, (6)

q = − exp(−η) ∈ (−1, 0), η > 0. (7)

We will use also the notation Sa for the projection of the
total spin operator on the a axis:

Sa = 1

2

∞∑
j=−∞

σ a
j . (8)

The XXZ spin chain at zero magnetic field defined by the
Hamiltonian (4) is integrable. In the gapped antiferromagnetic
phase at � < −1, it has two ground states |vac〉(1) and |vac〉(0),
which display Neél-type order:

(1)〈vac|σ z
j |vac〉(1) = (−1) j σ̄ , (9)

(0)〈vac|σ z
j |vac〉(0) = −(−1) j σ̄ , (10)

with the staggered spontaneous magnetization [35–37]

σ̄ (η) =
∞∏

n=1

(
1 − e−2nη

1 + e−2nη

)2

. (11)

The elementary excitations in this regime are the kinks inter-
polating between these two vacuums.

The XXZ spin chain (3) remains also integrable, if solely
the longitudinal uniform magnetic field h2z is applied. In the
presence of any other magnetic field hia, with i �= 2 and a �=
z, model (3) becomes nonintegrable. In the latter case, it can
be studied either by direct numerical methods or by different
analytic perturbative techniques.

The confinement regime in model (3) takes place upon
application of the staggered longitudinal magnetic field h1z >

0. In the case, when all other components hia in (5) are
zero, the meson energy spectra in model (3) were studied in
Refs. [5,11,12]. It was shown in Ref. [11], that the meson
states |πs,ι,n(P)〉 in this case can be classified by the quasimo-
mentum P ∈ [0, π ), the spin s = 0,±1, the parity ι = 0,±,
and the natural number n = 1, 2, . . . The quantum numbers
ι and s are not independent: ι = 0 for s = ±1, and ι = ±,
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for s = 0. The meson states |πs,ι,n(P)〉 satisfy the following
equations (see Eqs. (125) in Ref. [11]):

H1(h1z )|πs,ι,n(P)〉 = Eι,n(P)|πs,ι,n(P)〉, (12a)

T 2
1 |πs,ι,n(P)〉 = e2iP|πs,ι,n(P)〉, (12b)

Sz|πs,ι,n(P)〉 = s|πs,ι,n(P)〉. (12c)

Here T1 is the one-site translation operator defined below by
Eq. (20), and the Hamiltonian H1(h1z ) is defined as follows:

H1(h1z ) = H0 −
∞∑

j=−∞

[
(−1) jh1zσ

z
j + c(h1z )

]
. (13)

The constant c(h1z ) in the right-hand side is chosen in such
a way, that the ground-state energy of the Hamiltonian (13)
vanishes.

It is easy to understand, how the application of the uniform
longitudinal magnetic field h2z effects the meson energy spec-
tra. Really, since

[Sz,H1(h1z )] = 0,

the Hamiltonian

H2(h1z, h2z ) = H1(h1z ) − 2h2z Sz (14)

has the same set of eigenstates, as H1(h1z ), and

H2(h1z, h2z )|πs,ι,n(P)〉 = [Eι,n(P) − 2h2zs]|πs,ι,n(P)〉. (15)

Therefore the uniform longitudinal magnetic field h2z has
no effect on the energies of the meson modes with s = 0,
while the two modes with s = ±1, which were degenerate in
energy at h2z = 0, get the linear Zeeman splitting at h2z > 0.
Such longitudinal field dependences of the meson modes en-
ergies were indeed observed in the neutron scattering [10] and
high-resolution terahertz spectroscopic [9] experiments on the
compound BaCo2V2O8.

In the rest of this paper we will concentrate on the case of
the zero uniform longitudinal magnetic field in the Hamilto-
nian (3)–(5), h2z = 0. The subsequent analysis of the tuning
effect of the transverse magnetic field on the spinon confine-
ment will be limited to the case, in which the uniform and
staggered transverse magnetic fields are mutually orthogonal.
The reason is twofold. First, the classification of the meson
states and perturbative calculations of their energy spectra
become easer in this case. Second, according to Refs. [10,22],
it is relevant to the experimental situation in the compound
BaCo2V2O8.

So, in the study of the spinon confinement, we will re-
strict our attention in this paper to the Hamiltonian (3)–(5)
with h2z = h1x = h2y = 0. In order to simplify notations, we
rewrite this Hamiltonian in the equivalent form:

H(�, ht , hz ) = H0(�) + Vt (ht ) + Vl (hz ), (16)

Vt (ht ) = −
∞∑

j=−∞

[
h2σ

x
j + (−1) jh1σ

y
j

]
, (17)

Vl (hz ) = −hz

∞∑
j=−∞

(−1) jσ z
j . (18)

where ht = h2ex + h1ey.

To conclude this section, we describe, following essentially
Lukyanov and Terras [34], the set of the discrete-symmetry
operators, which will be important for the subsequent analy-
sis.

Hamiltonians (3) and (16) act in the vector space L =
⊗∞

j=−∞C2
j spanned by the basis states

|E〉 = ⊗∞
j=−∞e j,s j = · · · ⊗ e−1,s−1 ⊗ e0,s0 ⊗ e1,s1 ⊗ · · · ,

(19)

with s j = ±1, such that

σ z
j |E〉 = s j |E〉.

The discrete-symmetry operators are defined by their ac-
tion on the basis vectors |E〉 as follows.

(1) The translation (shift) operator by one chain site T1:

T1|E〉 = ⊗∞
j=−∞e j,s j+1 . (20)

(2) “Charge conjugation operators” Ca = ⊗∞
j=−∞σ a

j , with
a = x, y, z. In particular, the operator Cx acts on the basis state
(19) as

Cx|E〉 = ⊗∞
j=−∞e j,−s j .

(3) We shall use two modified translation operators by one
chain site:

T̃1 = T1Cx, (21)

T̆1 = T1Cy. (22)

(4) The time inversion is the antiunitary operators T , that
acts trivially on the basis states: T |E〉 = |E〉. The following
equality

T (c|ψ〉) = c∗T |ψ〉, (23)

holds for any |ψ〉 ∈ L, and a complex number c.
(5) Two spatial reflection operators Pev and Podd = T1Pev:

Podd|E〉 = ⊗∞
j=−∞e j,s− j , (24)

Pev|E〉 = ⊗∞
j=−∞e j,s1− j . (25)

These operators act on the Pauli matrices as follows:

T −1
1 σ a

j T1 = σ a
j+1, (26a)

Cxσ
a
j Cx = eiπdaσ a

j , (26b)

Cyσ
a
j Cy = eiπ d̆aσ a

j , (26c)

T̃ −1
1 σ a

j T̃1 = eiπdaσ a
j+1, (26d)

T̆ −1
1 σ a

j T̆1 = eiπ d̆aσ a
j+1, (26e)

Tσ x
j T = σ x

j , Tσ
y
j T = −σ

y
j , Tσ z

j T = σ z
j ,

(26f)

Podd σ a
j Podd = σ a

− j, Pev σ a
j Pev = σ a

1− j, (26g)

where dx = 0, dy = dz = 1, d̆y = 0, and d̆x = d̆ z = 1.
The Hamiltonian H0 of the infinite XXZ spin chain at

zero magnetic field commutes with the operator Sz, and with
all discrete symmetry operators listed above. In the antifer-
romagnetic phase � < −1, some of these symmetries are
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spontaneously broken, and the two ground states |vac〉(1),
|vac〉(0) of the Hamiltonian H0 have the following properties:

H0|vac〉(μ) = E (0)
vac|vac〉(μ), (27a)

(1)〈vac|σ z
0 |vac〉(1) = σ̄ = − (0)〈vac|σ z

0 |vac〉(0), (27b)

T1|vac〉(μ) = |vac〉(1−μ), (27c)

Cx|vac〉(μ) = |vac〉(1−μ), (27d)

Pev|vac〉(μ) = |vac〉(1−μ), (27e)

CxT |vac〉(μ) = |vac〉(1−μ), (27f)

T̃1|vac〉(μ) = |vac〉(μ), (27g)

T |vac〉(μ) = |vac〉(μ), (27h)

Podd|vac〉(μ) = |vac〉(μ), (27i)

where μ = 0, 1. The ground-state energy E (0)
vac of the Hamil-

tonian H0 is proportional to the number of sites in the spin
chain, which becomes infinite in the thermodynamic limit.

III. ISING LIMIT � → −∞
In this section, we describe the perturbative calculation of

the meson energy spectra in the confinement regime for the
model defined by Hamiltonian (16) in the strong-anisotropy
(Ising) limit −� � 1 to linear order in |�|−1. To this end,
we use the strong-coupling expansion method developed
by Ishimura and Shiba [38]. Though the strong-anisotropy
condition |�|−1 � 1 is not satisfied in real quasi-1D anti-
ferromagnetic crystals, the results obtained by means of the
strong-coupling expansion provide a useful insight into the
qualitative picture of the spinon confinement tuned by trans-
verse magnetic field.

In the Ising limit � → −∞, it is convenient to rescale
Hamiltonian (16) and to add to it a suitable (infinite in the
thermodynamic limit) constant:

HI (ε, ht , hz ) = |�|−1 H(�, ht , hz ) + const

= H(0)
I + εVI , (28)

where

H(0)
I = 1

2

∞∑
j=−∞

(
σ z

j σ
z
j+1 + 1

)
, (29)

VI = −
∞∑

j=−∞
(σ+

j σ−
j+1 + σ−

j σ+
j+1) (30)

−
∞∑

j=−∞

[
h2 σ x

j + h1(−1) j σ
y
j

]
− hz

∞∑
j=−∞

[
(−1) j σ z

j − 1
]
.

Here ε = |�|−1 is the small parameter, and σ±
j = 1

2 (σ x
j ±

iσ y
j ).
At ε = 0, the Hamiltonian (28) has two Neél vacua |0〉(μ),

μ = 0, 1, with zero energy:

H(0)
I |0〉(μ) = 0, μ = 0, 1, (31)

where

|0〉(1) : . . . ↓
0
↑

1
↓

2
↑↓ . . . , (32a)

|0〉(0) : . . . ↑
0
↓

1
↑

2
↓↑ . . . (32b)

A. One-kink sector

Let us consider the localized kink states |Kμν ( j)〉, which
interpolate between vacua |0〉(μ) to the left, and |0〉(ν) to the
right of the bond ( j, j + 1). For example, the state |K10(2)〉
looks like as follows:

|K10(2)〉 : . . . ↓
0
↑

1
↓

2
↑ |

3
↑ ↓↑ . . . (33)

The states |Kμν ( j)〉 are the eigenvectors of the zero-order
Hamiltonian (29), which are characterized by the same (unit)
eigenvalue:

H(0)
I |Kμν ( j)〉 = |Kμν ( j)〉, (34)

and are normalized by the condition

〈Kνμ( j)|Kμ′ν ′ ( j′)〉 = δμμ′δνν ′δ j j′ . (35)

They transform under the action of the operators T1, Cx, and
T̃1 in the following way:

T1|Kμν ( j)〉 = |Kνμ( j − 1)〉, (36)

Cx|Kμν ( j)〉 = |Kνμ( j)〉, (37)

T̃1|Kμν ( j)〉 = |Kμν ( j − 1)〉. (38)

Denote by P (1) the projection operator onto the subspace
L(1) of the one-kink states, and by H1(ε, ht , hz ) the restriction
of the Hamiltonian HI (ε, ht , hz ) to L(1):

H1(ε, ht , hz ) = P (1)HI (ε, ht , hz )P (1). (39)

The Hamiltonian (39) acts at hz = 0 on the basis localized
kink states |Kμν ( j)〉 as follows:

H1(ε, ht , 0)|Kμν ( j)〉
= |Kμν ( j)〉 − ε[|Kμν ( j + 2)〉 + |Kμν ( j − 2)〉]

− εh2[|Kμν ( j + 1)〉 + |Kμν ( j − 1)〉]
− i(−1)μεh1[|Kμν ( j + 1)〉 − |Kμν ( j − 1)〉]. (40)

The one-kink Bloch states∣∣KI
μν (p)

〉 = eip
∞∑

j=−∞
ei j p|Kμν ( j)〉 (41)

with p ∈ (−π, π ) diagonalize the Hamiltonian H1(ε, ht , 0)
and the modified translation operator T̃1:

H1|hz=0

∣∣KI
μν (p)

〉 = ωμν (ε, p, ht )
∣∣KI

μν (p)
〉
, (42)

T̃1

∣∣KI
μν (p)

〉 = eip
∣∣KI

μν (p)
〉
. (43)

where

ωμν (ε, p, ht ) = 1 − 2ε cos(2p)

− 2ε[h2 cos p + (−1)μh1 sin p] (44)

is the kink dispersion law.
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B. Two-kink sector

The two-kink subspace L(2) is spanned by the basis of
localized states |Kμν ( j1)Kνμ( j2)〉, with j1 < j2. Denote by
P (2) the projection operator onto this subspace, and by
H2(ε, ht , hz ) the restriction of the Hamiltonian to L(2):

H2(ε, ht , hz ) = P (2)HI (ε, ht , hz )P (2). (45)

Let us define the Bloch state |
(P)〉 in the subspace L(2) as
follows:

|
(P)〉 =
∞∑

j1=−∞
eiP j1

∞∑
j=1

eiP j/2ψ ( j)|K10( j1)K01( j1 + j)〉.

(46)
Due to (38), it satisfies equation

T̃1|
(P)〉 = eiP|
(P)〉. (47)

We require also that the Bloch state |
(P)〉 is the eigenstate
of the reduced Hamiltonian (45):

H2(ε, h1, hz )|
(P)〉 = E (P)|
(P)〉, (48)

with the eigenvalue

E (P) = 2 + ε �(P). (49)

Due to (46)–(49), the wave function ψ ( j) must satisfy the
fourth-order linear difference equation at j ∈ N:

(2hz j − �)ψ ( j) − 2 cos P [ψ ( j + 2) + ψ ( j − 2)]

− 2h2 cos
P

2
[ψ ( j + 1) + ψ ( j − 1)]

+ 2ih1 cos
P

2
[ψ ( j + 1) − ψ ( j − 1)] = 0. (50)

Its solution must satisfy the Dirichlet boundary condition at
the left boundary:

ψ (−1) = ψ (0) = 0, (51)

and vanish at j → +∞.
For the theory of linear difference equations see the mono-

graph by G. Teschl [39].

1. Exact solution of the discrete Sturm-Liouville problem

The discrete Sturm-Liouville problem (50) and (51) can be
solved exactly. Indeed, let us define the generating function
φ(z) of the complex variable z

φ(z) =
∞∑
j=1

ψ ( j)z j . (52)

The Taylor series (52) must converge at |z| � 1.
Equations (50) and (51) lead to the following first-order

linear ordinary differential equation for the generating func-
tion φ(z):

(−� + 2hzz∂z )φ(z) + εI (z|P)φ(z)

= −2 cos P [ψ (1)z−1 + ψ (2)]

− 2(h2 − ih1) ψ (1) cos
P

2
, (53)

where

εI (z|P) = − 2(z2 + z−2) cos P

− 2[h2(z + z−1) + ih1(z − z−1)] cos
P

2
, (54)

and

ψ (1) = φ′(0), ψ (2) = φ′′(0)

2
. (55)

Besides, the generating function φ(z) must vanish at the origin
due to (51): φ(0) = 0. The appropriate partial solution of the
differential equation (53) reads

φ(z) = − 1

hz

∫ z

0

dw

w
exp

{
i

2hz
[FI (w|�) − FI (z|�)]

}
×

[
ψ (1)

(
(h2−ih1) cos

P

2
+ cos P

w

)
+ ψ (2) cos P

]
,

(56)

where

FI (z|�) = i

[
� ln z + (z2 − z−2) cos P

+ 2h2(z − z−1) cos
P

2
+ 2ih1(z + z−1) cos

P

2

]
.

(57)

Note that

izF ′
I (z|�) = εI (z|P) − �. (58)

The integrand in the integral in the right-hand side of (56)
has the essential singularity at w = 0, that arises from the
second-order pole of the function FI (w|�) determined by
(57):

FI (w|�) = −i
cos P

w2
+ O(w−1). (59)

The integral in (56) converges, if the integration path ap-
proaches the origin w = 0 along the line Re cos P

w2 < 0.
Depending on the sign of cos P, the appropriate allowed
integration path in (56) approaches the origin either along
the imaginary axis for cos P > 0, or along the real axis for
cos P < 0, see Fig. 1. In both cases, the integrals in the
right-hand side of (56) performed along the topologically
nonequivalent paths γ1, γ2, and γ3 shown in Fig. 1 must give
the same result. This leads to two constraints∫

Cj

dw

w
exp

{
i

2hz
[FI (w|�)

}
×

[
ψ (1)

(
(h2 − ih1) cos

P

2
+ cos P

w

)
+ ψ (2) cos P

]
= 0, (60)

where j = 1, 2, and the integration contours C1 = γ2 − γ1,
C2 = γ1 − γ3 are shown in Fig. 2.

Let us introduce notations: f1(w) = 1, f2(w) = w−1,

〈. . .〉 j =
∫

Cj

dw

w
. . . exp

{
i

2hz
[FI (w|�)]

}
, (61)
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z

1

γ1 γ2

γ3

cosP > 0

(a)

z

1

γ1
γ2

γ3

cosP < 0

(b)

FIG. 1. Integration paths γ1, γ2, and γ3 in (56) connecting the
points w = 0 and w = z in the w-complex plane: (a) for cos P > 0
and (b) for cos P < 0.

with j = 1, 2, and

Wji = 〈 fi〉 j . (62)

Then, constraints (60) can be written as a system of two linear
uniform equations on the parameters Y1 and Y2:

W11Y1 + W12Y2 = 0, W21Y1 + W22Y2 = 0, (63)

where

Y1 = ψ (1)(h2 − ih1) cos
P

2
+ ψ (2) cos P,

Y2 = ψ (1) cos P. (64)

This system has nontrivial solutions provided the following
equality holds:

W11W22 − W12W21 = 0. (65)

For given values of h1, h2, hz, and P, the solutions of the
transcendent equation (65) on the parameter � determine the
discrete spectrum {�n}∞n=1, of the Sturm-Liouville problem
(50), (51). This completes calculation of the meson energy
spectra for the model (16) in the Ising limit � → −∞ to the

FIG. 2. Integration contours C1 and C2 in (60) and (61): (a) for
cos P > 0 and (b) for cos P < 0.

linear order in the small parameter ε = 1/|�|:
En(P,�, ht , hz ) = 2 + ε�n(P, ht , hz ) + O(ε2). (66)

2. Limit ht = 0

In the limit ht = 0, the reduction of the function (57) to the
form

FI (z|�)|ht =0 = i[� ln z + (z2 − z−2) cos P] (67)

leads to the following equalities:

W21 = W11 exp

(
− i�π

2hz

)
, W12 = −W22 exp

(
i�π

2hz

)
,

and Eq. (65) simplifies to

2W11W22 = 0. (68)
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FIG. 3. The energies of three lightest mesons versus h2 due to
(65) and (66) at h1 = 0.4 h2 and fixed P = 0, and hz = 0.2.

