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Curvature-induced magnetization in a CrI3 bilayer: Flexomagnetic effect enhancement
in van der Waals antiferromagnets

Lei Qiao ,1 Jan Sladek ,2 Vladimir Sladek ,2 Alexey S. Kaminskiy ,3,4 Alexander P. Pyatakov ,3,4,* and Wei Ren1,5,†

1Physics Department, International Center of Quantum and Molecular Structures, Materials Genome Institute, State Key Laboratory of
Advanced Special Steel, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, China

2Institute of Construction and Architecture, Slovak Academy of Sciences, 84503 Bratislava, Slovakia
3Physical Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia

4MIREA - Russian Technological University, 119454 Moscow, Russia
5Zhejiang Laboratory, Hangzhou 311100, China

(Received 17 July 2023; revised 5 December 2023; accepted 8 December 2023; published 11 January 2024)

The bilayer of CrI3 is a prototypical van der Waals (vdW) 2D antiferromagnetic material with magnetoelectric
effect. It is not generally known, however, that for symmetry reasons the flexomagnetic effect, i.e., the strain
gradient-induced magnetization, is also possible in this system. In the present paper, based on the first-principle
calculations, we estimate the flexomagnetic effect to be 200 μB · Å, which is two orders of magnitude higher
than it was predicted for the referent antiperovskite flexomagnetic material Mn3GaN. The two major factors of
flexomagnetic effect enhancement related to the peculiarities of antiferromagnetic structure of vdW magnets are
revealed: the strain-dependent ferromagnetic coupling in each layer, and large interlayer distance separating
antiferromagnetically coupled ions. Since 2D systems are naturally prone to mechanical deformation, the
emerging field of flexomagnetism is of special interest for application in vdW spintronics, and straintronics
in particular.
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I. INTRODUCTION

Since the first report on graphene isolation, the class of
two-dimensional (2D) materials has expanded tremendously:
it includes now not only graphene derivatives (like graphane,
graphone, graphyne, etc.) but also other types of van der
Waals (vdW) materials including monolayers and bilayers of
transition-metal dichalcogenides [1] and dihalides [2]. Some
of these compounds have been recently discovered to demon-
strate 2D magnetic ordering [3,4]. Since 2D materials are
naturally prone to mechanical deformation, the study of cross-
correlation effects between lattice, electronic, and magnetic
subsystems is critical for straintronics, an emergent branch of
electronics related to the strain-induced effects [5]. The advent
of 2D magnets can bridge the gap between the two concepts of
the straintronics of magnets [6] and the straintronics of vdW
materials [7,8].

The flexural deformation (bending) characterized by strain
gradient induces the electric polarization in the crystal,
by the effect known as the flexoelectric one. In analogy
to flexoelectricity the flexomagnetic effect, i.e., the strain
gradient-induced magnetization was theoretically predicted
[9,10] and experimentally found [11,12]. In 2D magnetic
materials the flexorelated phenomena in spin subsystem of
crystal have only very recently attracted attention of the re-
searchers: the flexomagnetoelectric coupling in MoS2 [13]
and curvature-induced spin cycloid ordering in CrI3 [14,15]
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were predicted by ab initio calculations; the flexomagnetic
phase transition from antiferromagnetic to ferromagnetic or-
der in rippled Heusler membranes was observed [16].

In this paper the CrI3 bilayer is proposed as a material
with a pronounced flexomagnetic effect, i.e., the magneti-
zation linearly proportional to the strain gradient. In this
way the flexomagnetic effect in a bilayer strikingly dif-
fers from curvature-induced magnetism in a monolayer
analyzed in Refs. [14,15] both in phenomenology (linear
vs nonlinear steplike curvature dependence) and in micro-
scopic mechanisms (symmetrical Heisenberg-type exchange
vs antisymmetrical Dzyaloshinskii-Moriya-like interaction).
Flexomagnetic coefficients are obtained by fitting the density-
functional theory (DFT) simulation with the analytical
solution for a simple problem involving the gradient theory.
The obtained value of flexomagnetic effect in a vdW bilayer
is two orders of magnitude larger than the analogous effect in
an antiperovskite [10] and other bulk materials.