Furthermore, the integrals W11, W22 admit at ht = 0 the
explicit representations in terms of the Bessel function:

W11

π i
=

{
Jν

(
cos P

hz

)
, for cos P > 0,

exp
( − iπ�

4hz

)
Jν

(− cos P
hz

)
, for cos P < 0,

(69)

W22

π i
=

{− exp
( − iπ�

2hz

)
Jν−1/2

(
cos P

hz

)
, for cos P > 0,

i exp
(

iπ�
4hz

)
Jν−1/2

(− cos P
hz

)
, for cos P < 0,

(70)

where ν = − �
4hz

. Accordingly, the dispersion laws of the
meson states at ht = 0 in the Ising limit � → −∞ are de-
termined by the solutions of the equation:

J− �
4hz

( | cos P|
hz

)
J− 1

2 − �
4hz

( | cos P|
hz

)
= 0 (71)

in agreement with [12]. It was shown in [12], that the disper-
sion laws of the mesons with zero z-projection s = 0 of the
spin are determined by solutions of equation

J− �
4hz

( | cos P|
hz

)
= 0, (72)

while the energies of the mesons with s = ±1 is determined
by solutions of equation

J− 1
2 − �

4hz

( | cos P|
hz

)
= 0. (73)

3. Meson energy spectra in the Ising limit at ht �= 0

Application of the transverse magnetic field ht breaks con-
servation of the z projection of the total spin and leads to the
hybridization of the meson modes with s = 0, and s = ±1.

Obtained results are illustrated in Fig. 3, which displays
the evolution of the energies of three lightest meson modes
with increasing transverse magnetic field h2 at the fixed ratio
h1/h2 = 0.4, and fixed P = 0 and hz = 0.2. Hybridizaton of
the first longitudinal and the second transverse modes leads
to the avoided crossing of their dispersion curves, that takes
place at h2 ≈ 0.25 for the chosen values of other parameters.

The described above qualitative evolution of the meson
energies with increasing transverse magnetic field was in-
deed observed by Faure et al. [10] in the inelastic neutron
scattering experiments in the crystal BaCo2V2O8, see Fig. 3
in Ref. [10]. However, Faure et al. give the value ε = 0.53

for the inverse anisotropy parameter ε = |�|−1 in this crys-
tal, which is far from the strong anisotropic regime ε �
1. Therefore the results obtained above in the limit ε →
0 cannot describe quantitatively the experimentally relevant
regime.

In subsequent Secs. IV–IX, we will present the alternative
perturbative scheme, which is free from the above shortcom-
ing. It applies to the whole interval of the anisotropy constant
� < −1, and exploits the staggered longitudinal magnetic
field hz as a small parameter. In the more simple case of
zero transverse magnetic field, this perturbative technique was
already used for calculation of the meson dispersion laws in
the XXZ spin chain in papers [11,12]. However, at ht = 0,
one could benefit from the fact, that the XXZ model at hz = 0
is integrable. This is not the case anymore in presence of the
transverse magnetic field ht �= 0. To overcome this difficulty,
we perform the perturbative calculations in two steps, as it was
noticed in the Introduction. First, in Secs. IV–VI, we concen-
trate on the deconfinement regime at hz = 0, and determine
the deformations of the antiferromagnetic vacua, one-, and
two-kink excitations by the weak transverse magnetic field
having both uniform and staggered components. Then the
weak staggered longitudinal field hz is switched on inducing
the kink confinement. The energies of their bound states in
this regime are calculated in Secs. VII and IX following the
strategy developed in Refs. [11,12].

IV. GROUND-STATE ENERGY AT hz = 0

Let us return to the Hamiltonian (3), and put in it h1z =
h2z = 0. At nonzero hix, hiy, i = 1, 2, the interaction term V
given by (5) does not commute with the total spin operator Sz,
and with all listed in (27) discrete symmetry operators, except
of Podd, and CxT :

Podd V = V Podd, (74)

CxT V = V TCx. (75)

It follows from Eqs. (27f) and (75) that the application of
the transverse magnetic fields hix, hiy, i = 1, 2 does not lift
the degeneracy between the two deformed antiferromagnetic
vacua |Vac(ht )〉(1) and |Vac(ht )〉(0),

(H0 + V )|Vac(ht )〉(1) = Evac(ht )|Vac(ht )〉(1),

(H0 + V )|Vac(ht )〉(0) = Evac(ht )|Vac(ht )〉(0),

CxT |Vac(ht )〉(μ) = |Vac(ht )〉(1−μ), μ = 0, 1,

where ht = 〈h1x, h2x, h1y, h2y〉.
The ground-state energy Evac(ht ) admits the Rayleigh-

Schrödinger expansion in the components of the transverse
magnetic field. The leading correction to the ground-state
energy E (0)

vac is of the second order. In the two-kink approxi-
mation, it can be written as [40]

E (2)
vac(ht ) = −

∑
s=±1/2

∫ π/2

−π/2

d p1

π

∫ p1

−π/2

d p2

π

1

ω(p1) + ω(p2)

× (1)〈vac|V |K10(p1)K01(p2)〉ss

× ss〈K10(p2)K01(p1)|V |vac〉(1). (76)
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Here |K10(p1)K01(p2)〉s1s2 denotes the two-kink Bloch state
characterized by the quasimomenta p1, p2 and spins s1, s2 of
two kinks. Some properties of these states are collected in
Appendix A. The kink dispersion law ω(p) is explicitly known
due to Johnson, Krinsky, and McCoy [41]:

ω(p, η) = I
√

1 − k2 cos2 p, (77)

where

I = 2K

π
sinh η, (78)

and K [K ′] is the complete elliptic integral of modulus k [k′ =√
1 − k2] such that

K ′

K
= η

π
. (79)

The perturbing operator V can be represented as

V =
∞∑

m=−∞
T̃ −2m

1 v0 T̃ 2m
1 , (80)

where

v0 = − [
(h1x + h2x )σ x

0 + (h1y + h2y)σ y
0

]
− [

(−h1x + h2x )σ x
1 + (−h1y + h2y)σ y

1

]
.

After substitution of (80) into (76) and summation over m
using equality (A1a), one obtains in the thermodynamic limit

lim
N→∞

E (2)
vac(ht )

N
= − 1

2

∑
s=±1/2

∫ π/2

−π/2

d p

π

1

2ω(p)

× (1)〈vac|v0|K10(p)K01(−p)〉ss

× ss〈K10(−p)K01(p)|v0|vac〉(1), (81)

where N is the number of sites in the spin chain. The
matrix elements of the operator v0 in the right-hand side
can be expressed in terms of the two-kink form factors
X 0(ξ1, ξ2), X 1(ξ1, ξ2) given in Eqs. (A9) in Appendix A:

(1)〈vac|v0|K10(p)K01(−p)〉−1/2,−1/2

= − sinh η

ω(p)
{(h1x − ih1y)[X 1(ξ, ξ−1) − X 0(ξ, ξ−1)]

+ (h2x − ih2y)[X 1(ξ, ξ−1) + X 0(ξ, ξ−1)]},
(1)〈vac|v0|K10(p)K01(−p)〉1/2,1/2

= sinh η

ω(p)
{(h1x + ih1y)[X 1(ξ, ξ−1) − X 0(ξ, ξ−1)]

− (h2x + ih2y)[X 1(ξ, ξ−1) + X 0(ξ, ξ−1)]},
where

ξ := ξ (p) = −ieiα(p), (82)

and α is the kink rapidity corresponding to the momentum
p. Note that the kink momentum p and energy ω can be
parametrized in terms the Jacobi elliptic functions of the ra-
pidity variable α:

p(α) = −π

2
+ am

(
2Kα

π
, k

)
, (83)

ω(α) = I dn

(
2Kα

π
, k

)
= sinh η

d p(α)

dα
. (84)

Let us proceed to the polar coordinates in the magnetic field
components:

h1x = h1 cos ϕ1, h1y = h1 sin ϕ1, (85)

h2x = h2 cos ϕ2, h2y = h2 sin ϕ2. (86)

The second-order correction (81) then can be represented in
the form

lim
N→∞

E (2)
vac(ht )

N
= −χ1

2
h2

1 − χ2

2
h2

2, (87)

where χ1 and χ2 are the magnetic susceptibilities correspond-
ing to the staggered and uniform transverse magnetic fields,
respectively:

χ1 = A2
+

A2−
χ2, (88)

χ2 = sinh η

π

∫ π

0

d p

ω2(p)
|X 1(ξ, ξ−1) + X 0(ξ, ξ−1)|2, (89)

with ξ given by (82), and

A+(η) = 2ϑ4(0|e−η ) ϑ2(iη/π |e−4η ),

A−(η) = 2ϑ3(0|e−η ) ϑ2(iη/π |e−4η ). (90)

Here ϑi(u|p), with i = 1, 2, 3, 4, denotes the elliptic theta
functions defined by Eqs. (A17).

Note that the ratio A2
+/A2

− is equal to the complementary
elliptic modulus k′:

A2
+

A2−
=

[
ϑ4(0|e−η )

ϑ3(0|e−η )

]2

=
[

ϑ2(0|e−π2/η )

ϑ3(0|e−π2/η )

]2

= k′(η) =
√

1 − k(η)2.

V. FIRST ORDER CORRECTION TO THE KINK
ENERGY AT hz = 0

At zero magnetic field, the XXZ model is determined by
the Hamiltonian (4). At � < −1, the infinite chain (4) has two
antiferromagnetic ground states |vac〉(1), and |vac〉(0). The
one-kink subspace L(1) has two topological sectors L(1)

10 and
L(1)

01 , which are spanned by the basis vectors |K10(p)〉s, and
|K01(p)〉s, respectively, with p ∈ (0, π ), and s = ±1/2. The
defining equations for these one-kink Bloch states read

T̃1|Kμν (p)〉s = eip |Kμν (p)〉−s, (91a)

Sz|Kμν (p)〉s = s|Kμν (p)〉s, (91b)(
H0 − E (0)

vac

)|Kμν (p)〉s = ω(p)|Kμν (p)〉s, (91c)

s〈Kνμ(p)|Kμ′ν ′ (p′)〉s′ = πδμμ′δνν ′δs,s′δ(p − p′), (91d)

where ω(p) is given by (77). Note also the relation [11]

|Kμν (p + π )〉s = κ(μ, s)|Kμν (p)〉s, (92)

where κ(0, 1/2) = κ(1,−1/2) = 1, and κ(1, 1/2) =
κ(0,−1/2) = −1. Formula (92) allows one to extend
the above definition of the one-kink states |Kμν (p)〉s from the
interval p ∈ (0, π ) to the whole real axis of the momentum
p ∈ R. All one-kink Bloch states |Kμν (p)〉s have the same
dispersion law (77).
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If h1z = h2z = 0, application of the weak transverse uni-
form and staggered magnetic fields ht = 〈h1x, h2x, h1y, h2y〉
deform the two antiferromagnetic ground states |vac〉(μ), with
μ = 0, 1 into the vacua |Vac(ht )〉(μ), which remain degenerate
in energy. The lowest in energy excitations form the subspace
L(1), which splits into two sectors L(1)

10 and L(1)
01 formed by

kink Bloch states |Kμν (p|ht )〉a, interpolating between the two
antiferromagnetic vacua. These kink Bloch states are defined
as solutions of the eigenvalue problem:

T 2
1 |Kμν (p|ht )〉a = e2ip |Kμν (p|ht )〉a, (93)

[H0 + V − Evac(ht )]|Kμν (p|ht )〉a

= �(a)
μν (p|ht )|Kμν (p|ht )〉a, (94)

with a = 1, 2 and p ∈ (0, π ).
Note that we have used the two-site translation operator

T 2
1 in (93) [instead of the one-site modified translation T̃1 in

Eq. (91a)] in order to define the kink quasi-momentum p. The
reason is that the operator T̃1 does not commute with V for
generic values of the transverse magnetic field components at
h1z = h2z = 0.

The one-kink Bloch states |Kμν (p|ht )〉a admit a Taylor ex-
pansion in powers of the components of the applied transverse
magnetic field. The standard Rayleigh-Schrödinger perturba-
tion theory arguments [40] yield

|Kμν (p|ht )〉a = Ua1|Kμν (p)〉1/2 + Ua2|Kμν (p)〉−1/2 + O(|ht |),
(95)

�(a)
μν (p|ht ) = ω(p) + δ�(a)

μν (p|ht ) + O(|ht |2), (96)

where δ�(a)
μν (p|ht ) ∼ ht . The matrix elements of the 2 × 2

unitary matrix Uab are, generally speaking, different for the
topological sectors L(1)

10 and L(1)
01 , depend on the kink momen-

tum p ∈ (0, π ), and on the orientation in the xy plane of the
applied transverse magnetic fields, but do not depend on |ht |.
In order to determine δ�(a)

μν (p) and Uab, one has to diagonalize
the matrix s〈Kνμ(p)|V |Kμν (p′)〉s′ , which can be written as

s〈Kνμ(p)|V |Kμν (p′)〉s′ = πδ(p − p′)Vss′ (p), (97)

where the Hermitian 2 × 2 matrix Vss′ (p) is defined by the
relation

Vss′ (p) = s〈Kνμ(p)|v0|Kμν (p)〉s′

= sinh η

ω(p)
δ−s,s′ s〈Kνμ(ξ )|v0|Kμν (ξ )〉s′ . (98)

In the second line |Kμν (ξ )〉s denotes the kink state
parametrized by the multiplicative spectral parameter ξ (α) =
−ieiα . This state differs from |Kμν (p)〉s by the numerical fac-
tor

√
p′(α):

|Kμν (ξ )〉s =
√

ω(p)

sinh η
|Kμν (p)〉s. (99)

Using (26d) and the crossing relation [33]

s′ 〈Kνμ(ξ ′)|σ a
0 |Kμν (ξ )〉s

= (ν)〈vac|σ a
0 |Kνμ(−qξ ′)Kμν (ξ )〉−s′,s, (100)

with a = x, y, z, the nonzero matrix elements in the second
line of (98) can be expressed in terms of the two-kink form

factors X 0(ξ1, ξ2), X 1(ξ1, ξ2) of the spin operators σ±
0 de-

scribed in Appendix A:

−1/2〈K01(ξ )|v0|K10(ξ )〉1/2

= −(h1eiϕ1 + h2eiϕ2 )X 1(e−ηξ , ξ )

− (−h1eiϕ1 + h2eiϕ2 )X 0(e−ηξ , ξ ), (101)

1/2〈K01(ξ )|v0|K10(ξ )〉−1/2

= −(h1e−iϕ1 + h2e−iϕ2 )X 0(e−ηξ , ξ )

− (−h1e−iϕ1 + h2e−iϕ2 )X 1(e−ηξ , ξ ), (102)

−1/2〈K10(ξ )|v0|K01(ξ )〉1/2

= −(h1eiϕ1 + h2eiϕ2 )X 0(e−ηξ , ξ )

− (−h1eiϕ1 + h2eiϕ2 )X 1(e−ηξ , ξ ), (103)

1/2〈K10(ξ )|v0|K01(ξ )〉−1/2

= −(h1e−iϕ1 + h2e−iϕ2 )X 1(e−ηξ , ξ )

− (−h1e−iϕ1 + h2e−iϕ2 )X 0(e−ηξ , ξ ). (104)

The following explicit formulas hold for the form factors
X 0,1(e−ηξ , ξ ) that stand in the above expressions:

X 1(e−ηξ , ξ ) + X 0(e−ηξ , ξ ) = A+ cos[p(α)], (105)

X 1(e−ηξ , ξ ) − X 0(e−ηξ , ξ ) = iA− sin[p(α)], (106)

where p(α) is the kink momentum parametrized by the rapid-
ity variable according to Eq. (83), and the amplitudes A±(η)
are given by (90).

As the result, the matrix elements Vs,s′ (p) in the case μ =
1, ν = 0 reduce to the form:

V1/2,−1/2(p) = sinh η

ω(p)
[ie−iϕ1 h1A− sin p − e−iϕ2 h2A+ cos p],

V−1/2,1/2(p) = sinh η

ω(p)
[−ieiϕ1 h1A− sin p − eiϕ2 h2A+ cos p],

V1/2,1/2(p) = V−1/2,−1/2(p) = 0.

In the case μ = 0, ν = 1, the matrix elements Vs,s′ (p) read
instead

V1/2,−1/2(p) = sinh η

ω(p)
[−ie−iϕ1 h1A− sin p − e−iϕ2 h2A+ cos p],

V−1/2,1/2(p) = sinh η

ω(p)
[ieiϕ1 h1A− sin p − eiϕ2 h2A+ cos p],

V1/2,1/2(p) = V−1/2,−1/2(p) = 0.
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FIG. 4. Dashed blue and dot-dashed orange lines: dispersion
laws (107) of kinks perturbed by transverse magnetic fields. Solid
green line: kink dispersion law (77) at zero magnetic field.

Diagonalization of the matrix Vss′ (p) allows one to deter-
mine the kink dispersion law to the first order in |ht |:

�
(a)
10 (p|ht ) = ω(p) ± sinh η

ω(p)

× [(h1A− sin p)2 + (h2A+ cos p)2

− h1h2A+A− sin(2p) sin(ϕ1 − ϕ2)]1/2

+ O(|ht |2), (107)

�
(a)
01 (p|ht ) = �

(a)
10 (−p|ht ), (108)

with a = 1, 2, and p ∈ (0, π ).
Figure 4 illustrates the dispersion laws (107) of two kink

modes �
(a)
10 (p|ht ), a = 1, 2, in the topological sector L(1)

10
at η = 1.31, h1 = 0.3, h2 = 0.1, and ϕ1 − ϕ2 = 0.4π . These
large enough values of the magnetic fields h1 and h2 have
been chosen in order to provide a sufficient separation of three
dispersion curves in Fig. 4. The drawback of this choice is that
the kink frequency �

(2)
10 (p) vanishes and becomes negative at

certain values of p. This does not happen at small values of
the transverse magnetic fields required by the applicability of
the Rayleigh-Schrödinger perturbation theory.

At generic mutual orientations and strengths of the trans-
verse uniform and staggered magnetic fields, the degeneracy
between the two kink modes �

(1)
10 (p) and �

(2)
10 (p) is lifted at

all p. The situation is different, however, in two cases: (i)
if the staggered and uniform transverse magnetic fields are
mutually orthogonal and (ii) if either the staggered, or the
uniform transverse magnetic field vanishes.

Let us address the first case, and put ϕ1 − ϕ2 = π/2 in
Eqs. (107) and (108), which reduce then to the form

�
(a)
10 (p|ht ) = ω(p) ± sinh η

ω(p)

× |h1A− sin p − h2A+ cos p| + O(|ht |2),
(109)

�
(a)
01 (p|ht ) = �

(a)
10 (−p|ht ), (110)

with p ∈ (0, π ).
As one can see from Fig. 5(a), the gap between the two

modes �
(1)
10 (p|ht ), and �

(2)
10 (p|ht ) vanishes at a certain value

of the kink momentum p. The physical reason of this partly
restored degeneracy is the additional symmetry of the Hamil-

(a)

(b)

FIG. 5. Dashed blue and dot-dashed orange lines: dispersion
laws [(109) in (a) and (118) in (b)] of kinks perturbed by the mutually
orthogonal transverse staggered and uniform magnetic fields. Solid
green line: the kink dispersion law (77) at zero magnetic field.

tonian. Indeed, at h1z = h2z = 0, ϕ1 = π/2 and ϕ2 = 0, the
interaction operator (5) reduces to the operator Vt (ht ) given
by (17)

V |h1z=h2z=0, ϕ1=π/2,ϕ2=0 = Vt (ht ),

where ht = h2ex + h1ey. The latter operator commutes with
the modified translation T̃1:

[Vt (ht ), T̃1] = 0. (111)

This allows us to redefine the kink quasi-momentum by means
of the relation

T̃1|Kμν (p|ht )〉 = eip |Kμν (p|ht )〉, (112)

instead of (93), and to let the kink quasi-momentum run
through the whole interval p ∈ (0, 2π ) in Eq. (112). As a
result, one can consider only the single one-kink mode in
the extended Brillouin zone p ∈ (−π, π ) in each topological
sector L(1)

10 and L(1)
01 . The one-kink states |Kμν (p|ht )〉 with

p ∈ (0, 2π ) form the basis in the one-kink subspace L(1)
μν .

These basis states will be normalized by the condition

〈Kνμ(p|ht )|Kμ′ν ′ (p′|ht )〉 = 2πδμμ′δνν ′δ(p − p′),

with p, p′ ∈ (0, 2π ), and μ �= ν.
In the limit ht → 0, the one-kink states |Kμν (p|ht )〉 can be

related with the previously introduced states |Kμν (p)〉s. Re-
ally, it follows from (91a) and (112), that we can put without
loss of generality

lim
ht →0

|Kμν (p|ht )〉 = |Kμν (p)〉1/2 + |Kμν (p)〉−1/2, (113)
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for 0 < p < π . For these one-kink state, we shall use the
notation |Kμν (p)〉:

|Kμν (p)〉 := lim
ht →0

|Kμν (p|ht )〉. (114)

Exploiting Eq. (92), we can extend formula (113) from the
interval p ∈ (0, π ) to the whole real axis p ∈ R. In particular,
we get this way

|K10(p + π )〉 = −|K10(p)〉1/2 + |K10(p)〉−1/2, (115)

|K01(p + π )〉 = |K01(p)〉1/2 − |K01(p)〉−1/2. (116)

The Bloch states |Kμν (p|ht )〉 are the eigenstates of the
Hamiltonian (H0 + Vt ):

[H0 + Vt − Evac(ht )]|Kμν (p|ht )〉 = �μν (p|ht )|Kμν (p|ht )〉.
(117)

Their dispersion laws �μν (p|ht ) are the 2π -periodical func-
tions of p. To the first order in ht these functions read as

�10(p|ht ) = ω(p) + δ�10(p|ht ) + O(|ht |2),

�01(p|ht ) = ω(p) + δ�01(p|ht ) + O(|ht |2), (118)

where

δ�10(p|ht ) = sinh η

ω(p)
(h1A− sin p − h2A+ cos p),

δ�01(p|ht ) = δ�10(−p|ht ). (119)

The plot of the function �10(p|ht ) at η = 1.31, h1 = 0.3, h2 =
0.1 is shown in Fig. 5(b).

The situation is very similar in the second case, when
either the staggered, or the uniform transverse magnetic field
vanishes. At h2x > 0, h1x = h1y = h2y = 0, and, as well, at
h1x = h2y = h2x = 0, h1y > 0, the interaction term Vt com-
mutes with T̃1, and one can use (112) in order to define the
kink quasi-momentum p ∈ (−π, π ). Accordingly, one can
still use Eqs. (118) and (119) to determine the kink dispersion
laws in the extended Brillouin zone p ∈ (−π, π ).

VI. TWO-KINK STATES AT hz = 0, ht �= 0

The two-kink subspace L(2) is the direct sum of two sub-
spaces

L(2) = L(2)
11 ⊕ L(2)

00 .

At a generic ht �= 0, the basis in the first subspace L(2)
11 is

formed by the vectors |K10(p1|ht )K01(p2|ht )〉a1,a2 , and the
basis in the second space L(2)

00 is formed by the vectors
|K01(p1|ht )K10(p2|ht )〉a1,a2 . In both bases ai = 1, 2, and 0 <

p2 < p1 < π .
These basis states must satisfy the following relations:

T 2
1 |Kμν (p1|ht )Kνμ(p2|ht )〉a1,a2

= e2i(p1+p2 ) |Kμν (p1|ht )Kνμ(p2|ht )〉a1,a2 , (120)

[H0 + Vt − Evac(ht )]|Kμν (p1|ht )Kνμ(p2|ht )〉a1,a2

= [
�(a1 )

μν (p1|ht ) + �(a2 )
νμ (p1|ht )

]
× |Kμν (p1|ht )Kνμ(p2|ht )〉a1,a2 , (121)

where �(a)
μν (p|ht ) are the kink dispersion laws determined by

Eqs. (107) and (108).

FIG. 6. Triangular regions in the plane of momenta p1, p2, which
parametrize the two-kink states.

If the transverse staggered and uniform magnetic fields are
mutually orthogonal, we can parametrize them by the two-
component vector ht = exh2 + eyh1. In this case a different,
more convenient classification of two-kink basis Bloch states
is possible. Since Eq. (111) holds at ϕ1 = π/2 and ϕ2 = 0,
we can define in this case the alternative basis of the two-kink
states by the relations:

T̃1|Kμν (p1|ht )Kνμ(p2|ht )〉
= ei(p1+p2 )|Kμν (p1|ht )Kνμ(p2|ht )〉, (122a)

[H0 + Vt − Evac(ht )]|Kμν (p1|ht )Kνμ(p2|ht )〉
= [�μν (p1|ht ) + �νμ(p2|ht )]|Kμν (p1|ht )Kνμ(p2|ht )〉,

(122b)

〈Kμν (p2|ht )Kνμ(p1|ht )|Kμν (p′
1|ht )Kνμ(p′

2|ht )〉
= 4π2δ(p1 − p′

1)δ(p2 − p′
2), (122c)

where 0 < p2 < p1 < 2π , and 0 < p′
2 < p′

1 < 2π .
We shall use the following notation for the two-kink states

at ht = 0:

|Kμν (p1)Kνμ(p2)〉 := lim
ht →0

|Kμν (p1|ht )Kνμ(p2|ht )〉. (123)

These two-kink basis states can be related with the two-
kink basis states |Kμν (p1)Kνμ(p2)〉s1,s2 characterized by the z
projections of the kink spins s1, s2. Namely,

|Kμν (p1)Kνμ(p2)〉 =
∑

s1=±1/2

∑
s2=±1/2

|Kμν (p1)Kνμ(p2)〉s1,s2 ,

(124)

for 〈p1, p2〉 ∈ �1, where the triangular region �1 is shown
in Fig. 6. By means of equalities (A3), one can ex-
tend formula (124) to the three other triangular regions
�2, �3, �4 in Fig. 6. Extension of Eq. (124) from
the region �1 into the region �5 can be performed, in
turn, by means of the Faddeev-Zamolodchikov commutation
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relation

|Kμν (p1)Kνμ(p2)〉s1s2 =
∑

s′
1,s

′
2=±1/2

S
s′

1s′
2

s1s2 (p1, p2)

× |Kμν (p2)Kνμ(p1)〉s′
2s′

1
, (125)

applied to the right-hand side of (124). Finally, exploiting
again equality (A3), one can extend formula (124) from the
triangular region �5 into the regions �6, �7, and �8 shown
in Fig. 6. As the result, Eq. (124) allows one to deter-
mine the two-kink basis state |Kμν (p1)Kνμ(p2)〉 for any real
〈p1, p2〉 ∈ R2.

In the basis (124), the Faddeev-Zamolodchikov commuta-
tions relations (125) reduce to the form:

|Kμν (p1)Kνμ(p2)〉

= w0(p1, p2) + w+(p1, p2)

2
|Kμν (p2)Kνμ(p1)〉

+ −w0(p1, p2) + w+(p1, p2)

2

× |Kμν (p2 + π )Kνμ(p1 + π )〉, (126)

where the scattering amplitudes w0(p1, p2) and w+(p1, p2)
are given by Eqs. (A6a) in Appendix A. The commutation re-
lation (126) holds for any p1, p2 ∈ R. The projector operator
P (2)

μμ on the subspace L(2)
μμ can be written at ht = 0 as

P (2)
μμ =

∑
s1=±1/2
s2=±1/2

∫∫
�1

d p1d p2

π2
|Kμν (p1)Kνμ(p2)〉s1s2

× s2s1〈Kμν (p2)Kνμ(p1)| (127)

= 1

2

∫ 2π

0

d p1

2π

∫ 2π

0

d p2

2π
|Kμν (p1)Kνμ(p2)〉

× 〈Kμν (p2)Kνμ(p1)|. (128)

Application of a small enough, but finite transverse mag-
netic field ht = h2ex + h1ey not only modifies the dispersion
laws of kinks due to (117)–(119), but also effects their mutual
scattering.

Let us consider for given P and E all solutions of the
equations

exp[i(p1 + p2)] = exp(iP),

�μν (p1) + �νμ(p2) = E , (129)

lying in the interval 〈p1, p2〉 ∈ (0, 2π ). We denote such a
solution 〈p1,in, p2,in〉, if

∂p1�μν (p1) − ∂p2�νμ(p2) > 0 (130)

at this solution, and use the notation 〈p1,out, p2,out〉 for the
solutions, in which the opposite inequality

∂p1�μν (p1) − ∂p2�νμ(p2) < 0 (131)

holds. If there are m in and out solutions of Eqs. (129),
we distinguish them by the index i = 1, . . . , m. Using these
notations, the elastic two-kink scattering can be character-
ized by the scattering matrix W i

i′ (E , P|ht ) by means of the
following “deformed Faddeev-Zamolodchikov commutation

relation”:∣∣Kμν

(
pi

1,in

∣∣ht
)
Kνμ

(
pi

2,in

∣∣ht
)〉

=
m∑

i′=1

W i
i′ (E , P|ht )

∣∣Kμν

(
pi′

1,out

∣∣ht
)
Kνμ

(
pi′

2,out

∣∣ht
)〉
. (132)

Of course, at ht �= 0, the n-particle scattering matrices with
n > 2 do not factorize in the two-particle ones, since the
transverse magnetic field breaks integrability of the XXZ spin-
chain model.

At a small |ht |, the scattering matrix W i
i′ (E , P|ht ) should

analytically depend on h1, h2, and the initial terms of its
Taylor expansion in these parameters could be, in principal,
determined by means of the standard perturbation theory. At
ht = 0, Eq. (132) must reduce to (126).

Using Eq. (132), one can extend definition of the two-
kink basis states |Kμν (p1|ht )Kνμ(p2|ht )〉 from the triangular
region 0 < p2 < p1 < 2π to the square p1, p2 ∈ (0, 2π ).
Subsequent application of the periodicity relation

|Kμν (p1|ht )Kνμ(p2|ht )〉 = |Kμν (p1 + 2π |ht )Kνμ(p2|ht )〉
= |Kμν (p1|ht )Kνμ(p2 + 2π |ht )〉

allows one to define such two-kink Bloch states for any real
〈p1, p2〉 ∈ R2.

It is natural to expect, that the projector operator P (2)
μμ(ht )

onto the two-kink subspace L(2)
μμ(ht ) admits at a small enough,

but finite ht = h2ex + h1ey the representations

P (2)
μμ(ht ) =

∫ 2π

0

d p1

2π

∫ p1

0

d p2

2π
|Kμν (p1|ht )Kνμ(p2|ht )〉

× 〈Kμν (p2|ht )Kνμ(p1|ht )|

= 1

2

∫ 2π

0

d p1

2π

∫ 2π

0

d p2

2π
|Kμν (p1|ht )Kνμ(p2|ht )〉

× 〈Kμν (p2|ht )Kνμ(p1|ht )|, (133)

which are analogous to (127) and (128).

VII. MESON STATES AT hz > 0

Proceeding to the XXZ spin-chain model (3) with nonzero
staggered longitudinal magnetic field, we will restrict our
attention to the case of the Hamiltonian (16), in which
the staggered and uniform transverse fields are mutually
orthogonal.

The first reason in favor of this choice is that the Hamil-
tonian (16) commutes with the modified translation operator
(21):

[H(�, ht , hz ), T̃1] = 0. (134)

This makes the perturbative analysis of the kink-confinement
in model (16) more simple, than in the original one (3). The
second reason is that the XXZ model with mutually orthogo-
nal staggered and uniform transverse magnetic fields has been
used by Faure et al. [10] for the interpretation of their results
of the neutron scattering study of the meson energy spectra
in the quasi-one-dimensional magnetic crystal BaCo2V2O8 in
the kink confinement regime in the presence of the external
uniform transverse magnetic field. The effective staggered
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transverse magnetic field orthogonal to the applied external
uniform transverse field is induced in this compound due to
the off-diagonal components of the anisotropic g tensor [22].

The application of the longitudinal staggered magnetic
field hz explicitly breaks the Z2 symmetry of the model
decreasing the energy of the vacuum |Vac(ht , hz )〉(1), which
becomes the true ground state, and increasing the energy
of the vacuum |Vac(ht , hz )〉(0), which becomes metastable.
The true (and also, the false) vacuum |Vac(ht , hz )〉(1) remains
invariant with respect to the action of modified translation
operator:

T̃1|Vac(ht , hz )〉(1) = |Vac(ht , hz )〉(1). (135)

The margin between the energies of the true and false vacu-
ums opened by the staggered longitudinal field hz leads to the
confinement of kinks |Kμν (p|ht )〉 into the meson bound states
|πn(P|ht , hz )〉. The defining relations for these meson bound
states read

T̃1|πn(P|ht , hz )〉 = eiP|πn(P|ht , hz )〉, (136a)

(H + C)|πn(P|ht , hz )〉 = En(P|ht , hz )|πn(P|ht , hz )〉,
(136b)

where the Hamiltonian H is given by (16), En(P|ht , hz ) is
dispersion law of the nth meson mode, 0 < P < 2π , n =
1, 2, . . ., and the numerical constant C is chosen in such a way,
that

(H + C)|Vac(ht , hz )〉(1) = 0.

At hz = 0, the meson states |πn(P|ht , hz )〉 decouple into
some linear combinations of two-kink states:

|πn(P|ht , 0)〉 → |K10(p1|ht )K01(p2|ht )〉,
with exp[i(p1 + p2)] = exp(iP).

On the other hand, it will be shown later, that at ht = 0, the
meson states |πn(P|ht , hz )〉 transform into the meson states
|πs,ι,m(P|hz )〉 with s = ±1, ι = 0,±, introduced in Ref. [11].
Namely, for 0 < P < π and odd n = 2m − 1:

|π2m−1(P|0, hz )〉 ∼= |π1,0,m(P|hz )〉 + |π−1,0,m(P|hz )〉,
|π2m−1(P + π |0, hz )〉 ∼= |π1,0,m(P|hz )〉 − |π−1,0,m(P|hz )〉,

(137)

while for 0 < P < π and even n = 2m:

|π2m(P|0, hz )〉 ∼= |π0,+,m(P|hz )〉,
|π2m(P + π |0, hz )〉 ∼= |π0,−,m(P|hz )〉, (138)

where ∼= denotes the equality up to some numerical factor, and
m = 1, 2, . . .

It follows from (136a) and (136b), that the meson dis-
persion law En(P|ht , hz ) is the 2π -periodical function of
the meson momentum P, and we can set without loss of
generality:

|πn(P + 2π l|ht , hz )〉 = |πn(P|ht , hz )〉, (139)

for l ∈ Z. The function En(P|ht , hz ) is also even with respect
to the P inversion:

En(P|ht , hz ) = En(−P|ht , hz ).