II. STRUCTURE AND SYMMETRY

In a monolayer of CrI3 the Cr atoms form a honeycomb
structure as seen in Fig. 1(a). CrI3 has two stacking styles,
AB′ stacking (C2h point group) with antiferromagnetic (AFM)
interlayer interaction and AB stacking (S6 point group) with
ferromagnetic (FM) interlayer interaction; here we choose
AB′ stacking [17]. The layer-dependent magnetic ordering
was observed in this material [3]: ferromagnetism in the
monolayer, antiferromagnetism in the bilayer [Fig. 1(b)], and
nonvanishing magnetization in the trilayer, etc. The Cr atoms
in every layer of multilayer are ferromagnetically coupled,
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FIG. 1. (a) The top view of CrI3 monolayer. (b) The cross section
of CrI3 undeformed bilayer. Blue and purple spheres are Cr and I
atoms, respectively. The red dashed lines indicate the unit cell. The
magnetic moments of Cr ions are shown in the unit cell with upward
and downward arrows.

while the interlayer exchange is an antiferromagnetic one.
CrI3 bilayer is an antiferromagnet demonstrating linear mag-
netoelectric effect [18]; in other words, the symmetry of
antiferromagnetic order parameter L allows EiHjLk-type in-
variant combinations, and the contribution to the free energy
of FME = −αi jkEiHjLk , where Ei and Hj are the components
of electric and magnetic fields, respectively. The existence of
this invariant implies the magnetization linear with respect to
the electric field: Mj = − ∂FME

∂Hj
= αi jkEiLk .

Since the strain gradient with respect to basic symmetry
elements of space- and time inversion is an analog of elec-
tric field, then the magnetization proportional to the strain
gradient, i.e., flexomagnetic effect, is possible. To investigate
the exact structure of the flexomagnetic tensor let us consider
the thermodynamic terms related to magnetic and mechanical
subsystems in more detail.

III. TENSOR OF FLEXOMAGNETIC EFFECT
AND FLEXOMAGNETIC COEFFICIENTS

The flexomagnetism can be phenomenologically described
by incorporating additional strain-gradient terms into the
expression for the thermodynamic potential. Then, the free-
energy density for a piezomagnetic solid can be written as [10]

F = 1
2 ci jklεi jεkl − 1

2γi jHiHj + 1
2 g jklmniη jklηmni

− ξi jkl Hiη jkl , (1)

where H is a magnetic field, tensor γ components are the
second-order magnetic permeabilities, c stands for the fourth-
order elastic tensor, and ξ is the flexomagnetic effect tensor.
The higher-order elastic coefficients corresponding to the
strain-gradient η are denoted by g. No piezomagnetic prop-
erties are considered.

The linear strain tensor εi j is defined as

εi j = 1
2 (ui, j + u j,i ), (2)

where ui is the displacement, the index after comma stands
for spatial derivative component, and the stationary magnetic
field Hi is expressed as the negative gradient of the magnetic
potential. The strain-gradient tensor η is defined as

ηi jk = εi j,k = 1
2 (ui, jk + u j,ik ). (3)

The constitutive equations can be obtained from the free-
energy density expression (1):

σi j = ∂F

∂εi j
= ci jklεkl , τ jkl= ∂F

∂η jkl
= −ξi jkl Hi + g jklmniηmni,

Bi = − ∂F

∂Hi
= γi jHj + ξi jklη jkl , (4)

where σi j , Bi, and τ jkl are the stress tensor, magnetic in-
duction, and higher-order stress tensor, respectively. See
Supplemental Material [19] for the matrix form of Eq. (4)
represented by Lekhnitskii’s notation [20].

To take into account the material microstructure in the phe-
nomenological theory, the internal-length material parameter
l has been introduced [21,22]. In the simplified model, the
higher-order elastic coefficients g jklmni can be expressed in
terms of the conventional elastic stiffness coefficients cklmn

and this material parameter: g jklmni = l2 c jkmnδli, with δli be-
ing the Kronecker delta. Then, besides the classical material
coefficients, the microlength-scale parameter is the additional
material characteristic in the higher-grade continuum theory.

Two independent coefficients ξ1 and ξ2 are introduced for
the flexomagnetic tensor ξi jkl :

ξi jkl = ξ1δ jkδil + ξ2(δi jδkl + δikδ jl ). (5)

In the framework of this theory the free-energy density has
the following form:

F = 1

2
ci jklεi jεkl − 1

2
γi jHiHj + l2

2
c jkmnη jklηmnl − ξ1Hiηkki

− 2ξ2Hiηikk . (6)

Governing equations are obtained from the principle of
virtual work, δF−δW = 0:

εi j, j (X) − τi jk, jk (X) = 0, Bi,i(X) = 0. (7)

Let us consider a boundary value condition for the rectan-
gle domain L × d , where L is the length of the film fragment
under consideration and d is the thickness of the 2D material
layer. The displacements are assumed as

u1 = 0, u3 = a1x2 + a2z2, (8)

where a1 and a2 are coefficients corresponding to the strain
gradient. Here the coordinate system (x, z) corresponds to
(x1, x3).

It can be shown from the governing equation (7) (for de-
tails, see Supplemental Material [19]) that the strain-gradient
coefficients and that for magnetic induction are related by the
following equations:

a1

a2
= −c33

c44
, (9)

B3 = 2(ξ1 + 2ξ2)a2 + 2ξ2a1 = 2a2

[
ξ1 +

(
2 − c33

c44

)
ξ2

]
.

(10)

Specification of coefficients by (9) guarantees not only
satisfaction of continuum-theory governing equations, but re-
sults also into the complete set of boundary conditions in the
classical continuum theory for condition A (see the boundary
value condition A section in the Supplemental Material [19]).

In order to obtain the second equation for unknown co-
efficients ξ1 and ξ2, another boundary condition should be
considered [Fig. 2(b)]:

u1 = a3x2 + a4z2, u3 = 0, (11)
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FIG. 2. Schematic diagram of two deformation modes. Symmet-
ric boundary conditions for (a) a simple patch condition A: u3 =
a1x2 + a2z2, where a1 = −(c33/c44)a2, and (b) a simple patch con-
dition B: u1 = a3x2 + a4z2, where a3 = −(c44/c11)a4. Dashed and
solid lines indicate the lattice box and the position of atoms before
and after deformation.

From the governing equations we get relations for strain
gradients:

a3 = −c44

c11
a1, (12)

and the magnetic induction:

B1 = 2(ξ1 + 2ξ2)a3 + 2ξ2a4 = 2a4

[
ξ2 − c44

c11
(ξ1 + 2ξ2)

]
.

(13)

Finally, we have two expressions for magnetic inductions
(10) and (13) with two unknown flexomagnetic coefficients
ξ1 and ξ2. If both values B1 and B3 are obtained from DFT
calculations, it is easy to get both unknown flexomagnetic
parameters.

IV. COMPUTATIONAL DETAILS

DFT simulations were performed within the general-
ized gradient approximation [23] in the form proposed
by Perdew-Burke-Ernzerhof, as implemented in the Vienna
Ab initio Simulation Package (VASP) [24]. The projector
augmented-wave pseudopotentials [25,26] were used. For all
the calculations, we chose the energy cutoff to be 500 eV, and
an additional effective Hubbard Ueff = 3 eV for Cr 3d orbitals
to deal with the self-interaction error [27]; the convergence
criterion of the total energy was set to less than 10−6 eV.
We chose the high-temperature phase-stacking structure, and
transformed the unit cell as shown in Fig. 1, optimized to
have the lattice parameters of a = 11.97 Å and b = 6.91 Å.
To simulate the experimental condition, we used a nanorib-
bon composed of 8×1×1 supercell while adding a vacuum
larger than 15 Å in the a direction. Thus, the final structure
dimensions are a = 119.78 Å, b = 6.91 Å, and c = 41.39 Å
with α = β = γ = 90◦. When the bilayer inside has no strain
gradient, the thickness of monolayer and the vdW gap are
3.2 and 3.5 Å, respectively, which gives 2×3.2 + 3.5 = 9.9 Å
thickness of the bilayer. The system contains 64 Cr and 192
I atoms. The 1×5×1 �-centered k-grid samplings [28] were
adopted for the system. For the mechanical properties, we
used the energy-strain method to calculate the elastic con-
stants, generating input files based on VASPKIT [29] with
strains ranging from −1 to 1% and fitting the energy to obtain
the elastic constants of the system.

FIG. 3. The calculated flexomagnetic effect: (a) the magnetiza-
tion dependence on the strain-gradient parameters a1 and a3 along
x axis for boundary conditions A and B, respectively. (b) The con-
figurations for the boundary conditions A and B, as well as the
superposition of A and B deformations (the deformations are exag-
gerated by 10 times for illustrative purposes).

V. RESULTS

As analyzed in the model, we moved the atoms in the
supercell to simulate three situations; again, the displacements
were u1 = 0, u3 = a1(x2 + z2 c44

c33
) for boundary condition A,

while u1 = a3(x2 + z2 c11
c44

), u3 = 0 for boundary condition B.
The bend deformation means that both boundary conditions
A and B exist, and note that a1 = a3 for bend deformation.
Figure 3(b) shows the structures for the three conditions. To
make the structural features more obvious, the displacement
distance of atoms is exaggerated in the figure, and the negative
value of strain gradient means that the surface of the bilayer is
concave.