As in the previously studied case [11] ht = 0, the eigen-
value problem (136) is very difficult, since the interaction term
Vl (hz ) given by (18) does not conserve the number of kinks.
The key simplification is achieved by means of the two-kink
approximation [11], which implies replacement of the exact
eigenvalue problem (136) by its projection onto the two-kink
subspace L(2)

11 (ht ):

T̃1|π̃n(P|ht , hz )〉 = eiP|π̃n(P|ht , hz )〉, (140a)

H(2)|π̃n(P|ht , hz )〉 = Ẽn(P|ht , hz )|π̃n(P|ht , hz )〉, (140b)

where |π̃n(P|ht , hz )〉 ∈ L(2)
11 (ht ), and

H(2) = P (2)
11 (ht )HP (2)

11 (ht ). (141)

Tildes in π̃n(P|ht , hz ), Ẽn(P|ht , hz ) distinguish solutions of
Eqs. (140) from those of the exact eigenvalue problem (136).
The meson states |π̃n(P|ht , hz )〉 will be normalized by the
condition

〈π̃n(P|ht , hz )|π̃n′ (P′|ht , hz )〉 = 2πδnn′δ(P − P′), (142)

for 0 < P, P′ < 2π . These states form a basis in the two-kink
subspace L(2)

11 (ht ), and the projector (133) on this subspace
admits the expansion:

P (2)
11 (ht ) =

∞∑
n=1

∫ 2π

0

dP

2π
|π̃n(P|ht , hz )〉〈π̃n(P|ht , hz )|. (143)

The two-kink meson state |π̃n(P|ht , hz )〉 can be character-
ized by the wave-function:

�n(p1, p2|P, ht , hz )

= 〈K10(p2|ht )K01(p1|ht )|π̃n(P|ht , hz )〉, (144)

It follows also from (122a) and (140a) that

�n(p1, p2|P, ht , hz ) = ei(P−p1−p2 )�n(p1, p2|P, ht , hz ).
(145)

For (p1 + p2), P ∈ (0, 2π ), this allows one to represent the
meson wave function �n(p1, p2|P, ht , hz ) in the form

�n(p1, p2|P, ht , hz ) = 2π δ(p1 + p2 − P)

× φn

(
p1 − p2

2
|P, ht , hz

)
. (146)

The reduced wave function φn(p|P, ht , hz ) in the right-hand
side is the 2π -periodical function of p. The normalization
conditions following from (142) reads∫ π

−π

d p

2π
φ∗

n (p|P, ht , hz )φn′ (p|P, ht , hz ) = 2δnn′ . (147)

By means of the procedure described in [11], one can show,
that this function must solve the Bethe-Salpeter integral equa-
tion:

[E (p|P) − Ẽn(P)]φn(p|P)

= hz

2

∫ π

−π

d p′

2π
φn(p′|P)〈K10(p2)K01(p1)|(σ z

0 − 〈
σ z

0

〉)
× |K10(p′

1)K01(p′
2)〉, (148)
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where

E (p|P, ht ) = �10(p1|ht ) + �01(p2|ht )

= ε(p|P) + δE (p|P, ht ) + O(|ht |2), (149)

ε(p|P) = ω(P/2 + p) + ω(P/2 − p), (150)

δE (p|P, ht ) = δ�10(p + P/2|ht ) + δ�01(−p + P/2|ht ),

(151)〈
σ z

0

〉 = (1)〈Vac(ht , 0)|σ z
0 |Vac(ht , 0)〉(1), (152)

δ�μν (p|ht ) are given by (119), and p1,2 = P/2 ± p, p′
1,2 =

P/2 ± p′. We have omitted the explicit dependancies of func-
tions in Eq. (148) on ht and hz.

The function ε(p|P) defined by (150) determines the effec-
tive kinetic energy of the relative motion of two kinks at zero
magnetic field. It satisfies a number of symmetry relations

ε(p|P) = ε(p|P + 2π ) = ε(−p|P) = ε(p| − P)

= ε(p + π |P) = ε(p − π/2|P − π ), (153)

following directly from (150), (77). Application of the trans-
verse magnetic field ht deforms the effective kinetic energy
to the function E (p|P, ht ) defined by (149), which is much
less symmetric, than ε(p|P). The linear part δE (p|P, ht ) of this
deformation satisfies relations

δE (p|P, ht ) = δE (p|P + 2π, ht ), (154)

δE (p + π |P, ht ) = −δE (p|P, ht ), (155)

δE (−p|P, ht ) �= δE (p|P, ht ), (156)

δE (p|π, ht ) = 0, (157)

that follow from (151) and (119). From (157) and 2π period-
icity of the effective kinetic energy in P, we get

E (p|P, ht ) = ε(p|P) + O(|ht |2) (158)

at P = π + 2πn, with n ∈ Z.
In the limit ht = 0, Eq. (148) reduces to the form

[ε(p|P) − Ẽn(P)]φn(p|P) = hz

2

∫ π

−π

d p′

2π
φn(p′|P)

× 〈K10(p2)K01(p1)
∣∣(σ z

0 − σ̄
)∣∣K10(p′

1)K01(p′
2)〉, (159)

where σ̄ is the staggered spontaneous magnetization at zero
magnetic field given by (11), and the two-kink basis states
|K10(p1)K01(p2)〉 are defined by (123).

It follows from (126), and (144) that the reduced wave
function φn(p|P, ht , hz ) satisfies at ht = 0 the reflection
property:

φn(p|P) = w∗
0 + w∗

+
2

φn(−p|P)

+ −w∗
0 + w∗

+
2

φn(−p + π |P), (160)

where

w0 = w0(p + P/2,−p + P/2),

w+ = w+(p + P/2,−p + P/2) (161)

are the two-kink scattering amplitudes (A6a).

Let us show, that the integral equation (159) represents in
the compact form all three Bethe-Salpeter equations (230) of
paper [11], which were derived there for the wave-functions
of the mesons with different spins s = 0,±1, and parities ι =
0,±. Really, using Eq. (124), the integral kernel in the second
line of (159) can be rewritten as

〈K10(p2)K01(p1)|(σ z
0 − σ̄

)|K10(p′
1)K01(p′

2)〉
= 4σ̄ [ei(p′−p)G0(p, p′|P) + G+(p, p′|P)], (162)

where G0(p, p′|P) and G+(p, p′|P) were defined by equa-
tions (112) and (228) in Ref. [11], respectively. Since due
to equation (233) in Ref. [11], the kernels G0(p, p′|P) and
G+(p, p′|P) are π -periodic functions of the variables p and
p′, the integral equation (159) decouples in two separate
equations for the meson wave functions φn(p|P) with dif-
ferent transformation properties upon the translation p →
p + π . Namely, the π -antiperiodic solution of (159) satisfies
equations

φn(p + π |P) = −φn(p|P), (163)

[ε(p|P) − Ẽn(P)]eipφn(p|P)

= 2hzσ̄

∫ π/2

−π/2

d p′

π
eip′

φn(p′|P) G0(p, p′|P), (164)

whereas for the π -periodic solution of (159), we get instead

φn(p + π |P) = φn(p|P), (165)

[ε(p|P) − Ẽn(P)]φn(p|P)

= 2hzσ̄

∫ π/2

−π/2

d p′

π
φn(p′|P) G+(p, p′|P). (166)

Finally, it follows from the equality

G+(p, p′|P + π ) = G−(p + π/2, p′ + π/2|P)

that the π -periodic solution φn(p|P + π ) of the integral equa-
tion (159) must satisfy equalities

φn(p + π |P + π ) = φn(p|P + π ), (167)

[ε(p|P) − Ẽn(P + π )]φn(p|P + π )

= 2hzσ̄

∫ π/2

−π/2

d p′

π
φn(p′|P + π ) G−(p, p′|P). (168)

Equations (164), (166), and (168) coincide with the Bethe-
Salpeter equation (230) derived in Ref. [11] for the cases ι =
0,+,−, respectively.

The most consistent, but technically demanding approach
for the calculation of the meson energy spectrum in model
(16) in the presence of the transverse magnetic field ht �= 0
requires the perturbative solution of the Bethe-Salpeter equa-
tion (148). In the case ht = 0, this strategy was realized in
Ref. [11]. In what follows, we shall use the less rigorous, but
more simple heuristic semiclassical approach.

To conclude this section, let us comment on the two-kink
approximation (140), (141), which is essential in derivation
of the Bethe-Salpeter equation (148) and will be implicitly
exploited in the subsequent semiclassical calculations. The
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same approximation was used by Fonseca and Zamolod-
chikov [13,14] in derivation of the Bethe-Salpeter equation for
the Ising field theory. The kink confinement in this model is
induced by the uniform magnetic field h > 0. It was shown
in Ref. [14], that in the case of the IFT, the two-kink ap-
proximation is asymptotically exact in the weak confinement
regime at h → +0, and the leading ‘multi-kink’ correction
(the correction beyond the two-kink approximation) to the
meson masses is quadratic in h. In analogy with IFT, we
expect, that exact meson energies En(P|ht , hz ) coincide with
their two-kink approximations Ẽn(P|ht , hz ) to the linear order
in hz → 0, and

En(P|ht , hz ) − Ẽn(P|ht , hz ) = O
(
h2

z

)
. (169)

Since the subsequent perturbative analysis of the meson en-
ergy spectra will be restricted to the linear order in hz, we will
neglect the difference (169) and drop tildes in Ẽn(P|ht , hz ).

VIII. HEURISTIC APPROACH TO THE KINK
CONFINEMENT PROBLEM

It turns out, that even in the frame of the heuristic approach,
the perturbative calculations of the meson energy spectra for
the model (16)–(18) remain rather involved. By this reason,
we present in this section an informal nontechnical introduc-
tion to our heuristic semiclassical approach, which will be
applied in Sec. IX for the calculation of the meson energy
spectra.

We start from the more simple case studied in Ref. [11]
of the XXZ model (16)–(18) in a weak staggered longitudinal
field hz > 0, and zero transverse field ht = 0.

At the first step, one treats the two kinks in the spin chain as
classical spinless particles moving along the line and attract-
ing one another with a linear potential. Their Hamiltonian is
taken in the form

H (x1, x2, p1, p2) = ω(p1) + ω(p2) + f · (x2 − x1), (170)

where ω(p) is the kink dispersion law (77), and f = 2hzσ̄ is
the string tension. The kink spatial coordinates x1, x2 ∈ R are
subjected to the constraint

−∞ < x1 < x2 < ∞, (171)

that results from the local “hard-sphere interaction” of two
particles.

After the canonical transformation

X = x1 + x2

2
, x = x1 − x2, (172a)

P = p1 + p2, p = p1 − p2

2
, (172b)

the Hamiltonian (170) takes the form

H (p, x|P) = ε(p|P) − f x, (173)

where ε(p|P) is given by (150), and x < 0. The effective
kinetic energy of two kinks ε(p|P) is a π -periodical even
function of p. At small enough absolute values of the total
momentum

|P| < Pc(η), (174)

FIG. 7. The p dependence of the effective kinetic energy ε(p|P)
determined by (150) at a fixed P satisfying (174). The kinematically
allowed region (−pa, pa ) of the momentum p for the given energy E
of two particles is shown as well.

with

Pc(η) = arccos
1 − k′(η)

1 + k′(η)
, (175)

it monotonically increases with p in the interval (0, π/2), as
it is shown in Fig. 7.

The total energy-momentum conservation laws read:

ε(p(t )|P) − f x(t ) = E = const, (176)

P(t ) = const. (177)

The classical evolution in the “center of mass frame” in the
time interval between two successive particle collisions is
determined by the canonical equations of motion:

Ẋ (t ) = ∂ε(p|P)

∂P
, (178a)

Ṗ(t ) = 0, (178b)

ẋ(t ) = ∂ε(p|P)

∂ p
, (178c)

ṗ(t ) = f . (178d)

If the condition (174) is satisfied, and the energy E of
two particles lies in the interval ε(0|P) < E < ε(π/2|P), the
momentum p characterising their relative motion varies in the
lacuna −pa < p < pa shown in Fig. 7. The functions x(t ) and
p(t ) are periodical in t with the period t1 = 2pa/ f , and

p(t ) = −pa + {t/t1} t1 f , at t > 0, (179)

where {z} denotes the fractional part of z. Fig. 8 illustrates
the world paths x1(t ) < x2(t ) of two particles for the simple
Hamiltonian dynamics determined by Eqs. (172), and (178).

The second step of the calculation of the meson energy
spectra En(P) in our heuristic approach requires quantization
of the simple two-particle Hamiltonian dynamics described
above. Two approximate quantization schemes have been
uses in Ref. [11]. The canonical quantization is appropriate
for calculations of energies of ‘lightest’ mesons with small
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t1

x1(t)

x2(t)

x1,2

t

FIG. 8. World paths x1(t ) and x2(t ) of two particles for their
classical evolution determined by Eq. (172) and (178).

n = 1, 2, . . ., while the semiclassical quantization procedure
is best suited for calculation of energies of highly excited
mesons with n � 1. It turns out, however, the obtained in
Ref. [11] predictions for the masses of the lightest mesons
in the XXZ spin-chain model perturbed by the staggered
longitudinal field, which are given by the semiclassical and
low-energy expansions, are numerically very close to each
other. The high efficiency of the semiclassical expansions for
prediction the energies of lightest mesons in several other
models exhibiting confinement were also noticed in papers
[17,42–44], in which the meson energies were studied by
direct numerical methods. By this reason, only the semiclas-
sical quantization procedure will be considered in the present
work.

It is easy to show [18], that if two particles behave as free
fermions at f = 0, application of the Bohr-Sommerfeld rule
[40] to their classical dynamics determined by Eqs. (178) with
f > 0 leads to the quantization of the area Sn of the dashed
region shown in Fig. 8:

f Sn = 2π
(
n − 1

4

)
, (180)

where n � 1 is the number of the semiclassical energy level.
If the two Fermi-particles are not free, but strongly inter-

act at short distances, formula (180) requires only a minor
modification. Really, the short-range interaction between two
particle induces their elastic scattering. Suppose, that the latter
can be characterized at f = 0 by the commutation relation

|p1 p2〉 = − exp[i θ (p1, p2)] |p2 p1〉, (181)

where p1 > p2 are the momenta of two colliding particles,
and θ (p1, p2) denotes their scattering phase. At f > 0, the
semiclassical evolution of two particles can be viewed as
a combination of the classical movement along the world
paths x1(t ), x2(t ) shown in Fig. 8 with their quantum scat-
tering at their meeting points, to which they arrive having
the momenta p1 = P/2 + pa and p2 = P/2 − pa. The elastic
quantum scattering of two particles must be taken into account
in the semiclassical quantization condition (180) by adding

the scattering phase θ (p1, p2) to its left-hand side:

f Sn + θ (P/2 + pa,−P/2 − pa) = 2π
(
n − 1

4

)
. (182)

This semiclassical quantization condition can be rewritten in
the explicit form:

2En(P) pa −
∫ pa

−pa

d p ε(p|P)

= f [2π (n − 1/4) − θ (P/2 + pa, P/2 − pa)]. (183)

In the above heuristic analysis based on the Hamiltonian
(170), the kinks were treated as the spinless particles. How-
ever, the one-kink Bloch states |Kab(p)〉s of the unperturbed
XXZ model, which are defined by Eqs. (91), carry the spin
index s = ±1/2. Accordingly, the two-particle scattering of
such kinks is determined at zero magnetic field by three
scattering phases θι(p1, p2), which are distinguished by the
parity index ι = 0,±, and explicitly given by Eqs. (A6) in
Appendix A. Then, one gets instead of (183) three quantiza-
tion conditions:

2Eι,n(P) pa −
∫ pa

−pa

d p ε(p|P)

= f [2π (n − 1/4) − θι(P/2 + pa, P/2 − pa)], (184)

which determine the energies Eι,n(P) of the meson modes with
ι = 0,±.

The result (184) for the semiclassical meson energy spec-
tra in the XXZ model (16)–(18) in the presence of a weak
staggered longitudinal magnetic field hz was obtained in
Refs. [11,12] and validated in Ref. [11] by the alternative
derivation in the frame of the more rigorous and systematic
approach exploiting the Bethe-Salpeter equation.

Now let us switch on the transverse magnetic field ht =
h2ex + h1ey in the XXZ model Hamiltonian (16)–(18), and
address the main question of our interest: how tuning the
transverse magnetic field effects the meson energies in the
weak confinement regime, which takes place in the presence
of a weak staggered longitudinal field hz > 0? In order to
clarify this issue, we intend to apply the heuristic semiclas-
sical technique outlined above. To this end, three quantities
characterising the model (16)–(18) at ht �= 0 are required.

(1) The dispersion laws �μν (p|ht ) of the kink topological
excitations |Kμν (p|ht )〉 in the deconfined phase at hz = 0.
To the first order in ht , these dispersion laws are given by
Eqs. (118) and (119) derived in Sec. V.

(2) The string tension

f = 2hz
〈
σ z

0

〉 + O
(
h3

z

)
, (185)

that determines the attractive force between two kinks at large
distances in the weak confinement regime at hz > 0. Here 〈σ z

0 〉
is the given by (152) staggered spontaneous magnetization in
the presence of the transverse magnetic field ht at hz = 0.

(3) The two-kink scattering matrix in the deconfined phase
hz = 0, which at nonzero transverse magnetic field is deter-
mined by the commutation relation (132). At ht = 0, this
commutation relation reduces to (126).

Note that the one-kink Bloch states |Kμν (p|ht )〉 deter-
mined by Eqs. (112) and (117) describe spinless topological
excitations, and their energies �μν (p|ht ) are the 2π -periodical
functions of the quasimomentum p.
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Following our previous strategy, we treat the two kinks
as classical particles moving in the line and attracting one
another with a linear potential. Their effective Hamiltonian
will be taken in the form, which is analogous to (170):

Htr (x1, x2, p1, p2)=�10(p1|ht )+�01(p2|ht ) + f · (x2 − x1),
(186)

where the particle spatial coordinates x1, x2 satisfy (171).
At hz = 0, the string tension f vanishes, and the right-hand

side of (188) reduces to the energy

�10(p1|ht ) + �01(p2|ht ) (187)

of the two-kink Bloch state |K10(p1|ht )K01(p2|ht )〉, in agree-
ment with (122b). Analysis of classical dynamics of two
particles determined by the Hamiltonian (188) is straightfor-
ward. After the canonical transformation (172), the latter takes
the form

Htr (x, p|P) = E (p|P, ht ) − f x, (188)

where E (p|P, ht ) is given by (149), and x < 0. The canonical
equations of motion (178) now modify to

Ẋ (t ) = ∂E (p|P, ht )

∂P
, (189a)

Ṗ(t ) = 0, (189b)

ẋ(t ) = ∂E (p|P, ht )

∂ p
, (189c)

ṗ(t ) = f. (189d)

At ht = 0 the effective kinetic energy E (p|P, ht ) reduces
to the function E (p|P, 0) = ε(p|P), which is even and π -
periodical in the p variable. These symmetries are broken at
ht �= 0, though the function E (p|P, ht ) remains 2π -periodical
in p at any ht and P.