First, we calculated the elastic constant of the bound-
ary conditions A and B. As described in the Supplemental
Material [19], we already had the representation of the elastic
constant matrix of the orthotropic material; these values in the
matrix could be obtained from the fit of the direction-specific
strain-energy curve. The energy-strain curves of boundary
conditions A and B, shown in Fig. S1, give the ratio for the
elastic constant in Table SI: c33

c44
≈ 1.8 and c44

c11
≈ 0.42. Since

c11 and c33 represent the deformation along the x direction and
z direction, respectively, the c44 represents the deformation
along the yz plane; it can be predicted that the order of influ-
ence of the interlayer distance on the elastic constant is c33 >

c44 > c11, and further affects the ratio of elastic constants. The
data in Tables SII and SIII prove the above analysis.

The dependence of strain gradient-induced magnetic mo-
ments of CrI3 bilayer per formula unit corresponding to
Eqs. (10) and (13) are shown in Fig. 3(a). Note that the mag-
netic moment of the end Cr atoms increases substantially due
to the formation of dangling bonds by the unpaired electrons
[it is clear to find the Cr’s position in Fig. 1(b)]. For a more
accurate description of the total magnetic moment, we do
not consider the contribution of dangling bonds in the total
magnetic moment, and as an example we show the effect of
dangling bonds in Fig. S2.

Taking into account the data of Fig. 3 one can see that
the flexomagnetic magnetization along the x axis (the bound-
ary condition B) is negligible with respect to the one along
the normal to the plane. This result agrees with the Curie
principle: the symmetry of the crystal structure (Fig. 1) and
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FIG. 4. On the mechanisms of flexomagnetic effect enhance-
ment: M0 is the moment of a single ion in the antiferromagnetic
sublattice, d is the distance between the middle lines of the top
and bottom CrI3 layers, R is the curvature radius that is inversely
proportional to a strain gradient a2 along z axis. The top views of
relative displacements of Cr ions in the top and the bottom layers are
shown in the insets. The dashed lines show the boundaries of the unit
cell. The dashed-dotted line shows the middle line of the bilayer. The
dotted arrows correspond to the initial magnetic moments of atoms
M0: one can see the increment of magnetization in the top layer
and the decrement in the bottom one that results in magnetization
decompensation 
M. The curvature of the layers is exaggerated for
illustrative purposes.

symmetry of the “cause” [the deformation, Fig. 2(b)] do not
single out any preferential direction in the plane of the bilayer.

Taking into account that B1 is negligibly small [Eq. (13)],
one can estimate the ratio of flexomagnetic constants ξ2/ξ1 ≈
4.5. The values of flexomagnetic coefficients in accordance to
Eq. (10) are ξ2 ≈ 239 μ0μB · Å and ξ1 ≈ 53 μ0μB · Å.

Substituting these values of the flexomagnetic coefficients
into Eq. (10), we obtained that the strain gradient-induced
magnetic moment along the normal to the plane was pro-
portional to strain-gradient a2 with the coefficient 200 μB · Å
that is about two orders of value larger than the analogous
flexomagnetic effect in Mn3GaN [10].

VI. DISCUSSION

To rationalize the obtained numerical results let us consider
the vdW bilayer CrI3 as a system of two oppositely magne-
tized layers playing the role of sublattices in a conventional
antiferromagnet (Fig. 4). From the general arguments the flex-
omagnetic effect is proportional to the magnetic moment M0

of a single ion in an antiferromagnetic sublattice and to the
distance d between the pair of antiferromagnetically ordered
ions. This distance in the vdW structure of CrI3 bilayer (6.7 Å)
is unusually large for antiferromagnet. The larger the space
separation between antiferromagnetically coupled ions is, the
more pronounced the difference in their crystalline environ-
ments in the presence of strain gradient is. This strain-induced
difference in the sublattices’ crystal structure results in the
imbalance of their magnetizations, i.e., flexomagnetic effect.