Figures 9(a) and 9(b) illustrate the profiles of the effective
kinetic energy (149) at P = 0 in the cases ht = 0 and ht �=
0, respectively. Two kinematically allowed lacunas in the p
variable, which are determined by the inequality

E (p|P, ht ) < E , (190)

are also shown in these figures. Accordingly, for a given
energy E of two particles, the canonical equations of mo-
tion (189) admit two periodical phase trajectories, in which
the momentum p varies in the left, and in the right lacuna,
respectively. In the case ht = 0 illustrated in Fig. 9(a), these
two phase trajectories being shifted one with respect to an-
other by π in the p variable, describe, in fact, the same
physical dynamics. In contrast, at ht �= 0 the π periodicity
in the p variable of the function E (p|P, ht ) is broken, and
the phase trajectories corresponding to the lacunas (pc, pa)
and (pd , pb) shown in Fig. 9(b), describe slightly different
dynamics.

Existence of two nonequivalent periodical phase trajecto-
ries, which contributions interfere in the quantum state of
the system, strongly effects the semiclassical quantization
of the two-kink dynamics in the presence of the transverse
magnetic field ht �= 0. The energy spectrum of the two-kink
bound states cannot be determined in this case by means of
the standard Bohr-Sommerfeld quantization rule. Instead, we

(a)

(b)

FIG. 9. Effective kinetic energy profile E (p|P, ht ) given by (149)
at η = 1.5, P = 0 at h1 = h2 = 0 (a); and at h1 = h2 = 0.1 (b).

will adopt to this end the well-known procedure, which was
developed for calculation of the energy spectra of conducting
electrons in normal metals in the regime of the magnetic
breakdown, see e.g. [45,46].

According to this procedure, the wave function of two
kinks should be written as a linear combination of two
semiclassical exponents, which correspond to the classical
phase trajectories associated with the left and right lacunas in
Fig. 9(b). This wave function describes the quantum state of
two kinks at large enough separations |x| = x2 − x1 between
them. When two kinks meet together in the real space, they
undergo the elastic two-channel quantum scattering, which,
roughly speaking, induce the quantum jumps of the phase
point from one lacuna to another. Sewing at small x2 − x1 the
semiclassical wave function by means of the scattering matrix
yields the secular equation, which determines the semiclassi-
cal energy spectrum of the two-kink bound states.

The outlined above procedure of calculation of the semi-
classical meson energy spectrum in the presence of the
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transverse magnetic field will be described in much details in
the next section.

IX. QUANTITATIVE ANALYSIS OF THE KINK
CONFINEMENT AT A WEAK hz > 0

Let us introduce the Fourier coefficients ψn( j|P) of the
2π -periodical reduced wave function φn(p|P) determined by
Eq. (146):

φn(p|P) =
∞∑

j=−∞
e−ip jψn( j|P), (191)

ψn( j|P) =
∫ 2π

0

d p

2π
eip jφn(p|P). (192)

For negative j, ψn( j|P) can be viewed as the reduced wave
function of two kinks forming a meson, in the spatial coor-
dinate representation. The integer variable − j = j2 − j1 at
j < 0 has the physical meaning of the distance between two
kinks “located near the points” j1 and j2, respectively, with
j1 < j2. Of course, if η is not too large, these kinks are not
well localized, but instead are spread along the spin chain over
the widths of order 2ξc(η), where

ξc(η) = m(η)−1

2
(193)

is the correlation length, and

m(η) = k′(η)

k(η)
(194)

is the kink mass.
At large negative j < 0, such that | j| � 2ξc(η), the kinks

forming a meson interact one with another only by the linear
attractive potential f ( j2 − j1) = −f j, where f is the string
tension (185) in the presence of the transverse magnetic field
ht . Accordingly, the wave function ψ ( j|P) should satisfy at
large negative j the following equation:

Ê ψ ( j|P) − f j ψ ( j|P) = E (P) ψ ( j|P), (195)

where Ê is the integral convolution operator of the “kinetic
energy of two kinks”:

Ê ψ ( j) =
∞∑

j′=−∞
ψ ( j′)

∫ 2π

0

d p

2π
eip( j− j′ )E (p|P). (196)

The kernel of this integral operator exponentially de-
cays ∼ exp{−| j − j′|/[2ξc(η)]} at large distances | j − j′| �
2ξc(η).

The function E (p|P) that stands in the right-hand side
of (196) is the familiar effective kinetic energy of two
kinks (149), which properties were discussed in the previous
section.

At a small enough P ∈ (0, Pc(η)) with Pc(η) given by
(175), and at a fixed E ∈ (ε(0|P), ε(π/2|P)), equation

ε(p|P) = E , (197)

has in the interval −π/2 < p < 3/2π four solutions
pc(E ), pa(E ), pd (E ), pb(E ), which are shown in Fig. 9(a).
Due to the symmetry relations (153), we get

pc = −pa, pb = pa + π, pd = π − pa. (198)

Accordingly, the two classically allowed intervals (pc, pa) and
(pd , pb) for the momentum p have the same widths in this
case.

Application of the weak transverse magnetic field ht de-
forms the kinetic energy profile, as it is shown in Fig. 9(b). As
the result, the four solutions pc, pa, pd , pb, of the equation

E (p|P, ht ) = E (199)

become slightly shifted with respect to their positions at ht =
0. To the first order in |ht |, we get from (199) and (149):

pa(ht ) = pa − δE (pa)|P, ht )

ε′(pa|P)
+ O(|ht |2),

pc(ht ) = pc + δE (−pa|P, ht )

ε′(pa|P)
+ O(|ht |2),

pb(ht ) = pb + δE (pa|P, ht )

ε′(pa|P)
+ O(|ht |2),

pd (ht ) = pd − δE (−pa|P, ht )

ε′(pa|P)
+ O(|ht |2). (200)

The widths of two kinematically allowed intervals (pc, pa),
and (pd , pb) become different at ht �= 0.

At a small f > 0, the approximate semiclassical solution of
equation (195) can be written as

ψ ( j|P) = C1ψ
(1)( j|P) + C2ψ

(2)( j|P), (201)

where

ψ (1)( j|P) =
∫ π/2

−π/2

d p

2π
eip j−iF1(p,E |ht )/f, (202a)

ψ (2)( j|P) =
∫ 3π/2

π/2

d p

2π
eip j−iF2 (p,E |ht )/f, (202b)

and

F1(p, E |ht ) =
∫ p

0
d p′[E (p′|P, ht ) − E ], (203a)

F2(p, E |ht ) =
∫ p

π

d p′[E (p′|P, ht ) − E ]. (203b)

The integrals in (202) are determined at small f by their
saddle-point asymptotics. Close to the scattering region at
− j ∼ 2ξc(η), this yields to the leading order in f > 0:

ψ ( j|P) = Bin,1eipa j + Bin,2eipb j + Bout,1eipc j + Bout,2eipd j,

(204)
and

C1 = Bin,1

√
2πE ′(pa|P, ht )

f
eiF1(pa,E |ht )/f+iπ/4

= Bout,1

√
−2πE ′(pc|P, ht )

f
eiF1(pc,E |ht )/f−iπ/4,

C2 = Bin,2

√
2πE ′(pb|P, ht )

f
eiF2(pb,E |ht )/f+iπ/4

= Bout,2

√
−2πE ′(pd |P, ht )

f
eiF2(pd ,E |ht )/f−iπ/4. (205)
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On the other hand, the amplitudes of out- and in- plane
waves at − j � 2ξc(η) in Eq. (204) must be related by the
scattering condition. Neglecting the effect of the weak longi-
tudinal staggered magnetic field hz on the two-kink scattering
at small distances, we obtain from (132):

Bout,1 = W 1
1 (E , P|ht )Bin,1 + W 2

1 (E , P|ht )Bin,2 + O(hz ),

Bout,2 = W 1
2 (E , P|ht )Bin,1 + W 2

2 (E , P|ht )Bin,2 + O(hz ).
(206)

Combining (206) with (205), we arrive to the system of two
uniform linear equations on the amplitudes Bin,1, Bin,2:

Bin,1

√
E ′(pa|P, ht )e

iF1(pa,E |ht )/f+iπ/4

= [
W 1

1 (E , P|ht )Bin,1 + W 2
1 (E , P|ht )Bin,2

]
×

√
−E ′(pc|P, ht )e

iF1(pc,E |ht )/f−iπ/4,

Bin,2

√
E ′(pb|P, ht )e

iF2(pb,E |ht )/f+iπ/4

= [
W 1

2 (E , P|ht )Bin,1 + W 2
2 (E , P|ht )Bin,2

]
×

√
−E ′(pd |P, ht )e

iF2(pd ,E |ht )/f−iπ/4. (207)

Equating the determinant of these equations to zero leads
to the secular equation, which determines the meson energy
spectrum En(P|ht , hz ).

In the analysis described above, we did not require, that
the components h1, h2 of the transverse magnetic field are in-
finitesimally small. Now let us treat h1, h2 as small parameters
and simplify the secular equation in two steps.

On the first step, we replace in (207) the scattering matrix
W i

i′ (E , P|ht ) by the zero-order term in its expansions in ht :

W 1
1 (E , P|ht ) = w0 + w+

2
+ O(ht ),

W 2
1 (E , P|ht ) = −w0 + w+

2
+ O(ht ),

W 1
2 (E , P|ht ) = −w0 + w+

2
+ O(ht ),

W 2
2 (E , P|ht ) = w0 + w+

2
+ O(ht ), (208)

where

w0 = w0(P/2 + pa, P/2 − pa),

w+ = w+(P/2 + pa, P/2 − pa). (209)

We also replace the string tension f = 2hz〈σ z
0 〉 by its value

f = 2hzσ̄ at ht = 0, taking into account that the linear in ht

term in the expansion of 〈σ z
0 〉 vanishes: 〈σ z

0 〉 = σ̄ + O(|ht |2).
As the result, the secular equation takes the form:

det D = 0, (210)

where D is the 2 × 2 matrix with the following entries:

D11 = w0 + w+
2

− i

√
E ′(pa|P, ht )

|E ′(pc|P, ht )| ei[F1(pa,E |ht )]−F1(pc,E |ht )]/ f ,

D12 = D21 = −w0 + w+
2

,

D22 = w0 + w+
2

− i

√
E ′(pb|P, ht )

|E ′(pd |P, ht )| ei[F2(pb,E |ht )]−F2(pd ,E |ht )]/ f . (211)

At the second step, we hold the linear terms in ht in the
functions F1,2(p j, E |ht ), j = a, b, c, d:

F1(pa, E |ht ) = F1(pa, E |0)

+
∫ pa

0
d p δE (p|P, ht ) + O(|ht |2),

F1(pc, E |ht ) = −F1(pa, E |0)

−
∫ 0

−pa

d p δE (p|P, ht ) + O(|ht |2),

F2(pb, E |ht ) = F1(pa, E |0)

−
∫ pa

0
d p δE (p|P, ht ) + O(|ht |2),

F2(pd , E |ht ) = −F1(pa, E |0)

+
∫ 0

−pa

d p δE (p|P, ht ) + O(|ht |2), (212)

since these functions are divided by the small parameter f ∼
hz in the exponent factors in (211). In the functions under the
square roots in the right-hand side of (211), we put ht = 0:

E ′(pa|P, ht ) = ε′(p(0)
a |P) + O(ht ),

E ′(pc|P, ht ) = −ε′(p(0)
a |P) + O(ht ),

E ′(pb|P, ht ) = ε′(p(0)
a |P) + O(ht ),

E ′(pd |P, ht ) = −ε′(p(0)
a |P) + O(ht ). (213)

Upon substitutions (208), (212), and (213), Eqs. (207) re-
duce to the form:

Bin,1
w0 + w+

2
+ Bin,2

−w0 + w+
2

= Bin,1 ei�0 Z0,

Bin,1
−w0 + w+

2
+ Bin,2

w0 + w+
2

= Bin,2 e−i�0 Z0, (214)

where

Z0(E , P) = exp[2iF1(pa, E |0)/ f + iπ/2] (215)

= exp

{
2i

f

∫ pa

0
d p[ε(p|P) − E ] + iπ

2

}
,

�0(E , P) = 1

f

∫ pa

−pa

d p δE (p|P, ht ). (216)

Using Eqs. (151) and (119), the integral in the right-hand side
of (216) can be rewritten in the explicit form, yielding:

�0(E , P) = −2 sinh η

f
A+ h2

∫ p1

p2

d p
cos p

ω(p)
, (217)
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where p1,2 are the solutions of the equations

p1 + p2 = P, ω(p1) + ω(p2) = E , (218)

such that −π/2 < p2 < p1 < π/2. Note that parameter �0

does not depend on the y component of the transverse mag-
netic field h1, as one can see from (217).

Equating the determinant of the system (214) to zero yields
the secular equation

Z2
0 − (w0 + w+)Z0 cos �0 + w0w+ = 0, (219)

that determines the meson energies En(P). This equation can
be rewritten in the more symmetric form, which is convenient
for numerical calculations:

sin

[
2F1(pa, E |0)

f
− θ0(P/2 + pa, P/2 − pa) + θ+(P/2 + pa, P/2 − pa)

2

]
− cos

[
θ+(P/2 + pa, P/2 − pa) − θ0(P/2 + pa, P/2 − pa)

2

]
cos �0 = 0. (220)

For the ratio Bin,2/Bin,1, we get from (214):

Bin,2

Bin,1
= 2Z0 exp(i�0) − w+ − w0

w+ − w0
. (221)

The absolute value of the coefficient Bin,1 can be fixed
from the normalization condition (147), as it is described in
Appendix B. The final result reads

|Bin,1|2 = f

2paε′(pa)(1 + |Bin,2/Bin,1|2)
. (222)

At zero transverse magnetic field ht = 0, parameter �0 van-
ishes, and equation (219) has two solutions:

Z0 = w0 and Z0 = w+. (223)

The first one leads to the equation

exp[2iF1(pa, E |0)/ f + iπ/2] = w0, (224)

which determines in the first semiclassical regime the energy
spectrum of the so-called transverse meson modes (T) with
spin s = ±1. In the explicit form, the above equation reduced
to the semiclassical quantization condition (184) with ι = 0,
in agreement with Eq. (172) in Ref. [11].

The second solution in (223) leads to the equation

exp[2iF1(pa, E |0)/ f + iπ/2] = w+. (225)

Its explicit form is given by Eq. (184) for the longitudinal
meson modes (L) with s = 0 and parity ι = +, in agreement
with [11].

The meson states in Eq. (184) are enumerated by the
natural number n = 1, 2, . . . Note that two Eqs. (224), and
(225) can be joined into the single one, that can be obtained
from Eq. (220) by putting �0 = 0 in the latter. Solutions
En(P) of Eq. (220) at �0 = 0 determine the spectra of the
meson modes in the first semiclassical regime at ht = 0, and
P ∈ (−Pc(η), Pc(η)). The solutions En(P) with odd n corre-
spond to the transverse meson modes with spin s = ±1, while
solutions with even n represent the longitudinal meson modes
with spin s = 0:

En(P) =
{

E0,(n+1)/2(P), n odd,

E+,n/2(P), n even,
(226)

where n = 1, 2, . . . and E0,n(P), E+,n(P) are given by (184).
At ht �= 0, the factor cos �0 in the right-hand side of

(220) leads to the mixing of the transverse and longitudinal
meson modes.

Figures 10 display the variation of the left-hand side of
the secular equation (220) with the energy of two kinks E
for P = 0 at three different values h1 = 0, 0.05, 0.01 of the y
component of the transverse magnetic field. The x component
of the transverse magnetic field is taken by h2 = 0.4h1 in all
three cases. Two other parameters of the Hamiltonian (16)
are taken at the fixed values η = 1.25, and hz = 0.02. The
meson energies En(P), n = 1, 2, . . . in model (16) at small
enough hz, h1, h2 are given in the semiclassical approximation
by zeros of Eq. (220).

At h1 = h2 = 0, the parameter �0 in the secular equa-
tion (220) vanishes, and cos �0 = 1. Figure 10(a) displays
the energy dependence of the left-hand side of (220) in the
latter case. This oscillating function is defined in the interval
between the minimal and maximal values of the two-kink
effective kinetic energy ε(p|P, η), which are indicated by ver-
tical lines in Fig. 10(a). The zeros of this function are located
at the energies En(P) of the transverse and longitudinal meson
modes, which are given by Eq. (184) with ι = 0, and ι = +,
respectively.

Application of the transverse magnetic field ht breaks the
symmetry between the left and right classically allowed la-
cunas P(1) = (pc, pa) and P(2) = (pd , pb) in the p variable,
which are shown in Fig. 9(b). As the result, the wave functions
ψ (1)( j|P) and ψ (2)( j|P) defined by (202), which correspond
to the semiclassical evolution 〈x(t ), p(t )〉 of two kinks with
p(t ) in the lacunas p(t ) ∈ P(1) and p(t ) ∈ P(2), respectively,
become different. The quantum scattering of two kinks upon
their collisions at |x| � ξc(η) provides the effective “hop-
ping” of the two-kink classical phase point from one lacuna
to another. This leads to the interference of two semiclassi-
cal wave functions ψ (1)( j|P) and ψ (2)( j|P), which, in turn,
causes the ht -dependent modulation of the function in the
left-hand of the secular equation (220) shown in Figs. 10(b)
and 10(c).

Figure 11 shows the dependencies of energies En(P|ht , hz )
of four lightest meson modes at P = 0 on the y-component h1

of the transverse magnetic field ht . Three other parameters of
the Hamiltonian (16) are taken the same as in Fig. 10: η =
1.25, h2 = 0.4h1, and hz = 0.02. The solid lines in Fig. 11
represent the meson energies obtained from the secular equa-
tion (220). The dotted curves display the meson energies,
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(a)

(b)

(c)

FIG. 10. Plot of the left-hand side of (220) vs the energy E of
two kinks for η = 1.25, hz = 0.02, and P = 0 at three values of the
transverse magnetic field y-component h1: (a) h1 = 0, (b) 0.05, and
(c) 0.1. The x-component h2 of the transverse magnetic fields is taken
h2 = 0.4h1 in all cases.

that were obtained from the secular equation (210), which we
expect to be slightly more accurate.

Comparison of solid and dotted curves in Fig. 11 allows
one to estimate the accuracy of the described above calcula-
tions of the meson energy spectra. One can conclude from
Fig. 11 that the perturbative in ht calculations of the meson
energies are rather accurate at 0 < h1 � 0.1 for chosen values
of other parameters, but the accuracy rapidly decreases at
larger h1 � 0.12.

As it was noticed above, at ht = 0, the states |π̃n(P)〉
with odd n = 1, 3, . . . represent the transverse meson modes
characterized by the spin polarization s = ±1, while the

FIG. 11. Dependencies of energies En of four lowest meson
modes on the y-component h1 of the transverse magnetic field at
η = 1.25, P = 0, hz = 0.02, h2 = 0.4h1 according to (220) (solid
curves), and (210) (dotted curves), respectively.

states with n = 2, 4, . . . correspond to the longitudinal meson
modes with s = 0. Application of the transverse magnetic
field ht �= 0 leads to the hybridization of the transverse and
longitudinal meson modes. At very weak transverse magnetic
fields ht , the energies of the mesons with odd n exhibit an
downwards variation with increasing |ht |, while the energies
of the modes with even n increase together with |ht |. Upon
further increase of the transverse magnetic field, the avoided
crossing of the energies of the modes with n = 2m and n =
2m + 1 takes place. As one can see in Fig. 11, for the second
and third meson modes, this avoided crossing takes place at
h1 ≈ 0.1, at chosen values of other parameters.

Let us turn now to the energy spectra of mesons with
momenta P close to π . Perturbative calculations of these
energy spectra can be performed be means of the described
above heuristic semiclassical technique. The central role in
this calculation plays the effective kinetic energy of two kinks
E (p|P, ht ) defined by (149). Due to (157), the first variation
with ht of this function vanishes at P = π :

E (p|π, ht ) = ε(p|π ) + O(|ht |2). (227)

Figure 12(a) displays the plot of the function ε(p|π ) at η =
1.5. At a given E ∈ (ε(π/2|π ), ε(0|π )), equation ε(p|π ) =
E has in the interval (−π/2, π/2) four solutions pi, i =
a, b, c, d , shown in this figure. It follows from the symmetry
properties (153) of the function ε(p|P), that

pc = π − pa, pb = pa − π, pd = −pa. (228)

Figure 12(b) illustrates the plot of the function E (p|P, ht )
at P = 0.9π , h1 = h2 = 0.1, and η = 1.5. The four solutions
pi, i = a, b, c, d of the equation E (p|P, ht ) = E shown in
this figure are slightly shifted from their positions at P = π ,
and the widths of the lacunas (pd , pb) and (pc, pa) become
different.

Subsequent calculations of the meson energy spectra at P
close to π are very similar to the performed above calculations
at small P. We define by (192) the reduced wave function
ψn( j|P) of two kinks in the spatial coordinate representation.
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(a)

(b)

FIG. 12. Effective kinetic energy profile E (p|P, ht ) given by
(149) at η = 1.5, and (a) P = π and arbitrary h1, h2; (b) P = 0.9 π

and h1 = h2 = 0.1.

At large negative j, this function must satisfy the integral
equation (195) with the convolution operator (196). We again
write the approximate semiclassical solution of equation (195)
in the form (201), but now

ψ (1)( j|P) =
∫ π

0

d p

2π
eip j−iF1(p,E |ht )/f, (229a)

ψ (2)( j|P) =
∫ 0

−π

d p

2π
eip j−iF2 (p,E |ht )/f, (229b)

and

F1(p, E |ht ) =
∫ p

π/2
d p′[E (p′|P, ht ) − E ], (230a)

F2(p, E |ht ) =
∫ p

−π/2
d p′[E (p′|P, ht ) − E ]. (230b)

Formula (204) still gives us the saddle-point asymptotics
of the wave function ψ ( j|P) at − j ∼ ξc(η), but now the four
solutions of Eq. (199) are ordered as it is shown in Fig. 12(b):

−π < pd < pb < 0 < pc < pa < π. (231)

To the leading order in |ht |, the coefficients Bin,i, and Bout,i,
i = 1, 2, in Eq. (204) must satisfy two linear equations, which

are analogous to (214):

Bin,1
−w0 + w+

2
+ Bin,2

w0 + w+
2

= Bin,1 ei�π Zπ ,

Bin,1
w0 + w+

2
+ Bin,2

−w0 + w+
2

= Bin,2 e−i�π Zπ , (232)

where

Zπ (E , P) = exp

{
2i

f

∫ pa

π/2
d p[ε(p|P) − E ] + iπ

2

}
, (233)

�π (E , P) = 1

f

∫ pa

π−pa

d p δE (p|P, ht ), (234)

and w0, w+ are the scattering amplitudes given by (209). Note
that

Zπ (E , P) = Z0(E , P − π ). (235)

For the ratio Bin,2/Bin,1, we get from (232)

Bin,2

Bin,1
= 2Zπ exp(i�π ) − w+ + w0

w+ + w0
. (236)

The normalization condition (147) leads now to the following
formula for the absolute value of the coefficient Bin,1:

|Bin,1|2 = f

2(pa − π/2)ε′(pa)(1 + |Bin,2/Bin,1|2)
. (237)

We skip derivation of this formula, since it similar to the
described in Appendix B derivation of formula (222).

The analogous to (219) secular equation following from
(232) reads

Z2
π − (−w0 + w+)Zπ cos �π − w0w+ = 0. (238)

Using Eqs. (151) and (119), the integral in the right-hand
side of (234) can be simplified to the form:

�π (E , P) = −2 sinh η

f
A−h1

∫ p1

p2

d p
sin p

ω(p)
, (239)

where p1,2 are the solutions of the equations

p1 + p2 = P − π, ω(p1) + ω(p2) = E , (240)

such that −π/2 < p2 < p1 < π/2. The parameter �π does
not depend on the x component of the transverse magnetic
field h2, as one can see from (239). It is clear also from (239)
and (240), that the parameter �π vanishes in two cases: (i) at
h1 = 0 and (ii) at P = π . If any of these conditions is satisfied,
Eq. (238) has two solutions:

Zπ = −w0 and Zπ = w+. (241)

Solutions of the first equation determine the spectrum of
the meson modes with s = ±1. At ht = 0 and P ∈ (π −
Pc(η), π + Pc(η)), their energies are determined by Eq. (184),
which can be extended in P from the its original interval
(−Pc(η), Pc(η)) to the interval (π − Pc(η), π + Pc(η)) due to
the periodicity relation [11]: E0,n(P) = E0,n(P + π ).

Solutions of the second equation in (241) determine at
ht = 0 and P ∈ (π − Pc(η), π + Pc(η)) the energies E+,n(P)
of the meson modes with spin s = 0 and parity ι = +. It
was shown in Ref. [11], that the energy spectra of mesons
with s = 0 and parities ι = ± are connected by the relation
E+,n(P) = E−,n(P ± π ), see Eq. (131) in Ref. [11].
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The solutions En(P) of the secular equation (238) at h1 =
0 and P ∈ (π − Pc(η), π + Pc(η)) correspond to transverse
(s = ±1) and longitudinal (s = 0) meson modes at odd, and
even n, respectively:

En(P) =
{

E0,(n+1)/2(P − π ), n odd,

E−,n/2(P − π ), n even,
(242)

and the functions Eι,n(P − π ) are given by (184).
If P �= π , the application of the transverse magnetic field

with nonzero y-component h1 gains a nonzero value to the
parameter �π and induces hybridization of transverse and
longitudinal meson modes due to the term ∼cos�π in the
secular equation (238).

However, at any fixed value of h1, the parameter �π given
by (239) decreases in absolute value as P approaches to π ,
and finally vanishes at P = π . Therefore the meson energies
En(P) at P = π in presence of the transverse magnetic field
ht are still described by Eq. (242). This means, in particular,
that the application of the transverse magnetic field ht does
not lead to hybridization of transverse and longitudinal meson
modes with P = π , and the energies En(π ) of these mesons
do not depend on ht . Of course, this result holds only in the
adopted approximation corresponding to the leading order in
the weak transverse magnetic field ht .

X. DYNAMICAL STRUCTURE FACTORS
OF SPIN OPERATORS

In this section, we study the effect of the mutually orthog-
onal staggered and uniform transverse magnetic fields on the
DSF of the local spin operators in the XXZ spin chain in the
weak confinement regime. In the thermodynamic limit, this
structure factor can be defined as follows:

Sab(k, ω) = 1

8

∞∑
j=−∞

e−ik j
∫ ∞

−∞
dt eiωt

× [ (1)〈Vac(ht , hz )|eiHtσ a
j e−iHtσ b

0

× |Vac(ht , hz )〉(1)

+ (1)〈Vac(ht , hz )|eiHtσ a
j+1e−iHtσ b

1

× |Vac(ht , hz )〉(1)], (243)

where a, b = x, y, z, H is the Hamiltonian given by (16),
|Vac(ht , hz )〉(1) is its ground state. Exploiting Eqs. (26d),
(134), and (135), formula (243) can be simplified to the form

Sab(k, ω) = δda,db

4

∞∑
j=−∞

e−ik j
∫ ∞

−∞
dt eiωt

× (1)〈Vac(ht , hz )|eiHtσ a
j e−iHtσ b

0

× |Vac(ht , hz )〉(1), (244)

where dx = 0, dy = dz = 1. Note that due to the Kronecker-
delta δda,db in the right-hand of (244), only two nondiagonal
components Syz(k, ω), and Szy(k, ω) of the DSF tensor (244)
are nonzero.

As in Ref. [11], we will use two approximations in calcu-
lation of the structure factors (244). First, the analysis will be
limited to the leading order in the weak staggered longitudinal

magnetic fields hz. This allows us to replace the vacuum state
|Vac(ht , hz )〉(1) of the Hamiltonian (16) in equation (244) by
its counterpart at hz = 0:

|Vac(ht )〉(1) = lim
hz→+0

|Vac(ht , hz )〉(1).

Second, our analysis will be restricted solely to the two-spinon
contribution Sab

(2) (k, ω) to the structure factor. To the leading
order in hz, the latter is defined by the equation:

Sab
(2) (k, ω) = δda,db

4

∞∑
j=−∞

e−ik j
∫ ∞

−∞
dt eiωt

× (1)〈Vac(ht )|eiH(2)tσ a
j e−iH(2)tP (2)

11 (ht )σ
b
0

× |Vac(ht )〉(1), (245)

where P (2)
11 (ht ) is the projector operator (143) onto the two-

spinon subspace L(2)
11 (ht ), and H(2) is given by (141).

After substitution of (143) into (245) and straightfor-
ward calculations following the lines described in Sec. III of
Ref. [11], the dynamical structure factor (245) can be repre-
sented in the compact form:

Sab
(2) (k, ω) = δda,db

∞∑
n=1

δ[ω − Ẽn(k + πda)] Iabn (k + πda),

(246)
where

Iabn (P) = π

2
(1)〈Vac(ht )|σ a

0 |π̃n(P)〉

× 〈π̃n(P)|σ b
0 |Vac(ht )〉(1) (247)

is the intensity of the nth meson mode, and Ẽn(P) is the meson
energy in the two-kink approximation. Following our practice
noticed by the end of Sec. VII, we will neglect the difference
(169), and identify Ẽn(P) with En(P).

The matrix element of the σ a
0 operator in the right-hand

side of (247) can be expressed in terms of the reduced wave
function φn(p|P, ht , hz ), which is defined by Eq. (146) and
normalized due to (147):

(1)〈Vac(ht )|σ a
0 |π̃n(P)〉 =

∫ π

−π

d p

4π
φn(p|P, ht , hz )

× (1)〈Vac(ht )|σ a
0 |K10(P/2 + p|ht )

× K01(P/2 − p|ht )〉. (248)

We replace the matrix element in the second line of the above
formula by the zero-order term of its expansion in ht :

(1)〈Vac(ht )|σ a
0 |K10(p1|ht )K01(p2|ht )〉

= (1)〈vac|σ a
0 |K10(p1)K01(p2)〉 + O(|ht |), (249)

where (1)〈vac| and |K10(p1)K01(p2)〉 are defined by
Eqs. (27a), (27b), and (123), respectively. The matrix
element in the right-hand side can be represented in terms
of the two-kink states |K10(ξ1)K01(ξ2)〉 parametrized by the
multiplicative spectral parameters ξ1,2:

(1)〈vac|σ a
0 |K10(p1)K01(p2)〉 = sinh η√

ω(p1)ω(p2)

× (1)〈vac|σ a
0 |K10(ξ1)K01(ξ2)〉,

(250)
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where ξ1,2 = −ieiα1,2 , the rapidities α1,2 are relates with mo-
menta p1,2 due to (83), and

|K10(ξ1)K01(ξ2)〉 =
√

2 |K10(ξ1)K01(ξ2)〉+
+ |K10(ξ1)K01(ξ2)〉1/2,1/2

+ |K10(ξ1)K01(ξ2)〉−1/2,−1/2. (251)

The two-kink states in the right-hand side of (251) are defined
by Eqs. (A7) and (A8) in Appendix A.

Using (251) and (A9), the matrix elements
(1)〈vac|σ a

0 |K10(ξ1)K01(ξ2)〉 in the right-hand side of (250)
can by written in the explicit form:

(1)〈vac|σ x
0 |K10(ξ1)K01(ξ2)〉

= X 0(ξ1, ξ2) + X 1(ξ1, ξ2), (252)

(1)〈vac|σ y
0 |K10(ξ1)K01(ξ2)〉

= i[X 0(ξ1, ξ2) − X 1(ξ1, ξ2)], (253)

(1)〈vac|σ z
0 |K10(ξ1)K01(ξ2)〉 =

√
2 X z

+(ξ1, ξ2), (254)

where the functions X j (ξ1, ξ2) and X z
±(ξ1, ξ2) are determined

by Eqs. (A10).
In order to complete calculation of the intensities (247), it

remains to obtain the explicit expression for the wave function
φn(p|P, ht , hz ), that stays in the integrand in the right-hand
side of (248). In principle, this can be achieved by the per-
turbative solution of the Bethe-Salpeter equation (148), as
it was done in Ref. [11] in the case ht = 0. Here we shall
use a more simple and less rigorous procedure exploiting the
heuristic semiclassical solutions obtained above in two cases
P ∈ (−Pc(η), Pc(η)), and P ∈ (π − Pc(η), π + Pc(η)).

In the first case P ∈ (−Pc(η), Pc(η)), the wave function
φn(p|P, ht , hz ) in the semiclassical approximation can be writ-
ten in the form:

φn(p|P, ht , hz ) = 2π [Bin,1δ(p − pa) + Bin,2δ(p − pb)

+ Bout,1δ(p − pc) + Bout,2δ(p − pd )].

(255)

Indeed, the result of substitution of the right-hand side into
the integrand in (192) reproduces (to the zero order in |ht |)
formula (204). The coefficients Bin,i, Bout,i, with i = 1, 2, are
known due to (206), (208), (221), and (222).

Combing(247)–(255), we obtain finally

Ixx
n (P) = �En

2ε′(pa)

sinh2 η

ω(p1)ω(p2)

× |X 0(ξ1, ξ2) + X 1(ξ1, ξ2)|2 |1 − Bin,2/Bin,1|2
2(1 + |Bin,2/Bin,1|2)

,

(256a)

Iyy
n (P) = �En

2ε′(pa)

sinh2 η

ω(p1)ω(p2)

× |X 0(ξ1, ξ2) − X 1(ξ1, ξ2)|2 |1 − Bin,2/Bin,1|2
2(1 + |Bin,2/Bin,1|2)

,

(256b)

Izz
n (P) = �En

2ε′(pa)

sinh2 η

ω(p1)ω(p2)

× 2|X z
+(ξ1, ξ2)|2 |1 + Bin,2/Bin,1|2

2(1 + |Bin,2/Bin,1|2)
, (256c)

Ixz
n (P) =

√
2 �En

2ε′(pa)

sinh2 η

ω(p1)ω(p2)

× [X 0(ξ1, ξ2)∗ + X 1(ξ1, ξ2)∗] X z
+(ξ1, ξ2)

× (1 − B∗
in,2/B∗

in,1)(1 + Bin,2/Bin,1)

2(1 + |Bin,2/Bin,1|2)
, (256d)

Iyz
n (P) = −i

√
2 �En

2ε′(pa)

sinh2 η

ω(p1)ω(p2)

× [X 0(ξ1, ξ2)∗ − X 1(ξ1, ξ2)∗] X z
+(ξ1, ξ2)

× (1 − B∗
in,2/B∗

in,1)(1 + Bin,2/Bin,1)

2(1 + |Bin,2/Bin,1|2)
, (256e)

Izx
n (P) = Ixz

n (P)∗, Izy
n (P) = Iyz

n (P)∗. (256f)

Here pa is the solution of Eq. (197) shown in Fig. 9(a),
p1 = P/2 + pa, p2 = P/2 − pa, α1,2 are the rapidities corre-
sponding to the momenta p1,2, and

�En = π f

pa
(257)

is the small interval between the energies of nth and (n + 2)th
meson modes at given P ∈ (−Pc, Pc) and ht = 0.

Obtained results (256) for the intensities of the meson
modes are illustrated for the case P = 0 in Figs. 13(a) and
13(b). The dotted curves in these figures are identical with
those in Fig. 11, and display the dependencies of the ener-
gies En(0|ht , hz ) on the magnetic field h1 at h2 = 0.4h1, and
η = 1.25, hz = 0.02. The darknesses of dots in Figs. 13(a)
and 13(b), characterize the intensities Ixx

n (P), and Izz
n (P), re-

spectively, of the presented four lightest meson modes at
P = 0. We did not show the intensity Iyy

n (P) determined by
Eq. (256b), since it is very small for the mesons with zero mo-
mentum P = 0 at the chosen value η = 1.25 of the anisotropy
parameter. As one can see from Fig. 13, application of the
transverse magnetic field causes the effective hybridization of
transverse and longitudinal meson modes at P = 0.

In the second case P ∈ (π − Pc(η), π + Pc(η)), we can
again use formula (255) for the wave function φn(p|P, ht , hz ).
However, the momenta pa, pb, pc, pd in this formula now
are ordered in accordance with (231), and the in- and out-
amplitudes in (255) are different from those in the first case.
In particular, the in-amplitudes solve Eqs. (232), and satisfy
equalities (236) and (237). It turns out, that formulas (256) can
still describe the intensities Iabn (P) at P ∈ (π − Pc(η), π +
Pc(η)), upon the following minor modifications: (i) the mo-
mentum pa solving Eq. (197) lies now in the interval pa ∈
(π/2, π ), see Fig. 12(a), (ii) the ratio Bin,2/Bin,1 is determined
by formula (236), instead of (221), and (iii) the parameter �En

in (256) now denotes the ratio:

�En = π f

pa − π/2
. (258)
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FIG. 13. Dependencies of energies En of four lowest meson
modes on the y-component h1 of the transverse magnetic field at
η = 1.25, P = 0, hz = 0.02, h2 = 0.4h1, according to (220). Dark-
ness of the dots in (a) and (b) characterizes the intensities Ixx

n (0), and
Izz
n (0), respectively, which are given by (256).