When comparing CrI3 bilayer with the referent flexomag-
netic material Mn3GaN one should consider that the magnetic
moment of Cr ion M0 ∼ 3 μB is somewhat bigger than
M0 ∼ 2μB for Mn ion and that the antiferromagnetically cou-
pled Cr ions are separated by the spacing d = 7 Å, while in
antiperovskite unit cell of Mn3GaN the distance between Mn

FIG. 5. We chose the Hubbard U parameters of 2.5, 3.0, and
3.5 eV to calculate (a) the modulation of the nearest Cr-Cr neighbor
exchange parameters vs strain (a − a0 )/a0 and (b) the total magnetic
moment vs strain-gradient parameter a1.

ions belonging to different antiferromagnetic sublattices does
not exceed 2 Å. However, these factors alone cannot explain
two orders of magnitude increase of flexomagnetic effect in
CrI3 bilayer compared to Mn3GaN.

Besides these purely geometrical arguments there are also
the physical mechanisms of flexomagnetic effect enhance-
ment: the strong dependence of exchange interaction on the
distance between atoms (the vivid illustration is Ruderman-
Kittel-Kasuya-Yosida interaction where even the sign of
exchange integral changes with distance [16]) or the strain-
induced modulation of Néel temperature [12]. Within the
limits of our model the most probable reason for flexo-
magnetic effect enhancement is the strain-induced exchange
modulation: in the top layer the ferromagnetically ordered Cr
ions are closer to each other than in the relaxed state while in
the bottom layer they move apart (Fig. 4, insets).

The value of intralayer exchange modulation induced by
the strain can be estimated from Ref. [30]: in the linear ap-
proximation the tensile/compressive strain 0.1% corresponds
to the reduction/increase of the exchange coupling by 0.5%.
The effective exchange field for Cr ions in the compressed top
layer is higher than in the stretched bottom layer, resulting
in the decompensation of the sublattice magnetizations. To
illustrate this in Fig. S3, the structures with different interlayer
distance are calculated: the increase of the distance leads to
the proportional uncompensated magnetic moment due to the
change of strain difference in layers [Fig. S3(a)]. The change
of interlayer distance alone (without corresponding change of
strains in layers) basically has no effect on the total magnetic
moment [Fig. S3(b)]. Proving the above analysis, we confirm
that the noncanceled magnetic moment comes from the differ-
ent strain degrees in the two layers of CrI3.

The value of flexomagnetic effect 200 μB · Å enables to
detect it by highly sensitive single-spin magnetometry based
on a nitrogen-vacancy center (NV center) [31]: if the curvature
radius of the ripple is below 1000 Å (that is equivalent to
the strain gradient higher than 10−3 Å−1) the strain-induced
moment per formula unit will be above 0.1μB. It should be
noted that these curvature values are well below the ones for
CrI3 monolayer (∼0.1 Å−1) considered in Refs. [14,15], so
the curvature-induced effects due to the spin-orbit interaction
can be neglected here; see Fig. S4 in Supplemental Material
[19] for the specific derivation [14,32]. In addition, it is ob-
served in Fig. 5 that different Hubbard U parameters slightly
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change the magnetic exchange parameters without changing
the total magnetic moment much, since the total magnetic
moment essentially comes from the difference in exchange pa-
rameter caused by different strains between the bilayers, and
has nothing to do with the strength of the exchange parameter
itself. At the same time, the difference in magnetic exchange
parameters obtained by different U parameters is basically
unchanged, such as the difference of magnetic exchange pa-
rameter between −5 and 5% strains calculated with U equals
2.5 and 3.5 eV in Fig. 5(a) is less than 2%, resulting in a total
magnetic moment that is not related to the U parameter.

VII. CONCLUSION

Summarizing, the flexomagnetic effect in CrI3 bilayer
is the result of strain gradient-induced decompensation of
antiferromagnetic sublattices and manifests itself on the
rippled surface. As soon as the curvature radius of a rip-
ple scales down to the range of hundreds of nanometers
and below, the magnetic moment difference per formula
unit reaches 0.1μB that is within the range of single-
spin NV-center magnetometry. The relatively large value
of flexomagnetic effect in the bilayer CrI3 is partly at-
tributable to the large distance between the antiferromagnet-
ically coupled ions in the vdW structure compared to the
conventional antiferromagnets, but this geometrical factor
alone cannot explain the two-order enhancement of flexomag-

netic coefficient compared to antiperovskite Mn3GaN. To gain
insight into the origin of the enhancement the strain-induced
ferromagnetic exchange modulation in each layer should be
involved. The flexomagnetic effect provides a powerful knob
to control magnetic properties of antiferomagnetically cou-
pled vdW structures and is interesting for application in
spintronics of 2D magnets and straintronics in particular.
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