In particular, the intensities Iabn (P = π ) do not depend on
h1, h2 in the adopted approximation, and coincide with their
values at h1 = h2 = 0.

XI. COMPARISON WITH EXPERIMENT

In previous sections, we followed the convention used in
the algebraic approach [33] by choosing the “−” sign in
front of the right-hand side of Hamiltonian (4). This choice
corresponds to the ferromagnetic nearest-neighbor exchange
coupling in the xy plane of the XXZ spin-chain. In the ex-
perimental research papers, however, the different and more
physically relevant form of the XXZ model Hamiltonian is
commonly used with the antiferromagnetic exchange in the
xy plane. These two forms of the XXZ model Hamiltonian are
simply related by a certain unitary transform, which we will
recall below in order to facilitate comparison of our theoretical
predictions with the results of already published and future
experiments and computer simulations.

Let us start from the finite-size version HN (�, ht , hz ) of
the Hamiltonian (16) defined on the spin-chain having N sites.
The periodic boundary conditions are implied, and the number
of sites is a multiple of eight, N mod 8 = 0. The appropriate
unitary transform UN is the rotation by π around the z axis of
all spins at odd sites of the chain:

UN = ⊗N/4−1
m=−N/4σ

z
2m+1. (259)

Operators HN (�, ht , hz ) and T̃1 = T1C modify upon the ac-
tion of this transform to

H̆N (�̆, ht , hz ) = UN HN (�, ht , hz )U −1
N , (260)

T̆1 = UN T̃1 U −1
N , (261)

where �̆ = −� = cosh η, and T̆1 is given by (22). The ex-
plicit form of the resulting Hamiltonian in the thermodynamic
limit N → ∞ reads

H̆(�̆, ht , hz ) = lim
N→∞

H̆N (�̆, ht , hz )

= 1

2

∞∑
j=−∞

(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1 + �̃ σ z

j σ
z
j+1

)
−

∞∑
j=−∞

[
(−1) jh2σ

x
j + h1σ

y
j + (−1) jhzσ

z
j

]
.

(262)

We shall use the notation U for the thermodynamic limit of
the transform operator (259):

U = lim
N→∞

UN . (263)

Note that the unitary transform (263) permutes the staggered
and uniform transverse magnetic fields, as one can see by
comparison of (262) with (17). Note also, that operators
H̆(�̆, ht , hz ) and T̆1 commute:

[H̆(�̆, ht , hz ), T̆1] = 0. (264)

The vacuum and meson states in the new representation are
determined by relations

|V̆ac(ht , hz )〉(1) = U |Vac(ht , hz )〉(1), (265)

|π̆n(P|ht , hz )〉 = U |πn(P|ht , hz )〉. (266)

It follows from (135), (261), (263), and (265) that

T̆1|V̆ac(ht , hz )〉(1) = |V̆ac(ht , hz )〉(1). (267)

Due to (260)–(263), (136), the meson states (266) satisfy
equalities:

T̆1|π̆n(P|ht , hz )〉 = eiP|π̆n(P|ht , hz )〉, (268a)

(H̆ + C)|π̆n(P|ht , hz )〉 = En(P|ht , hz )|π̆n(P|ht , hz )〉.
(268b)

The meson dispersion laws En(P|ht , hz ) and the constant C in
Eqs. (136b) and (268b) are the same.
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The dynamical structure factor S̆ab(k, ω) corresponding to
the Hamiltonian (260) is defined by the formula

S̆ab(k, ω) = 1

8

∞∑
j=−∞

e−ik j
∫ ∞

−∞
dt eiωt

× [ (1)〈V̆ac(ht , hz )|eiH̆tσ a
j e−iH̆tσ b

0 |V̆ac(ht , hz )〉(1)

+ (1)〈V̆ac(ht , hz )|eiH̆tσ a
j+1e−iH̆tσ b

1 |V̆ac(ht , hz )〉(1)
]
,

(269)

which is analogous to (243). Exploiting Eqs. (22), (264), and
(267), formula (269) can be simplified to the form:

S̆ab(k, ω) = δd̆a,d̆b

4

∞∑
j=−∞

e−ik j
∫ ∞

−∞
dt eiωt

× (1)〈V̆ac(ht , hz )|eiH̆tσ a
j e−iH̆tσ b

0 |V̆ac(ht , hz )〉(1).

(270)

Due to (259), (260), (263), and (265), this formula can be
further rewritten as

S̆ab(k, ω) = δd̆a,d̆b

4

∞∑
j=−∞

e−ik j
∫ ∞

−∞
dt eiωt

× (1)〈Vac(ht , hz )|eiHt σ̆ a
j e−iHt σ̆ b

0 |Vac(ht , hz )〉(1),

(271)

where the Hamiltonian H is given by (16), |Vac(ht , hz )〉(1) is
its ground state, and

σ̆ a
j = U −1σ a

j U =
{

(−1) jσ a
j , if a = x, y,

σ z
j , if a = z

. (272)

This leads to the following simple exact relations between the
diagonal matrix elements of the DSF tensors S̆ab(k, ω) and
Sab(k, ω):

S̆xx(k, ω) = Sxx(k + π,ω),

S̆yy(k, ω) = Syy(k + π,ω),

S̆zz(k, ω) = Szz(k, ω).

On the other hand, the nondiagonal matrix elements of
the DSF tensors Sab(k, ω) and S̆ab(k, ω) are different: the
only nonvanishing nondiagonal components of the later are
S̆xz(k, ω) and S̆zx(k, ω), while the nonvanishing nondiago-
nal components of Sab(k, ω) are Syz(k, ω) and Szy(k, ω), see
Eq. (244).

For the nonzero matrix elements S̆ab
(2) (k, ω) of the DSF

(270) in the two-kink approximation, we get finally

S̆xx
(2)(k, ω) =

∞∑
n=1

δ[ω − En(k + π )] Ixx
n (k + π ), (274a)

S̆yy
(2)(k, ω) =

∞∑
n=1

δ[ω − En(k)] Iyy
n (k), (274b)

S̆zz
(2)(k, ω) =

∞∑
n=1

δ[ω − En(k + π )] Izz
n (k + π ), (274c)

FIG. 14. Density plots in the plane 〈h1, ω〉 of the structure fac-
tors S̆aa

(2) (k = π,ω) due to (274) at h2 = 0.4h1, η = 1.25, hz = 0.02.
Darkness of the dots characterizes intensities Iaan (πδy,a) of the meson
modes with n = 1, 2, 3, 4, and energies En(πδy,a) = ω. (a) Density
plot of the longitudinal structure factor S̆zz

(2)(π,ω) and (b) Density
plots of the transverse DSF. The horizontal straight lines (second and
fifth lines from below) display the structure factor S̆yy

(2)(π,ω), while
the rest curves correspond to the DSF S̆xx

(2)(π,ω).

S̆xz
(2)(k, ω) =

∞∑
n=1

δ[ω − En(k + π )] Ixz
n (k + π ), (274d)

S̆zx
(2)(k, ω) =

∞∑
n=1

δ[ω − En(k + π )] Izx
n (k + π ). (274e)

The intensities Iabn (P) in the right-hand sides of these relations
are given by (256). Figures 14(a) and 14(b) display the density
plots in the plane 〈h1, ω〉 of the DSF S̆aa

(2)(k = π,ω) with a =
x, y, z, which are determined by Eqs. (274a)-(274c). The other
parameters are taken at the same values, as in Fig. 13: h2 =
0.4h1, η = 1.25, hz = 0.02.

The density plot of the longitudinal DSF S̆zz
(2)(π,ω) is

shown in Fig. 14(a). Due to the δ functions in the right-hand
side of (274c), it is located along the dispersion curves of the
mesons with zero quasimomentum:

ω(h1) = En(P = 0|h1, h2 = 0.4h1), n = 1, 2, . . . , (275)

014411-27



SERGEI B. RUTKEVICH PHYSICAL REVIEW B 109, 014411 (2024)

which were depicted previously in Fig. 13. The correspond-
ing intensities Izz

n (k = 0) display substantial variation with
increasing h1 in accordance with Eq. (256c).

The transverse S̆xx
(2)(π,ω) component of the DSF tensor

shown in Fig. 14(b) is located in the plane 〈h1, ω〉 along the
same curves (275), and corresponding intensities Ixx

n (k = 0)
also strongly depend on h1 due to (256a).

The two remaining horizontal dotted lines in Fig. 14(b) rep-
resent the density plot of the transverse component S̆yy

(2)(π,ω)
of the DSF tensor, which is given by Eq. (274b). It is located
along the dispersion curves of mesons having the quasimo-
mentum P = π :

ω(h1) = En(P = π |h1, h2 = 0.4h1). (276)

It was shown in Sec. IX, that the energies of such mesons do
not depend on h1, h2:

En(P = π |h1, h2) = En(P = π |0, 0),

to the leading order in h1, h2. Furthermore, the intensities
Iyy
n (k = π ) that stay in the right-hand side of (274b) also do

not depend on h1, h2:

Iyy
n (k = π |h1, h2) = Iyy

n (k = π |0, 0),

as it was mentioned by the end of Sec. X. These intensities
vanish for all even n = 2, 4, . . ., since the meson modes with
even n carry zero spin s = 0 at ht = 0 and do not contribute
to the transverse DSF, as it was explained in Sec. IX, see
Eq. (226). On the other hand, the following equalities hold for
the transverse meson modes with odd n = 1, 3, . . . at ht = 0:

En(P = π |0, 0) = En(P = 0|0, 0),

Iyy
n (k = π |0, 0) = Ixx

n (k = 0|0, 0).

The resulting pattern of the transverse DSF in the 〈h1, ω〉
plane at the antiferromagnetic point k = π , which is shown
in Fig. 14(b), looks at h1 = 0 like a set of transverse me-
son modes. Each of these modes splits upon application of
the transverse magnetic field h1 > 0 into two branches. The
energy of the lower branch has a strong nonlinear h1 depen-
dence, while the energy of the upper branch does not depend
on h1. The lower branch of the splited modes becomes po-
larized in the 〈x, z〉 plane, whereas the upper branch has the
linear polarization along the y direction, that does not change
with increase of h1.

The described above rather peculiar evolution of the DSF
with increasing transverse magnetic field was indeed observed
by Faure et al. [10], who studied in the inelastic neutron
scattering experiments the effect of the transverse magnetic
field on the magnetic excitation energy spectra in the antifer-
romagnetic crystal BaCo2V2O8 at low temperatures.

For interpretation of their experimental results, the authors
of Ref. [10] have used the following effective spin-chain

Hamiltonian:

H = J

4

∞∑
j=−∞

[
ε
(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1

) + σ z
j σ

z
j+1

]
− μB

2

∞∑
j=−∞

[
gzzh

eff (−1) jσ z
j + (−1) jgyxHσ x

j

+ gyyHσ
y
j + cos[(2 j + 1)π/4]gyzHσ z

j

]
, (277)

which was introduced earlier by Kimura et al. [22] for descrip-
tion of the quasi-1D magnetic structure of BaCo2V2O8.

In the effective Hamiltonian (277), J > 0 is the anti-
ferromagnetic intra-chain interaction, ε is the anisotropy
parameter, H denotes the strength of the uniform magnetic
field (in Tesla) applied in the y direction, heff is the effec-
tive staggered longitudinal magnetic field, that mimics in the
mean-field approximation the weak interchain interaction in
the 3D-ordered antiferromagnetic phase, gab are the compo-
nents of the Landé tensor, and μB = 5.788 × 10−5 eV/T is
the Bohr magneton.

According to Ref. [22], the effective magnetic field
cos[(2 j + 1)π/4]gyzH in the z direction having the four-step
periodicity arises in (277) due to the combination of the
anisotropy of the Landé g tensor, with the specific screw
structure of the Co2+ magnetic ion chains in the compound
BaCo2V2O8. Note also, that the effective spin-chain Hamil-
tonian (277) can be used to describe the magnetic structure
of this crystal only if the external uniform magnetic field is
applied along the b (or a) crystallographic axis [22].

Comparing (262) and (277), one can see that the simplified
version of the Hamiltonian H with gyz = 0 is proportional to
H̆(�̃, ht , hz ):

H|gyz=0 = Jε

2
H̆(�̃, ht , hz ), (278)

and parameters of the Hamiltonians H̆ and H are simply
related:

�̃ = 1

ε
, hz = μB

Jε
gzzh

eff ,

h1 = μB

Jε
gyyH, h2 = μB

Jε
gyxH. (279)

The following numerical values have been used in Ref. [10]
for the parameters in the Hamiltonian (277):

J = 5.8 meV, ε = 0.53, gzzμBheff = 0.06 meV,

gzz = 6.07, gyy = 2.35, gyx/gyy = 0.4, gyz/gyy = 0.14.

(280)

For these numerical values, we get from (279):

h1(H ) ≈ 0.0443H, h2(H ) ≈ 0.0177H, H̆ ≈ 651H,

(281)

where the magnetic field H and the energy H in the right-hand
sides are measured in tesla and electron-volt, respectively.

Note that Kimura et al. [22], and Grenier et al. [6,47] used
slightly different from (280) values for the parameters of the
effective Hamiltonian (277).

The values of parameters η = 1.25, hz = 0.02, h2 = 0.4h1

of the Hamiltonian (16), which we have chosen for illustration
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of our results in Figs. 10, 11, and 13, are close to those
determined by Eqs. (279) and (280).

The evolution of the static magnetic structure of
BaCo2V2O8 in the low-temperature phase with the applied
in the y-direction uniform magnetic field H is displayed in
Fig. 2 of Ref. [10]. It is shown, in particular, in Fig. 2(b),
that the staggered magnetization mc(H ) in the z direction
monotonically decreases from its maximal value at H = 0 to
the zero value at the critical field Hc ≈ 10 T. As one can see
from this figure, the staggered magnetization mc(H ) remains
close to its zero-field value mc(0) at weak enough magnetic
fields in the interval 0 < H � 3 T. It is natural to expect,
that our perturbative treatment of the effect of the transverse
magnetic field is appropriate in this interval.

The dependences of the inelastic neutron scattering inten-
sities on the transverse magnetic field H at three different
neutron scattering vectors Q = (2, 0, 1), (0, 0, 2), and (3,0,1)
are shown in Ref. [10] in Figs. 3(a), 3(b), and 3(c), respec-
tively. Note that the components of the vector Q are written
here in terms of the crystallographic lattice spacings. This
means, in particular, that the 1D momentum transfer k, that
stands in Eqs. (274), is proportional to Qz:

k = 2πQz

c/c′ , (282)

where c is the crystallographic lattice spacing in the z direction
and c′ is the spacing (along the z direction) between the
Co2+ ions in the magnetic chains. Since each magnetic chain
contains four Co2+ ions in the crystallographic cell [10,22],
the denominator in (282) equals four, and

k = πQz

2
. (283)

It is well known [10], further, that neutron scattering exper-
iments probe only the spin fluctuations perpendicular to the
scattering vector Q.

The arguments listed above allow us to expect, that our
analytical perturbative results (274a), (274b) for the transverse
structure factors S̆xx

(2)(k, ω), S̆yy
(2)(k, ω) at k = π for the model

(262), which are illustrated in Fig. 14(b), can be directly
applied to the interpretation of the results of the neutron
scattering intensity measurements for Q = (0, 0, 2) shown in
Fig. 3(b) in Ref. [10].

Figures 3(a) and 3(c) in Ref. [10] display the measured
by Faure et al. neutron scattering intensities at the scattering
vectors Q with Qz = 1, which correspond due to (283) to the
1D momentum transfer k = π/2. As one can see, the energies
of the meson excitation modes in these two figures are close
to those in Fig. 3(b), the only difference is in their intensities.
This experimental result cannot be explained in the frame of
the theory based on the spin-chain Hamiltonian (262). Really,
the energy of the lightest meson with zero momentum in
the absence of the transverse magnetic field is well below
the two-spinon threshold 2ω(π/4) at their total momentum
P = π/2:

E1(P, h1, h2)|P=0,h1=h2=0

< min
p

[ω(P + p/2) + ω(P − p/2)]|P=π/2 = 2 ω(π/4).

The natural and well-known [6–8,28,48] way to overcome this
difficulty is to perturb the Hamiltonian (262) with a term λV1

H̆(�̆, ht , hz ) → H̆(�̆, ht , hz ) + λV1, (284)

having the four-site periodicity. Note that such a term pro-
portional to the small parameter gyz is already present
in the Hamiltonian (277). Further additional terms of this
kind refining this effective Hamiltonian were introduced in
Refs. [28,48]. The symmetry-breaking perturbation λV1 re-
duces the Brillouin zone P ∈ (−π, π ) by the factor of four,
and should lead at small λ to folding of the meson modes:

En(P, h1, h2) → En(P + lπ/2, h1, h2), with l = 0, 1, 2, 3.

(285)
It is reasonable to expect, that the small deformation (284)
of the Hamiltonian (262) would give rise also to the weighted
sum of four “copies” of the structure factors, which are shifted
in k with respect to one another by π/2:

S̆ab
(2) (k, ω) → S̆ab

(2) (k, ω|λ) �
3∑

l=0

Al (λ)S̆ab
(2) (k + π l/2, ω).

(286)
where the weight coefficients Al (λ) do not depend on ht , hz,
and Al (0) = δl,0. In the case of ht = 0, a similar assumption
was used by Bera et al., see Eq. (7) in Ref. [7]. Accordingly,
we will use the l = 1 term in the right-hand side of (286) at
k = π/2 in order to interpret the inelastic neutron scattering
intensities shown in Figs. 3(a) and 3(c) of Ref. [10].

So, there are good reasons to expect, that in the re-
gion of weak transverse magnetic fields 0 < H � 3T, the
experimental inelastic neutron scattering patterns shown in
Figs. 3(a)–3(c) of Ref. [10], can be, at least, qualitatively
described by our perturbative results (274) and (256) for the
DSF at k = π , which are illustrated in Fig. 14. We will show
below, that this is really the case.

(1) The lowest mode in Fig. 3, which is called the spin-flip
(SF) mode in Ref. [10], exhibits a strong nonlinear mono-
tonic downward variation upon increase of the transverse field
in the interval 0 < H < 10 T. The inelastic neutron scatter-
ing measurements using polarized neutrons allow authors of
Ref. [10] to conclude, that this SF mode remains polarized in
the xz plane in the whole range of variation of the transverse
field H . At H = 0, this mode is polarized purely in the x di-
rection. Upon increase of the magnetic field H , the transverse
polarization in the x direction decreases, while longitudinal
polarization along the z axis increases. All listed above qual-
itative features of the evolution of the lowest mode upon
increase of the transverse field H are in agreement with our
theoretical predictions (274a) and (274c) on the contribution
of the meson mode with n = 1 and P = 0 into the diagonal
DSF components S̆xx

(2)(π,ω), S̆zz
(2)(π,ω), which are illustrated

in Figs. 14(a) and 14(b).
(2) The second in energy mode in Figs. 3 in Ref. [10]

is called there the non-spin-flip (NSF) mode. At H = 0, the
energies of the NSF and SF modes are the same. The NSF
mode exhibits a small upward variation upon increase of the
magnetic field in the interval 0 < H � 3 T. The NSF is polar-
ized along the y direction at the magnetic fields H inside this
interval. The NSF mode observed in the neutron scattering
experiments should be identified with the meson mode with
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n = 1 and P = π , which contributes to the DSF S̆yy
(2)(π,ω),

according to (274b). In the adopted approximation, the energy
and polarization of this mode do not depend on the transverse
magnetic field.

(3) The third and the fourth modes in Fig. 3 of Ref. [10]
are polarized at H = 0 along the z and x axes, respectively.
Their energies approach one another upon increase of H up
to about 3T, where the avoided crossing of two modes occurs.
These two modes can be identified with the meson modes n =
2 and 3 at P = 0 in our classification. Evolution of energies
and polarizations of these two meson modes with increasing
magnetic field h1 ∼ H , which is illustrated in Fig. 14, is simi-
lar to those of the third and fourth modes in Fig. 3 of Ref. [10].

(4) Contributions of two subsequent n = 3, P = π , and
n = 4, P = 0 meson modes into the DSF, which are shown
in Fig. 14, are also clearly seen in 3(a)–3(c) of Ref. [10].

To summarize, the observed in the inelastic neutron scatter-
ing experiments [10] evolution of the meson energies and spin
polarizations in BaCo2V2O8 with the increase of the trans-
verse magnetic field are in a good qualitative agreement in the
small-field region with our theoretical predictions obtained by
the perturbative analysis of the XXZ spin-chain model (16).
Furthermore, using Eqs. (281) one can see, that the evolution
of the DSF with the transverse magnetic field h1 displayed in
Fig. 14 is also in a reasonable quantitative agreement with the
experimental data shown in Fig. 3 of Ref. [10].

Recently, the evolution of the energies of magnetic ex-
citations upon increase of the transverse magnetic field
was experimentally studied by Amelin et al. [27] in the
quasi-one-dimensional Ising-like ferromagnet CoNb2O6 and
antiferromagnet BaCo2V2O8 by means of the high-resolution
terahertz spectroscopy. The presented in Fig. 2 in Ref. [27] the
magnetic-field dependence of the THz absorption spectrum
of BaCo2V2O8 has a lot of similarities with the inelastic
neutron scattering patterns for the same compound displayed
in Fig. 3 of Ref. [10] by Faure et al. However, for the reliable
identification of different meson modes contributing into the
THz absorption spectrum shown in Fig. 2 in Ref. [27], the
detailed information on the polarizations of the corresponding
spin fluctuations is still required.

XII. CONCLUSIONS

In this paper, we present a perturbative analysis of the ef-
fect of mutually orthogonal uniform and staggered transverse
magnetic fields h1, h2 on the confinement of spinons in the
Heisenberg XXZ spin-1/2 chain (16), (4). The spinon confine-
ment in this model in the massive antiferromagnetic regime is
induced by the staggered longitudinal magnetic field hz. The
energy spectra of the two-kink bound states in model (16),
(4) are calculated perturbatively in two asymptotic regimes:
(i) in the extreme anisotropic limit −� → ∞ and (ii) for
generic � < −1 at weak transverse h1, h2, and staggered
longitudinal hz magnetic fields. In the second regime, the
perturbative calculations have been performed in two steps.
First, in the deconfinement regime at hz = 0, the effect of the
weak transverse uniform and staggered magnetic fields on the
ground states and kink excitations of the XXZ spin chain are
calculated by means the Rayleigh-Schrödinger perturbation
expansion in small h1, h2. Then on top of that, the weak

staggered longitudinal magnetic field hz > 0 is switched on.
It induces confinement of kinks into the “mesons”—the two-
kink bound states. Their energy spectra and the dynamical
structure factors of local spin operators for the momenta close
to the points 0 and π are calculated in the second regime
by means of the properly modified semiclassical perturbative
technique, which was developed previously in [11,12].

It is shown, that the superposition of the semiclassical
wave-functions corresponding to different classical trajecto-
ries of two kinks forming a meson can be very sensitive
to the strength of the transverse magnetic fields h1, h2. This
leads to the oscillatory interference patterns in the transverse
magnetic field dependencies of the energies of mesons, and
of the DSF of local spin operators. Our theoretical predictions
on the evolution of these quantities with increasing transverse
magnetic field are in good qualitative and reasonable quanti-
tative agreement with the results reported by Faure et al. [10]
on the inelastic neutron scattering experiments in the quasi-
1D antiferromagnetic compound BaCo2V2O8. For a detailed
quantitative comparison of the obtained theoretical results
with experiment, the values of the parameters in the effective
Hamiltonian (277) should be reliably refined, preferable not
from fitting the experimentally observed meson energy spec-
tra, but from some independent mesurements.

There are several directions for further study. Our analysis
in this paper was based on the XXZ spin-chain Hamiltonian
(16), which is equivalent to (262). The obtained by Kimura
et al. effective Hamiltonian (277) differs from (262) by an
extra term cos[(2 j + 1)π/4]gyzH . We expect, that this term is
responsible, at least partly, for the folding of the meson modes
and DSF according to Eqs. (285), and (286), respectively. It
would be interesting to account for this term perturbatively
in small gyz, and to explicitly determine the coefficients Al in
Eq. (286). On the other hand, it would be also interesting to
perform direct numerical calculations of the DSF of local spin
operators for the model (262), and to compare the results with
our analytical perturbative formulas (274), (256) for these
DSF. On the experimental side, further detailed measurements
of the meson energy spectra in the quasi-1D antiferromagnets
BaCo2V2O8 and SrCo2V2O8 in different regimes are desir-
able.
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APPENDIX A: TWO-KINK SCATTERING AND FORM
FACTORS FOR THE XXZ SPIN CHAIN (4)

In this Appendix, we collect some well-known results
about the two-kink scattering phases and form factors of spin
operators for the antiferromagnetic XXZ spin chain at zero
magnetic field, which Hamiltonian is given by (4). More de-
tails can be found in [11].

The two-kink Bloch states |Kμν (p1)Kνμ(p2)〉s1s2 at zero
magnetic field are characterized by the quasimomenta p1, p2,
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and z-projection s1, s2 of the spins of particular kinks. The
defining equations for these states read

T̃1|Kμν (p1)Kνμ(p2)〉s1s2

= ei(p1+p2 )|Kμν (p1)Kνμ(p2)〉−s1,−s2 , (A1a)

Sz|Kμν (p1)Kνμ(p2)〉s1s2

= (s1 + s2)|Kμν (p1)Kνμ(p2)〉s1s2 , (A1b)(
H0 − E (0)

vac

)|Kμν (p1)Kνμ(p2)〉s1s2

= [ω(p1) + ω(p2)]|Kμν (p1)Kνμ(p2)〉s1s2 , (A1c)

where H0 is the Hamiltonian (4), E (0)
vac is its ground-state

energy, and ω(p) is the kink dispersion law (77). The Bloch
states |Kμν (p1)Kνμ(p2)〉s1s2 with 0 < p2 < p1 < π and s1,2 =
±1/2 form the basis in the two-kink subspace L(2). They are
normalized by the condition:

s2s1〈Kμν (p2)Kνμ(p1)||Kμ′ν ′ (p′
1)Kνμ(p′

2)〉s′
1s′

2

= π2δμμ′δνν ′δs1s′
1
δs2s′

2
δ(p1 − p′

1)δ(p2 − p′
2), (A2)

where 0 < p2 < p1 < π , 0 < p′
2 < p′

1 < π , and μ �= ν.
The following equalities hold [11]

|Kμν (p1)Kνμ(p2)〉s1s2

= κ(μ, s1)|Kμν (p1 + π )Kνμ(p2)〉s1s2

= κ(ν, s2)|Kμν (p1)Kνμ(p2 + π )〉s1s2 , (A3)

where κ(ν, s) is defined in the in-line formulas below
Eq. (92).

It is useful to define an alternative basis in the subspace of
two-kink states with zero total spin Sz = 0:

|Kμν (p1)Kνμ(p2)〉± ≡ 1√
2

(|Kμν (p1)Kνμ(p2)〉1/2,−1/2

± |Kμν (p1)Kνμ(p2)〉−1/2,1/2). (A4)

The two-kink scattering can be described by the Faddeev-
Zamolodchikov commutation relations:

|Kμν (p1)Kνμ(p2)〉ss = w0(p1, p2)|Kμν (p2)Kνμ(p1)〉ss,

(A5a)

|Kμν (p1)Kνμ(p2)〉± = w±(p1, p2)|Kμν (p2)Kνμ(p1)〉±.

(A5b)

The three scattering amplitudes wι(p1, p2), with ι = 0,±, can
be parametrized by the rapidity variable α,

wι(p1, p2) = exp[−iπ + iθι(p1, p2)], (A6a)

θι(p1, p2) = �ι(α1 − α2), (A6b)

�0(α) = α +
∞∑

n=1

e−nη sin(2αn)

n cosh(nη)
, (A6c)

�±(α) = �0(α) + χ±(α), (A6d)

χ+(α) = −i ln

(
− sin[(α + iη)/2]

sin[(α − iη)/2]

)
, (A6e)

χ−(α) = −i ln

(
cos[(α + iη)/2]

cos[(α − iη)/2]

)
, (A6f)

where p j = p(α j ), j = 1, 2, and �ι(α) are the scattering
phases. The scattering amplitude w0(p1, p2) was found by
Zabrodin [49], and the whole two-kink scattering matrix was
determined by Davies et al. [50].

The two-kink states |Kμν (ξ1)Kνμ(ξ2)〉s1s2 parametrized by
the multiplicative spectral parameters ξ1,2 = −ieiα1,2 are sim-
ply related with |Kμν (p1)Kνμ(p2)〉s1s2 :

|Kμν (ξ1)Kνμ(ξ2)〉s1s2 =
√

ω(p1)ω(p2)

sinh η
|Kμν (p1)Kνμ(p2)〉s1s2 .

(A7)

The states |Kμν (ξ1)Kνμ(ξ2)〉± are related in the same way
with |Kμν (p1)Kνμ(p2)〉±:

|Kμν (ξ1)Kνμ(ξ2)〉± =
√

ω(p1)ω(p2)

sinh η
|Kμν (p1)Kνμ(p2)〉±.

(A8)

All nonvanishing two-particle form factors of the spin op-
erators σ±

0 , σ z
0 can be expressed in terms of four functions

X 1(ξ1, ξ2), X 0(ξ1, ξ2), and X z
±(ξ1, ξ2):

X 1(ξ1, ξ2) = (1)〈vac|σ+
0 |K10(ξ1)K01(ξ2)〉−1/2,−1/2

= (0)〈vac|σ−
0 |K01(ξ1)K10(ξ2)〉1/2,1/2, (A9a)

X 0(ξ1, ξ2) = (1)〈vac|σ−
0 |K10(ξ1)K01(ξ2)〉1/2,1/2

= (0)〈vac|σ+
0 |K01(ξ1)K10(ξ2)〉−1/2,−1/2, (A9b)

X z
+(ξ1, ξ2) = (1)〈vac|σ z

0 |K10(ξ1)K01(ξ2)〉+
= − (0)〈vac|σ z

0 |K01(ξ1)K10(ξ2)〉+, (A9c)

X z
−(ξ1, ξ2) = (1)〈vac|σ z

0 |K10(ξ1)K01(ξ2)〉−
= (0)〈vac|σ z

0 |K01(ξ1)K10(ξ2)〉−. (A9d)

The functions X j (ξ1, ξ2) and X z
±(ξ1, ξ2) admit the following

explicit representations:

X j (ξ1, ξ2) = ρ2 (q4; q4)2

(q2; q2)3

· (−qξ1ξ2)1− jξ2 γ
(
ξ 2

2 /ξ 2
1

)
θq8

( − ξ−2
1 ξ−2

2 q4 j
)

θq4

(
ξ−2

1 q3
)
θq4

(
ξ−2

2 q3
) ,

(A10a)

X z
+(ξ1, ξ2) =

√
2 e−η/4g(α1 + α2, η)

sin[(α1 − α2 − iη)/2]
X 0(ξ1, ξ2), (A10b)

X z
−(ξ1, ξ2) = −X z

+(−ξ1, ξ2), (A10c)

where

γ (ξ ) ≡ (q4ξ ; q4; q4)(ξ−1; q4; q4)

(q6ξ ; q4; q4)(q2ξ−1; q4; q4)
, (A11)

ρ ≡ (q2; q2)2 (q4; q4; q4)

(q6; q4; q4)
, (A12)

(x; y) ≡
∞∏

n=0

(1 − xyn), (A13)

(x; y; z) ≡
∞∏

m,n=0

(1 − x ynzm), (A14)
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θx(y) = (x; x)(y; x)(xy−1; x), (A15)

g(α, η) =
ϑ1

(
α

2iη |e−π2/η
)

ϑ4
(

α
4iη |e−π2/(4η)

) . (A16)

Here ϑi(u|p) denote the elliptic theta functions:

ϑ1(u|p) = 2p1/4 sin(πu)

×
∞∏

n=1

(1 − p2n)(1 − 2p2n cos(2πu) + p4n),

ϑ4(u|p) =
∞∏

n=1

(1 − p2n)(1 − 2p2n−1 cos(2πu) + p2(2n−1)),

ϑ2(u|p) = ϑ1(u + 1/2|p), ϑ3(u|p) = ϑ4(u + 1/2|p).
(A17)

The two-kink form factors of the σ±
0 operators were deter-

mined by means of the vertex-operator formalism by Jimbo
and Miwa [33]. The explicit formulas for the form factors of
the σ z

0 operator in the XYZ spin-1/2 chain were obtained by
Lashkevich [51]. The XXZ limit of these formulas used in
(A10b) and (A10c) can be found in Ref. [52].

APPENDIX B: DERIVATION OF EQUATION (222)

In this Appendix, we describe calculation of the absolute
value of the normalization constant Bin,1, which was intro-
duced in Eq. (204).

Let us start from the normalization condition (147) for the
reduced wave functions φn(p|P, ht , hz ) describing the relative
motion of two kinks forming a meson. For n = n′, this nor-
malization condition takes the form∫ π

−π

d p

2π
|φn(p|P)|2 = 2. (B1)

Here we have skipped parameters ht , hz in the wave func-
tion φn(p|P, ht , hz ). The normalization condition (B1) can be
rewritten in terms of the Fourier coefficients (192) of the
reduced wave function:

∞∑
j=−∞

|ψn( j|P)|2 = 2. (B2)

One can easily show using (192) and (160), that the following
equality holds at ht = 0:

−∞∑
j=0

|ψn( j|P)|2 =
∞∑
j=0

|ψn( j|P)|2.

Accordingly, the normalization condition (B2) reduces in this
case to the form:

−1

2
|ψ0( j|P)|2 +

−∞∑
j=0

|ψn( j|P)|2 = 1. (B3)

At a small string tension f ∼ hz, the main contribution into
the sum in the left-hand side comes from the terms with large
enough negative j, such that | j| � 2ξc(η), where ξc(η) is the
correlation length (193). By this reason, to the leading order
in f , we can neglect the first term in the left-hand side of

(B3) and replace the functions ψn( j|P) in the sum by their
semiclassical asymptotics (201). This yields

−∞∑
j=0

{|C1|2|ψ (1)
n ( j|P)|2 + |C2|2|ψ (2)

n ( j|P)|2

+ 2 Re
[
C1C

∗
2 ψ (1)

n ( j|P)ψ (2)
n ( j|P)∗

]} = 1. (B4)

For the coefficients ψ (1,2)
n ( j|P) in the left-hand side, we ob-

tained in Sec. IX the asymptotical formulas (202), that hold at
small f > 0. To the leading order in f , these formulas reduce
to the form:

ψ (1)( j|P) =
∫ π/2

−π/2

d p

2π
eip j−iF1(p,E |0)/ f [1 + O( f )], (B5a)

ψ (2)( j|P) = (−1) jψ (1)( j|P)[1 + O( f )]. (B5b)

The integral in the right-hand side of (B5a) is mainly deter-
mined at small f > 0 by the contributions of the vicinity of
the saddle points ±p( j), where p( j) is the solution of the
equation:

E + f j = ε(p( j)|P). (B6)

For j ∈ ( jmin, 0), with jmin = [ε(0|P) − E ]/ f < 0, the solu-
tion of saddle-point Eq. (B6) is real and lies in the interval
p( j) ∈ (0, pa) in the left kinematically allowed region shown
in Fig. 9(a). In this case, the saddle point asymptotics of the
integral (B5a) reads

ψ (i)( j|P) = 2i

√
f

2πε′(p|P)

∣∣∣∣
p=p( j)

× sin

[
p( j) − F1(p( j), E |0)

f
− π

4

]
[1 + O( f )].

(B7)

After substitution of (B7) and (B5b) into the left-hand side of
Eq. (B4), one can see, that the highly oscillating third term in
the curly brackets under the sum sign can be dropped. As the
result, the normalization condition (B4) reduces to the form

1 = |C1|2 + |C2|2
π

×
0∑

j= jmin

�p( j){1 − sin [2p − 2F1(p( j), E |0)/ f ]}, (B8)

where �p( j) = f /ε′(p|P)|p=p( j).
After dropping the oscillation sin term in the curly brackets

in the second line of (B8) and replacement the summation in
j by the integration in p

0∑
j= jmin

�p( j) . . . →
∫ pa

0
d p . . . ,

we find from (B8)

|C1|2 + |C2|2 = π/pa.

Combining this result with (205), (213), and (221), we arrive
to the final expression (222) for the absolute value of the
normalization constant Bin,1.
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